-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbleu.py
93 lines (80 loc) · 3.13 KB
/
bleu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# -*- coding: utf-8 -*-
# Copyright 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BLEU metric implementation.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import os
import re
import subprocess
import tempfile
import numpy as np
from six.moves import urllib
import tensorflow as tf
def moses_multi_bleu(hypotheses, references, lowercase=False):
"""Calculate the bleu score for hypotheses and references
using the MOSES ulti-bleu.perl script.
Args:
hypotheses: A numpy array of strings where each string is a single example.
references: A numpy array of strings where each string is a single example.
lowercase: If true, pass the "-lc" flag to the multi-bleu script
Returns:
The BLEU score as a float32 value.
"""
if np.size(hypotheses) == 0:
return np.float32(0.0)
# Get MOSES multi-bleu script
try:
multi_bleu_path, _ = urllib.request.urlretrieve(
"https://raw.githubusercontent.com/moses-smt/mosesdecoder/"
"master/scripts/generic/multi-bleu.perl")
os.chmod(multi_bleu_path, 0o755)
except: #pylint: disable=W0702
tf.logging.info("Unable to fetch multi-bleu.perl script, using local.")
metrics_dir = os.path.dirname(os.path.realpath(__file__))
bin_dir = os.path.abspath(os.path.join(metrics_dir, "..", "..", "bin"))
multi_bleu_path = os.path.join(bin_dir, "tools/multi-bleu.perl")
# Dump hypotheses and references to tempfiles
hypothesis_file = tempfile.NamedTemporaryFile()
hypothesis_file.write("\n".join(hypotheses).encode("utf-8"))
hypothesis_file.write(b"\n")
hypothesis_file.flush()
reference_file = tempfile.NamedTemporaryFile()
reference_file.write("\n".join(references).encode("utf-8"))
reference_file.write(b"\n")
reference_file.flush()
# Calculate BLEU using multi-bleu script
with open(hypothesis_file.name, "r") as read_pred:
bleu_cmd = [multi_bleu_path]
if lowercase:
bleu_cmd += ["-lc"]
bleu_cmd += [reference_file.name]
try:
bleu_out = subprocess.check_output(
bleu_cmd, stdin=read_pred, stderr=subprocess.STDOUT)
bleu_out = bleu_out.decode("utf-8")
bleu_score = re.search(r"BLEU = (.+?),", bleu_out).group(1)
bleu_score = float(bleu_score)
except subprocess.CalledProcessError as error:
if error.output is not None:
tf.logging.warning("multi-bleu.perl script returned non-zero exit code")
tf.logging.warning(error.output)
bleu_score = np.float32(0.0)
# Close temp files
hypothesis_file.close()
reference_file.close()
return np.float32(bleu_score)