-
Notifications
You must be signed in to change notification settings - Fork 0
/
peakdetect.py
959 lines (747 loc) · 33.3 KB
/
peakdetect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
import logging
from math import pi, log
import numpy as np
import pylab
from scipy import fft, ifft
from scipy.optimize import curve_fit
from scipy.signal import cspline1d_eval, cspline1d
__all__ = [
"peakdetect",
"peakdetect_fft",
"peakdetect_parabola",
"peakdetect_sine",
"peakdetect_sine_locked",
"peakdetect_spline",
"peakdetect_zero_crossing",
"zero_crossings",
"zero_crossings_sine_fit"
]
def _datacheck_peakdetect(x_axis, y_axis):
if x_axis is None:
x_axis = range(len(y_axis))
if len(y_axis) != len(x_axis):
raise ValueError(
"Input vectors y_axis and x_axis must have same length")
#needs to be a numpy array
y_axis = np.array(y_axis)
x_axis = np.array(x_axis)
return x_axis, y_axis
def _pad(fft_data, pad_len):
"""
Pads fft data to interpolate in time domain
keyword arguments:
fft_data -- the fft
pad_len -- By how many times the time resolution should be increased by
return: padded list
"""
l = len(fft_data)
n = _n(l * pad_len)
fft_data = list(fft_data)
return fft_data[:l // 2] + [0] * (2**n-l) + fft_data[l // 2:]
def _n(x):
"""
Find the smallest value for n, which fulfils 2**n >= x
keyword arguments:
x -- the value, which 2**n must surpass
return: the integer n
"""
return int(log(x)/log(2)) + 1
def _peakdetect_parabola_fitter(raw_peaks, x_axis, y_axis, points):
"""
Performs the actual parabola fitting for the peakdetect_parabola function.
keyword arguments:
raw_peaks -- A list of either the maxima or the minima peaks, as given
by the peakdetect functions, with index used as x-axis
x_axis -- A numpy array of all the x values
y_axis -- A numpy array of all the y values
points -- How many points around the peak should be used during curve
fitting, must be odd.
return: A list giving all the peaks and the fitted waveform, format:
[[x, y, [fitted_x, fitted_y]]]
"""
func = lambda x, a, tau, c: a * ((x - tau) ** 2) + c
fitted_peaks = []
distance = abs(x_axis[raw_peaks[1][0]] - x_axis[raw_peaks[0][0]]) / 4
for peak in raw_peaks:
index = peak[0]
x_data = x_axis[index - points // 2: index + points // 2 + 1]
y_data = y_axis[index - points // 2: index + points // 2 + 1]
# get a first approximation of tau (peak position in time)
tau = x_axis[index]
# get a first approximation of peak amplitude
c = peak[1]
a = np.sign(c) * (-1) * (np.sqrt(abs(c))/distance)**2
"""Derived from ABC formula to result in a solution where A=(rot(c)/t)**2"""
# build list of approximations
p0 = (a, tau, c)
popt, pcov = curve_fit(func, x_data, y_data, p0)
# retrieve tau and c i.e x and y value of peak
x, y = popt[1:3]
# create a high resolution data set for the fitted waveform
x2 = np.linspace(x_data[0], x_data[-1], points * 10)
y2 = func(x2, *popt)
fitted_peaks.append([x, y, [x2, y2]])
return fitted_peaks
def peakdetect_parabole(*args, **kwargs):
"""
Misspelling of peakdetect_parabola
function is deprecated please use peakdetect_parabola
"""
logging.warn("peakdetect_parabole is deprecated due to misspelling use: peakdetect_parabola")
return peakdetect_parabola(*args, **kwargs)
def peakdetect(y_axis, x_axis = None, lookahead = 200, delta=0):
"""
Converted from/based on a MATLAB script at:
http://billauer.co.il/peakdet.html
function for detecting local maxima and minima in a signal.
Discovers peaks by searching for values which are surrounded by lower
or larger values for maxima and minima respectively
keyword arguments:
y_axis -- A list containing the signal over which to find peaks
x_axis -- A x-axis whose values correspond to the y_axis list and is used
in the return to specify the position of the peaks. If omitted an
index of the y_axis is used.
