-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhmc_gp_cubic.py
745 lines (582 loc) · 17 KB
/
hmc_gp_cubic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
#%%
import GPy
import pystan
import numpy
import time
import scipy
import os
os.chdir('/home/bbales2/modal')
import pyximport
pyximport.install(reload_support = True)
import polybasisqu
reload(polybasisqu)
# basis polynomials are x^n * y^m * z^l where n + m + l <= N
N = 10
## Dimensions for TF-2
X = 0.007753#0.011959e1#
Y = 0.009057#0.013953e1#
Z = 0.013199#0.019976e1#
#sample mass
#Sample density
density = 4401.695921 #Ti-64-TF2
#density = 8700.0 #CMSX-4
#density = (mass / (X*Y*Z))
c11 = 2.0
anisotropic = 1.0
c44 = 1.0
c12 = -(c44 * 2.0 / anisotropic - c11)
# Standard deviation around each mode prediction
std = 1.0
# Rotations
a = 0.0
b = 0.0
y = 0.0
# These are the sampled modes in khz
# data for sample 2M-A
# Ti-64-TF2 Test Data
data = numpy.array([109.076,
136.503,
144.899,
184.926,
188.476,
195.562,
199.246,
208.460,
231.220,
232.630,
239.057,
241.684,
242.159,
249.891,
266.285,
272.672,
285.217,
285.670,
288.796,
296.976,
301.101,
303.024,
305.115,
305.827,
306.939,
310.428,
318.000,
319.457,
322.249,
323.464,
324.702,
334.687,
340.427,
344.087,
363.798,
364.862,
371.704,
373.248])
#data = (freqs * numpy.pi * 2000) ** 2 / 1e11
qs = []
logps = []
accepts = []
current_q = numpy.array([c11, anisotropic, c44, std])
accepts.append(current_q)
#%%
# These are the two HMC parameters
# L is the number of timesteps to take -- use this if samples in the traceplots don't look random
# epsilon is the timestep -- make this small enough so that pretty much all the samples are being accepted, but you
# want it large enough that you can keep L ~ 50 -> 100 and still get independent samples
L = 100
# start epsilon at .0001 and try larger values like .0005 after running for a while
# epsilon is timestep, we want to make as large as possibe, wihtout getting too many rejects
epsilon = 0.0001
# Set this to true to debug the L and eps values
debug = False
#%%
S = 100
minc11 = 1.0
maxc11 = 4.0
mina = 0.5
maxa = 2.0
minc44 = 0.1
maxc44 = 2.0
def func(c11, anisotropic, c44):
c12 = -(c44 * 2.0 / anisotropic - c11)
C = numpy.array([[c11, c12, c12, 0, 0, 0],
[c12, c11, c12, 0, 0, 0],
[c12, c12, c11, 0, 0, 0],
[0, 0, 0, c44, 0, 0],
[0, 0, 0, 0, c44, 0],
[0, 0, 0, 0, 0, c44]])
try:
numpy.linalg.cholesky(C)
except:
return [numpy.nan]
dp, pv, ddpdX, ddpdY, ddpdZ, dpvdX, dpvdY, dpvdZ = polybasisqu.build(N, X, Y, Z)
K, M = polybasisqu.buildKM(C, dp, pv, density)
eigs, evecs = scipy.linalg.eigh(K, M, eigvals = (6, 6 + len(data) - 1))
return numpy.sqrt(eigs * 1e11) / (numpy.pi * 2000)
def Ul(q):
c11, anisotropic, c44, std = q
