-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmmseg_utils.py
60 lines (42 loc) · 2.02 KB
/
mmseg_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import glob
import numpy as np
from scipy import ndimage as nd
def numpy_dice_coefficient(y_true, y_pred, smooth=1.):
y_true_f = y_true.flatten()
y_pred_f = y_pred.flatten()
intersection = np.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
def scale2D(inmat, targetsize_y, targetsize_x, order=3, mode='constant', cval=0.0, prefilter=True):
z = [float(targetsize_y)/inmat.shape[0], float(targetsize_x)/inmat.shape[1]]
retmat = nd.interpolation.zoom(inmat, zoom=z, order=order, mode=mode, cval=cval, prefilter=prefilter)
if retmat.shape != (targetsize_y, targetsize_x):
print('scale2D did not return the expected size output', retmat.shape)
raise Exception('scale2D error')
return retmat
def scale3D(inmat, targetsize_z, targetsize_y, targetsize_x, order=3, mode='constant', cval=0.0, prefilter=True):
z = [float(targetsize_z)/inmat.shape[0], float(targetsize_y)/inmat.shape[1], float(targetsize_x)/inmat.shape[2]]
retmat = nd.interpolation.zoom(inmat, zoom=z, order=order, mode=mode, cval=cval, prefilter=prefilter)
if retmat.shape != (targetsize_z, targetsize_y, targetsize_x):
print('scale3D did not return the expected size output', retmat.shape)
raise Exception('scale3D error')
return retmat
def checkDixonImage(dixon_img) -> bool:
hist, _ = np.histogram(dixon_img, bins=20)
if np.argmax(hist) == 0: return True
else:
return False
def get_fmf(pattern: str, case_sensitive = False) -> str:
"""Get first file matching given pattern(s) or raise an exception
Args:
pattern (str/list): File pattern(s) to match
Returns:
filename: The first matching filename
Example:
get_fmf('/home/myfile.*')
"""
if type(pattern) is str: pattern = [pattern]
for p in pattern:
files = glob.glob(p)
if len(files) > 0:
return str(files[0])
raise Exception(f'ERROR: No files found matching {pattern}')