(default: None)
lookahead -- distance to look ahead from a peak candidate to determine if
it is the actual peak
(default: 200)
'(samples / period) / f' where '4 >= f >= 1.25' might be a good value
delta -- this specifies a minimum difference between a peak and
the following points, before a peak may be considered a peak. Useful
to hinder the function from picking up false peaks towards to end of
the signal. To work well delta should be set to delta >= RMSnoise * 5.
(default: 0)
When omitted delta function causes a 20% decrease in speed.
When used Correctly it can double the speed of the function
return: two lists [max_peaks, min_peaks] containing the positive and
negative peaks respectively. Each cell of the lists contains a tuple
of: (position, peak_value)
to get the average peak value do: np.mean(max_peaks, 0)[1] on the
results to unpack one of the lists into x, y coordinates do:
x, y = zip(*max_peaks)
"""
max_peaks = []
min_peaks = []
dump = [] #Used to pop the first hit which almost always is false
# check input data
x_axis, y_axis = _datacheck_peakdetect(x_axis, y_axis)
# store data length for later use
length = len(y_axis)
#perform some checks
if lookahead < 1:
raise ValueError("Lookahead must be '1' or above in value")
if not (np.isscalar(delta) and delta >= 0):
raise ValueError("delta must be a positive number")
#maxima and minima candidates are temporarily stored in
#mx and mn respectively
mn, mx = np.Inf, -np.Inf
#Only detect peak if there is 'lookahead' amount of points after it
for index, (x, y) in enumerate(zip(x_axis[:-lookahead],
y_axis[:-lookahead])):
if y > mx:
mx = y
mxpos = x
if y < mn:
mn = y
mnpos = x
####look for max####
if y < mx-delta and mx != np.Inf:
#Maxima peak candidate found
#look ahead in signal to ensure that this is a peak and not jitter
if y_axis[index:index+lookahead].max() < mx:
max_peaks.append([mxpos, mx])
dump.append(True)
#set algorithm to only find minima now
mx = np.Inf
mn = np.Inf
if index+lookahead >= length:
#end is within lookahead no more peaks can be found
break
continue
#else: #slows shit down this does
# mx = ahead
# mxpos = x_axis[np.where(y_axis[index:index+lookahead]==mx)]
####look for min####
if y > mn+delta and mn != -np.Inf:
#Minima peak candidate found
#look ahead in signal to ensure that this is a peak and not jitter
if y_axis[index:index+lookahead].min() > mn:
min_peaks.append([mnpos, mn])
dump.append(False)
#set algorithm to only find maxima now
mn = -np.Inf
mx = -np.Inf
if index+lookahead >= length:
#end is within lookahead no more peaks can be found
break
#else: #slows shit down this does
# mn = ahead
# mnpos = x_axis[np.where(y_axis[index:index+lookahead]==mn)]
#Remove the false hit on the first value of the y_axis
try:
if dump[0]:
max_peaks.pop(0)
else:
min_peaks.pop(0)
del dump
except IndexError:
#no peaks were found, should the function return empty lists?
pass
return [max_peaks, min_peaks]
def peakdetect_fft(y_axis, x_axis, pad_len = 20):
"""
Performs a FFT calculation on the data and zero-pads the results to
increase the time domain resolution after performing the inverse fft and
send the data to the 'peakdetect' function for peak
detection.
Omitting the x_axis is forbidden as it would make the resulting x_axis
value silly if it was returned as the index 50.234 or similar.
Will find at least 1 less peak then the 'peakdetect_zero_crossing'
function, but should result in a more precise value of the peak as
resolution has been increased. Some peaks are lost in an attempt to
minimize spectral leakage by calculating the fft between two zero
crossings for n amount of signal periods.
The biggest time eater in this function is the ifft and thereafter it's
the 'peakdetect' function which takes only half the time of the ifft.
