-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmathlib.c
248 lines (206 loc) · 4.35 KB
/
mathlib.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
// mathlib.c -- math primitives
#include "cmdlib.h"
#include "mathlib.h"
#include "qedefs.h"
vec3_t vec3_origin = {0.0f,0.0f,0.0f};
float VectorLength(vec3_t v)
{
int i;
float length;
length = 0.0f;
for (i=0 ; i< 3 ; i++)
length += v[i]*v[i];
length = (float)sqrt (length);
return length;
}
qboolean VectorCompare (vec3_t v1, vec3_t v2)
{
int i;
for (i=0 ; i<3 ; i++)
if (fabs(v1[i]-v2[i]) > EQUAL_EPSILON)
return false;
return true;
}
vec_t Q_rint (vec_t in)
{
return (float)floor (in + 0.5);
}
void VectorMA (vec3_t va, float scale, vec3_t vb, vec3_t vc)
{
vc[0] = va[0] + scale*vb[0];
vc[1] = va[1] + scale*vb[1];
vc[2] = va[2] + scale*vb[2];
}
void CrossProduct (vec3_t v1, vec3_t v2, vec3_t cross)
{
cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
vec_t _DotProduct (vec3_t v1, vec3_t v2)
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
void _VectorSubtract (vec3_t va, vec3_t vb, vec3_t out)
{
out[0] = va[0]-vb[0];
out[1] = va[1]-vb[1];
out[2] = va[2]-vb[2];
}
void _VectorAdd (vec3_t va, vec3_t vb, vec3_t out)
{
out[0] = va[0]+vb[0];
out[1] = va[1]+vb[1];
out[2] = va[2]+vb[2];
}
void _VectorCopy (vec3_t in, vec3_t out)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
}
vec_t VectorNormalize (vec3_t v)
{
int i;
float length;
length = 0.0f;
for (i=0 ; i< 3 ; i++)
length += v[i]*v[i];
length = (float)sqrt (length);
if (length == 0)
return (vec_t)0;
for (i=0 ; i< 3 ; i++)
v[i] /= length;
return length;
}
void VectorInverse (vec3_t v)
{
v[0] = -v[0];
v[1] = -v[1];
v[2] = -v[2];
}
void VectorScale (vec3_t v, vec_t scale, vec3_t out)
{
out[0] = v[0] * scale;
out[1] = v[1] * scale;
out[2] = v[2] * scale;
}
void VectorRotate (vec3_t in, vec3_t rotation, vec3_t out)
{
vec3_t work, va;
int index[3][2];
int i;
double angle;
double c;
double s;
VectorCopy(in, va);
VectorCopy(va, work);
index[0][0] = 1; index[0][1] = 2;
index[1][0] = 2; index[1][1] = 0;
index[2][0] = 0; index[2][1] = 1;
for (i = 0; i < 3; i++)
{
if (rotation[i] != 0)
{
angle = rotation[i] * Q_PI / 180.0;
c = cos(angle);
s = sin(angle);
work[index[i][0]] = va[index[i][0]] * (vec_t)c - va[index[i][1]] * (vec_t)s;
work[index[i][1]] = va[index[i][0]] * (vec_t)s + va[index[i][1]] * (vec_t)c;
}
VectorCopy(work, va);
}
VectorCopy(work, out);
}
void VectorRotate2 (vec3_t in, vec3_t rotation, vec3_t origin, vec3_t out)
{
vec3_t temp, temp2;
VectorSubtract(in, origin, temp);
VectorRotate(temp, rotation, temp2);
VectorAdd(temp2, origin, out);
}
void ClearBounds (vec3_t mins, vec3_t maxs)
{
mins[0] = mins[1] = mins[2] = 99999;
maxs[0] = maxs[1] = maxs[2] = -99999;
}
void AddPointToBounds (vec3_t v, vec3_t mins, vec3_t maxs)
{
int i;
vec_t val;
for (i=0 ; i<3 ; i++)
{
val = v[i];
if (val < mins[i])
mins[i] = val;
if (val > maxs[i])
maxs[i] = val;
}
}
void AngleVectors (vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
{
float angle;
static float sr, sp, sy, cr, cp, cy;
// static to help MS compiler fp bugs
angle = angles[YAW] * ((float)Q_PI*2 / 360.0f);
sy = (float)sin(angle);
cy = (float)cos(angle);
angle = angles[PITCH] * ((float)Q_PI*2 / 360.0f);
sp = (float)sin(angle);
cp = (float)cos(angle);
angle = angles[ROLL] * ((float)Q_PI*2 / 360.0f);
sr = (float)sin(angle);
cr = (float)cos(angle);
if (forward)
{
forward[0] = cp*cy;
forward[1] = cp*sy;
forward[2] = -sp;
}
if (right)
{
right[0] = -sr*sp*cy+cr*sy;
right[1] = -sr*sp*sy-cr*cy;
right[2] = -sr*cp;
}
if (up)
{
up[0] = cr*sp*cy+sr*sy;
up[1] = cr*sp*sy-sr*cy;
up[2] = cr*cp;
}
}
void VectorToAngles( vec3_t vec, vec3_t angles )
{
float forward;
float yaw, pitch;
if ( ( vec[ 0 ] == 0 ) && ( vec[ 1 ] == 0 ) )
{
yaw = 0;
if ( vec[ 2 ] > 0 )
{
pitch = 90;
}
else
{
pitch = 270;
}
}
else
{
yaw = (float)atan2( vec[ 1 ], vec[ 0 ] ) * 180.0f / (float)Q_PI;
if ( yaw < 0 )
{
yaw += 360;
}
forward = (float)sqrt( vec[ 0 ] * vec[ 0 ] + vec[ 1 ] * vec[ 1 ] );
pitch = (float)atan2( vec[ 2 ], forward ) * 180.0f / (float)Q_PI;
if ( pitch < 0 )
{
pitch += 360;
}
}
angles[ 0 ] = pitch;
angles[ 1 ] = yaw;
angles[ 2 ] = 0;
}