Speed improvements could include to check if 2**n points could be used for
fft and ifft or change the 'peakdetect' to the 'peakdetect_zero_crossing',
which is maybe 10 times faster than 'peakdetct'. The pro of 'peakdetect'
is that it results in one less lost peak. It should also be noted that the
time used by the ifft function can change greatly depending on the input.
keyword arguments:
y_axis -- A list containing the signal over which to find peaks
x_axis -- A x-axis whose values correspond to the y_axis list and is used
in the return to specify the position of the peaks.
pad_len -- By how many times the time resolution should be
increased by, e.g. 1 doubles the resolution. The amount is rounded up
to the nearest 2**n amount
(default: 20)
return: two lists [max_peaks, min_peaks] containing the positive and
negative peaks respectively. Each cell of the lists contains a tuple
of: (position, peak_value)
to get the average peak value do: np.mean(max_peaks, 0)[1] on the
results to unpack one of the lists into x, y coordinates do:
x, y = zip(*max_peaks)
"""
# check input data
x_axis, y_axis = _datacheck_peakdetect(x_axis, y_axis)
zero_indices = zero_crossings(y_axis, window_len = 11)
#select a n amount of periods
last_indice = - 1 - (1 - len(zero_indices) & 1)
###
# Calculate the fft between the first and last zero crossing
# this method could be ignored if the beginning and the end of the signal
# are unnecessary as any errors induced from not using whole periods
# should mainly manifest in the beginning and the end of the signal, but
# not in the rest of the signal
# this is also unnecessary if the given data is an amount of whole periods
###
fft_data = fft(y_axis[zero_indices[0]:zero_indices[last_indice]])
padd = lambda x, c: x[:len(x) // 2] + [0] * c + x[len(x) // 2:]
n = lambda x: int(log(x)/log(2)) + 1
# pads to 2**n amount of samples
fft_padded = padd(list(fft_data), 2 **
n(len(fft_data) * pad_len) - len(fft_data))
# There is amplitude decrease directly proportional to the sample increase
sf = len(fft_padded) / float(len(fft_data))
# There might be a leakage giving the result an imaginary component
# Return only the real component
y_axis_ifft = ifft(fft_padded).real * sf #(pad_len + 1)
x_axis_ifft = np.linspace(
x_axis[zero_indices[0]], x_axis[zero_indices[last_indice]],
len(y_axis_ifft))
# get the peaks to the interpolated waveform
max_peaks, min_peaks = peakdetect(y_axis_ifft, x_axis_ifft, 500,
delta = abs(np.diff(y_axis).max() * 2))
#max_peaks, min_peaks = peakdetect_zero_crossing(y_axis_ifft, x_axis_ifft)
# store one 20th of a period as waveform data
data_len = int(np.diff(zero_indices).mean()) / 10
data_len += 1 - data_len & 1
return [max_peaks, min_peaks]
def peakdetect_parabola(y_axis, x_axis, points = 31):
"""
Function for detecting local maxima and minima in a signal.
Discovers peaks by fitting the model function: y = k (x - tau) ** 2 + m
to the peaks. The amount of points used in the fitting is set by the
points argument.
Omitting the x_axis is forbidden as it would make the resulting x_axis
value silly, if it was returned as index 50.234 or similar.
will find the same amount of peaks as the 'peakdetect_zero_crossing'
function, but might result in a more precise value of the peak.
keyword arguments:
y_axis -- A list containing the signal over which to find peaks
x_axis -- A x-axis whose values correspond to the y_axis list and is used
in the return to specify the position of the peaks.
points -- How many points around the peak should be used during curve
fitting (default: 31)
return: two lists [max_peaks, min_peaks] containing the positive and
negative peaks respectively. Each cell of the lists contains a tuple
of: (position, peak_value)
to get the average peak value do: np.mean(max_peaks, 0)[1] on the
results to unpack one of the lists into x, y coordinates do:
x, y = zip(*max_peaks)
"""
# check input data
x_axis, y_axis = _datacheck_peakdetect(x_axis, y_axis)
# make the points argument odd
points += 1 - points % 2
#points += 1 - int(points) & 1 slower when int conversion needed
# get raw peaks
max_raw, min_raw = peakdetect_zero_crossing(y_axis)
# define output variable
max_peaks = []
min_peaks = []
max_ = _peakdetect_parabola_fitter(max_raw, x_axis, y_axis, points)
min_ = _peakdetect_parabola_fitter(min_raw, x_axis, y_axis, points)
max_peaks = map(lambda x: [x[0], x[1]], max_)
max_fitted = map(lambda x: x[-1], max_)
min_peaks = map(lambda x: [x[0], x[1]], min_)
min_fitted = map(lambda x: x[-1], min_)
return [max_peaks, min_peaks]
def peakdetect_sine(y_axis, x_axis, points = 31, lock_frequency = False):
"""
Function for detecting local maxima and minima in a signal.
Discovers peaks by fitting the model function:
y = A * sin(2 * pi * f * (x - tau)) to the peaks. The amount of points used
in the fitting is set by the points argument.
Omitting the x_axis is forbidden as it would make the resulting x_axis
value silly if it was returned as index 50.234 or similar.
will find the same amount of peaks as the 'peakdetect_zero_crossing'
function, but might result in a more precise value of the peak.
The function might have some problems if the sine wave has a
non-negligible total angle i.e. a k*x component, as this messes with the
internal offset calculation of the peaks, might be fixed by fitting a
y = k * x + m function to the peaks for offset calculation.
keyword arguments:
y_axis -- A list containing the signal over which to find peaks
x_axis -- A x-axis whose values correspond to the y_axis list and is used
in the return to specify the position of the peaks.
points -- How many points around the peak should be used during curve
fitting (default: 31)
lock_frequency -- Specifies if the frequency argument of the model
function should be locked to the value calculated from the raw peaks
or if optimization process may tinker with it.
(default: False)
return: two lists [max_peaks, min_peaks] containing the positive and
negative peaks respectively. Each cell of the lists contains a tuple
of: (position, peak_value)
to get the average peak value do: np.mean(max_peaks, 0)[1] on the
results to unpack one of the lists into x, y coordinates do:
x, y = zip(*max_peaks)
"""
# check input data
x_axis, y_axis = _datacheck_peakdetect(x_axis, y_axis)
# make the points argument odd
points += 1 - points % 2
#points += 1 - int(points) & 1 slower when int conversion needed
# get raw peaks
max_raw, min_raw = peakdetect_zero_crossing(y_axis)
# define output variable
max_peaks = []
min_peaks = []
# get global offset
offset = np.mean([np.mean(max_raw, 0)[1], np.mean(min_raw, 0)[1]])
# fitting a k * x + m function to the peaks might be better
#offset_func = lambda x, k, m: k * x + m
# calculate an approximate frequency of the signal
Hz_h_peak = np.diff(zip(*max_raw)[0]).mean()
Hz_l_peak = np.diff(zip(*min_raw)[0]).mean()
Hz = 1 / np.mean([Hz_h_peak, Hz_l_peak])
# model function
# if cosine is used then tau could equal the x position of the peak
# if sine were to be used then tau would be the first zero crossing
if lock_frequency:
func = lambda x_ax, A, tau: A * np.sin(
2 * pi * Hz * (x_ax - tau) + pi / 2)
else:
func = lambda x_ax, A, Hz, tau: A * np.sin(
2 * pi * Hz * (x_ax - tau) + pi / 2)
#func = lambda x_ax, A, Hz, tau: A * np.cos(2 * pi * Hz * (x_ax - tau))
#get peaks
fitted_peaks = []
for raw_peaks in [max_raw, min_raw]:
peak_data = []
for peak in raw_peaks:
index = peak[0]
x_data = x_axis[index - points // 2: index + points // 2 + 1]
y_data = y_axis[index - points // 2: index + points // 2 + 1]
# get a first approximation of tau (peak position in time)
tau = x_axis[index]
# get a first approximation of peak amplitude
A = peak[1]
# build list of approximations
if lock_frequency:
p0 = (A, tau)
else:
p0 = (A, Hz, tau)
# subtract offset from wave-shape
y_data -= offset
popt, pcov = curve_fit(func, x_data, y_data, p0)
# retrieve tau and A i.e x and y value of peak
x = popt[-1]
y = popt[0]
# create a high resolution data set for the fitted waveform
x2 = np.linspace(x_data[0], x_data[-1], points * 10)
y2 = func(x2, *popt)
# add the offset to the results
y += offset
y2 += offset
y_data += offset
peak_data.append([x, y, [x2, y2]])
fitted_peaks.append(peak_data)
# structure date for output
max_peaks = map(lambda x: [x[0], x[1]], fitted_peaks[0])
max_fitted = map(lambda x: x[-1], fitted_peaks[0])
min_peaks = map(lambda x: [x[0], x[1]], fitted_peaks[1])
min_fitted = map(lambda x: x[-1], fitted_peaks[1])
return [max_peaks, min_peaks]
def peakdetect_sine_locked(y_axis, x_axis, points = 31):
"""
Convenience function for calling the 'peakdetect_sine' function with
the lock_frequency argument as True.
keyword arguments:
y_axis -- A list containing the signal over which to find peaks
x_axis -- A x-axis whose values correspond to the y_axis list and is used
in the return to specify the position of the peaks.
points -- How many points around the peak should be used during curve
fitting (default: 31)
return: see the function 'peakdetect_sine'
"""
return peakdetect_sine(y_axis, x_axis, points, True)
def peakdetect_spline(y_axis, x_axis, pad_len=20):
"""
Performs a b-spline interpolation on the data to increase resolution and
send the data to the 'peakdetect_zero_crossing' function for peak
detection.
Omitting the x_axis is forbidden as it would make the resulting x_axis
value silly if it was returned as the index 50.234 or similar.
will find the same amount of peaks as the 'peakdetect_zero_crossing'
function, but might result in a more precise value of the peak.
keyword arguments:
y_axis -- A list containing the signal over which to find peaks
x_axis -- A x-axis whose values correspond to the y_axis list and is used
in the return to specify the position of the peaks.
x-axis must be equally spaced.
pad_len -- By how many times the time resolution should be increased by,
e.g. 1 doubles the resolution.
(default: 20)
return: two lists [max_peaks, min_peaks] containing the positive and
negative peaks respectively. Each cell of the lists contains a tuple
of: (position, peak_value)
to get the average peak value do: np.mean(max_peaks, 0)[1] on the
results to unpack one of the lists into x, y coordinates do:
x, y = zip(*max_peaks)
"""
# check input data
x_axis, y_axis = _datacheck_peakdetect(x_axis, y_axis)
# could perform a check if x_axis is equally spaced
#if np.std(np.diff(x_axis)) > 1e-15: raise ValueError
# perform spline interpolations
dx = x_axis[1] - x_axis[0]
x_interpolated = np.linspace(x_axis.min(), x_axis.max(), len(x_axis) * (pad_len + 1))
cj = cspline1d(y_axis)
y_interpolated = cspline1d_eval(cj, x_interpolated, dx=dx,x0=x_axis[0])
# get peaks
max_peaks, min_peaks = peakdetect_zero_crossing(y_interpolated, x_interpolated)
return [max_peaks, min_peaks]
def peakdetect_zero_crossing(y_axis, x_axis = None, window = 11):
"""
Function for detecting local maxima and minima in a signal.
Discovers peaks by dividing the signal into bins and retrieving the
maximum and minimum value of each the even and odd bins respectively.
Division into bins is performed by smoothing the curve and finding the
zero crossings.
Suitable for repeatable signals, where some noise is tolerated. Executes
faster than 'peakdetect', although this function will break if the offset
of the signal is too large. It should also be noted that the first and
last peak will probably not be found, as this function only can find peaks
between the first and last zero crossing.
keyword arguments:
y_axis -- A list containing the signal over which to find peaks
x_axis -- A x-axis whose values correspond to the y_axis list
and is used in the return to specify the position of the peaks. If
omitted an index of the y_axis is used.
(default: None)
window -- the dimension of the smoothing window; should be an odd integer
(default: 11)
return: two lists [max_peaks, min_peaks] containing the positive and
negative peaks respectively. Each cell of the lists contains a tuple
of: (position, peak_value)
to get the average peak value do: np.mean(max_peaks, 0)[1] on the
results to unpack one of the lists into x, y coordinates do:
x, y = zip(*max_peaks)
"""
# check input data
x_axis, y_axis = _datacheck_peakdetect(x_axis, y_axis)
zero_indices = zero_crossings(y_axis, window_len = window)
period_lengths = np.diff(zero_indices)
bins_y = [y_axis[index:index + diff] for index, diff in
zip(zero_indices, period_lengths)]
bins_x = [x_axis[index:index + diff] for index, diff in
zip(zero_indices, period_lengths)]
even_bins_y = bins_y[::2]
odd_bins_y = bins_y[1::2]
even_bins_x = bins_x[::2]
odd_bins_x = bins_x[1::2]
hi_peaks_x = []
lo_peaks_x = []
#check if even bin contains maxima
if abs(even_bins_y[0].max()) > abs(even_bins_y[0].min()):
hi_peaks = [bin.max() for bin in even_bins_y]
lo_peaks = [bin.min() for bin in odd_bins_y]
# get x values for peak
for bin_x, bin_y, peak in zip(even_bins_x, even_bins_y, hi_peaks):
hi_peaks_x.append(bin_x[np.where(bin_y==peak)[0][0]])
for bin_x, bin_y, peak in zip(odd_bins_x, odd_bins_y, lo_peaks):
lo_peaks_x.append(bin_x[np.where(bin_y==peak)[0][0]])
else:
hi_peaks = [bin.max() for bin in odd_bins_y]
lo_peaks = [bin.min() for bin in even_bins_y]
# get x values for peak
for bin_x, bin_y, peak in zip(odd_bins_x, odd_bins_y, hi_peaks):
hi_peaks_x.append(bin_x[np.where(bin_y==peak)[0][0]])
for bin_x, bin_y, peak in zip(even_bins_x, even_bins_y, lo_peaks):
lo_peaks_x.append(bin_x[np.where(bin_y==peak)[0][0]])
max_peaks = [[x, y] for x,y in zip(hi_peaks_x, hi_peaks)]
min_peaks = [[x, y] for x,y in zip(lo_peaks_x, lo_peaks)]
return [max_peaks, min_peaks]
def _smooth(x, window_len=11, window="hanning"):
"""
smooth the data using a window of the requested size.
This method is based on the convolution of a scaled window on the signal.
The signal is prepared by introducing reflected copies of the signal
(with the window size) in both ends so that transient parts are minimized
in the beginning and end part of the output signal.
keyword arguments:
x -- the input signal
window_len -- the dimension of the smoothing window; should be an odd
integer (default: 11)
window -- the type of window from 'flat', 'hanning', 'hamming',
'bartlett', 'blackman', where flat is a moving average
(default: 'hanning')
return: the smoothed signal
example:
t = linspace(-2,2,0.1)
x = sin(t)+randn(len(t))*0.1
y = _smooth(x)
see also:
numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman,
numpy.convolve, scipy.signal.lfilter
"""
if x.ndim != 1:
raise ValueError("smooth only accepts 1 dimension arrays.")
if x.size < window_len:
raise ValueError("Input vector needs to be bigger than window size.")
if window_len<3:
return x
#declare valid windows in a dictionary
window_funcs = {
"flat": lambda _len: np.ones(_len, "d"),
"hanning": np.hanning,
"hamming": np.hamming,
"bartlett": np.bartlett,
"blackman": np.blackman
}
s = np.r_[x[window_len-1:0:-1], x, x[-1:-window_len:-1]]
try:
w = window_funcs[window](window_len)
except KeyError:
raise ValueError(
"Window is not one of '{0}', '{1}', '{2}', '{3}', '{4}'".format(
*window_funcs.keys()))
y = np.convolve(w / w.sum(), s, mode = "valid")
return y
def zero_crossings(y_axis, window_len = 11,
window_f="hanning", offset_corrected=False):
"""
Algorithm to find zero crossings. Smooths the curve and finds the
zero-crossings by looking for a sign change.
keyword arguments:
y_axis -- A list containing the signal over which to find zero-crossings
window_len -- the dimension of the smoothing window; should be an odd
integer (default: 11)
window_f -- the type of window from 'flat', 'hanning', 'hamming',
'bartlett', 'blackman' (default: 'hanning')
offset_corrected -- Used for recursive calling to remove offset when needed
return: the index for each zero-crossing
"""
# smooth the curve
length = len(y_axis)
# discard tail of smoothed signal
y_axis = _smooth(y_axis, window_len, window_f)[:length]
indices = np.where(np.diff(np.sign(y_axis)))[0]
# check if zero-crossings are valid
diff = np.diff(indices)
if diff.std() / diff.mean() > 0.1:
#Possibly bad zero crossing, see if it's offsets
if ((diff[::2].std() / diff[::2].mean()) < 0.1 and
(diff[1::2].std() / diff[1::2].mean()) < 0.1 and
not offset_corrected):
#offset present attempt to correct by subtracting the average
offset = np.mean([y_axis.max(), y_axis.min()])
return zero_crossings(y_axis-offset, window_len, window_f, True)
#Invalid zero crossings and the offset has been removed
print(diff.std() / diff.mean())
print(np.diff(indices))
raise ValueError(
"False zero-crossings found, indicates problem {0!s} or {1!s}".format(
"with smoothing window", "unhandled problem with offset"))
# check if any zero crossings were found
if len(indices) < 1:
raise ValueError("No zero crossings found")
#remove offset from indices due to filter function when returning
return indices - (window_len // 2 - 1)
# used this to test the fft function's sensitivity to spectral leakage
#return indices + np.asarray(30 * np.random.randn(len(indices)), int)
############################Frequency calculation#############################
# diff = np.diff(indices)
# time_p_period = diff.mean()
#
# if diff.std() / time_p_period > 0.1:
# raise ValueError(
# "smoothing window too small, false zero-crossing found")
#
# #return frequency
# return 1.0 / time_p_period
##############################################################################
def zero_crossings_sine_fit(y_axis, x_axis, fit_window = None, smooth_window = 11):
"""
Detects the zero crossings of a signal by fitting a sine model function
around the zero crossings:
y = A * sin(2 * pi * Hz * (x - tau)) + k * x + m
Only tau (the zero crossing) is varied during fitting.
Offset and a linear drift of offset is accounted for by fitting a linear
function the negative respective positive raw peaks of the wave-shape and
the amplitude is calculated using data from the offset calculation i.e.
the 'm' constant from the negative peaks is subtracted from the positive
one to obtain amplitude.
Frequency is calculated using the mean time between raw peaks.
Algorithm seems to be sensitive to first guess e.g. a large smooth_window
will give an error in the results.
keyword arguments:
y_axis -- A list containing the signal over which to find peaks
x_axis -- A x-axis whose values correspond to the y_axis list
and is used in the return to specify the position of the peaks. If
omitted an index of the y_axis is used. (default: None)
fit_window -- Number of points around the approximate zero crossing that
should be used when fitting the sine wave. Must be small enough that
no other zero crossing will be seen. If set to none then the mean
distance between zero crossings will be used (default: None)
smooth_window -- the dimension of the smoothing window; should be an odd
integer (default: 11)
return: A list containing the positions of all the zero crossings.
"""
# check input data
x_axis, y_axis = _datacheck_peakdetect(x_axis, y_axis)
#get first guess
zero_indices = zero_crossings(y_axis, window_len = smooth_window)
#modify fit_window to show distance per direction
if fit_window == None:
fit_window = np.diff(zero_indices).mean() // 3
else:
fit_window = fit_window // 2
#x_axis is a np array, use the indices to get a subset with zero crossings
approx_crossings = x_axis[zero_indices]
#get raw peaks for calculation of offsets and frequency
raw_peaks = peakdetect_zero_crossing(y_axis, x_axis)
#Use mean time between peaks for frequency
ext = lambda x: list(zip(*x)[0])
_diff = map(np.diff, map(ext, raw_peaks))
Hz = 1 / np.mean(map(np.mean, _diff))
#Hz = 1 / np.diff(approx_crossings).mean() #probably bad precision
#offset model function
offset_func = lambda x, k, m: k * x + m
k = []
m = []
amplitude = []
for peaks in raw_peaks:
#get peak data as nparray
x_data, y_data = map(np.asarray, zip(*peaks))
#x_data = np.asarray(x_data)
#y_data = np.asarray(y_data)
#calc first guess
A = np.mean(y_data)
p0 = (0, A)
popt, pcov = curve_fit(offset_func, x_data, y_data, p0)
#append results
k.append(popt[0])
m.append(popt[1])
amplitude.append(abs(A))
#store offset constants
p_offset = (np.mean(k), np.mean(m))
A = m[0] - m[1]
#define model function to fit to zero crossing
#y = A * sin(2*pi * Hz * (x - tau)) + k * x + m
func = lambda x, tau: A * np.sin(2 * pi * Hz * (x - tau)) + offset_func(x, *p_offset)
#get true crossings
true_crossings = []
for indice, crossing in zip(zero_indices, approx_crossings):
p0 = (crossing, )
subset_start = max(indice - fit_window, 0.0)
subset_end = min(indice + fit_window + 1, len(x_axis) - 1.0)
x_subset = np.asarray(x_axis[subset_start:subset_end])
y_subset = np.asarray(y_axis[subset_start:subset_end])
#fit
popt, pcov = curve_fit(func, x_subset, y_subset, p0)
true_crossings.append(popt[0])
return true_crossings
def _test_zero():
_max, _min = peakdetect_zero_crossing(y,x)
def _test():
_max, _min = peakdetect(y,x, delta=0.30)
def _test_graph():
i = 10000
x = np.linspace(0,3.7*pi,i)
y = (0.3*np.sin(x) + np.sin(1.3 * x) + 0.9 * np.sin(4.2 * x) + 0.06 *
np.random.randn(i))
y *= -1
x = range(i)
_max, _min = peakdetect(y,x,750, 0.30)
xm = [p[0] for p in _max]
ym = [p[1] for p in _max]
xn = [p[0] for p in _min]
yn = [p[1] for p in _min]
plot = pylab.plot(x,y)
pylab.hold(True)
pylab.plot(xm, ym, "r+")
pylab.plot(xn, yn, "g+")
_max, _min = peak_det_bad.peakdetect(y, 0.7, x)
xm = [p[0] for p in _max]
ym = [p[1] for p in _max]
xn = [p[0] for p in _min]
yn = [p[1] for p in _min]
pylab.plot(xm, ym, "y*")
pylab.plot(xn, yn, "k*")
pylab.show()
def _test_graph_cross(window = 11):
i = 10000
x = np.linspace(0,8.7*pi,i)
y = (2*np.sin(x) + 0.006 *
np.random.randn(i))
y *= -1
pylab.plot(x,y)
#pylab.show()
crossings = zero_crossings_sine_fit(y,x, smooth_window = window)
y_cross = [0] * len(crossings)
plot = pylab.plot(x,y)
pylab.hold(True)
pylab.plot(crossings, y_cross, "b+")
pylab.show()
if __name__ == "__main__":
from math import pi
import pylab
i = 10000
x = np.linspace(0,3.7*pi,i)
y = (0.3*np.sin(x) + np.sin(1.3 * x) + 0.9 * np.sin(4.2 * x) + 0.06 *
np.random.randn(i))
y *= -1
_max, _min = peakdetect(y, x, 750, 0.30)
xm = [p[0] for p in _max]
ym = [p[1] for p in _max]
xn = [p[0] for p in _min]
yn = [p[1] for p in _min]
plot = pylab.plot(x, y)
pylab.hold(True)
pylab.plot(xm, ym, "r+")
pylab.plot(xn, yn, "g+")
pylab.show()