e = func(c11, anisotropic, c44)
logp = -sum(0.5 * (-((e - data) **2 / std**2) + numpy.log(1.0 / (2 * numpy.pi)) - 2 * numpy.log(std)))
return logp
Xs = []
Ys = []
i = 0
while i < S:
c11 = numpy.random.rand() * (maxc11 - minc11) + minc11
a = numpy.random.rand() * (maxa - mina) + mina
c44 = numpy.random.rand() * (maxc44 - minc44) + minc44
y = func(c11, a, c44)
if numpy.isnan(y).any():
continue
else:
Xs.append([c11, a, c44])
Ys.append(y)
print i, " / ", S
i += 1
t = (1.685, 1.0, 0.446)
y = func(*t)
Xs[-1] = t
Ys[-1] = y
Xs = numpy.array(Xs)
Ys = numpy.array(Ys)
#%%
kernel = GPy.kern.RBF(input_dim = 3, variance = 1.0, lengthscale = 1.0)
m = GPy.models.GPRegression(Xs, Ys[:, :1], kernel)
#m.optimize(messages = True)
m.optimize_restarts(num_restarts = 5)
#%%
print m
#%%
m.plot(visible_dims = [0])
#%%
m.predict(numpy.array([[1.7, 1.0, 0.46]]))
#%%
model_code = """
data {
int<lower=1> N; // Number of single samples
int<lower=1> L;
matrix<lower=0.0>[N, 3] x;
matrix<lower=0.0>[N, L] y;
vector<lower=0.0>[L] yd;
}
transformed data {
vector[N] z;
for(i in 1:N)
z[i] = 0.0;
}
parameters {
real<lower=0> eta_sq;
vector<lower=0>[3] inv_rho_sq;
real<lower=0> sigma_sq;
real<lower = 0.0> dsigma;
real<lower = 1.0, upper = 4.0> c11;
real<lower = 0.5, upper = 2.0> a;
real<lower = 0.1, upper = 2.0> c44;
}
transformed parameters {
vector<lower=0>[3] rho_sq;
rho_sq = inv(inv_rho_sq);
}
model {
matrix[N, N] Sigma;
row_vector[N] Ks;
real Kv;
// off-diagonal elements
for (i in 1:(N-1)) {
for (j in (i+1):N) {
Sigma[i, j] = eta_sq * exp(-rho_sq[1] * pow(x[i, 1] - x[j, 1], 2)
-rho_sq[2] * pow(x[i, 2] - x[j, 2], 2)
-rho_sq[3] * pow(x[i, 3] - x[j, 3], 2));
Sigma[j, i] = Sigma[i, j];
}
}
// diagonal elements
for (k in 1:N)
Sigma[k, k] = eta_sq + sigma_sq; // + jitter
for(k in 1:N)
Ks[k] = eta_sq * exp(-rho_sq[1] * pow(x[k, 1] - c11, 2)
-rho_sq[2] * pow(x[k, 2] - a, 2)
-rho_sq[3] * pow(x[k, 3] - c44, 2));
Kv = sqrt(eta_sq + sigma_sq - Ks * (Sigma \ Ks'));
eta_sq ~ cauchy(0, 1000.0);
inv_rho_sq ~ cauchy(0, 10.0);
sigma_sq ~ cauchy(0, 10.0);
//for(i in 1:L)
y[:, 20] ~ multi_normal(z, Sigma);
dsigma ~ cauchy(0.0, 10.0);
yd ~ normal(Ks * (Sigma \ y), dsigma);
//y ~ normal(mu, );
}
"""
#generated quantities {
# vector[N] yhat;
#
# for(n in 1:N) {
# yhat[n] <- normal_rng(a * x[n] + b, sigma);
# }
#}
#"""
sm = pystan.StanModel(model_code = model_code)
#%%
fit = sm.sampling(data = {
"N" : S,
"L" : Ys.shape[1],
"x" : Xs,
"y" : Ys[:, :],
"yd" : data
})
print fit
etasq = numpy.median(fit.extract()['eta_sq'])
rho1, rho2, rho3 = numpy.median(fit.extract()['rho_sq'], axis = 0)
sigmasq = numpy.median(fit.extract()['sigma_sq'])
#%%
def cov(Xs, Ys):
Xs = numpy.array(Xs)
Ys = numpy.array(Ys)
K = numpy.zeros((Xs.shape[0], Ys.shape[0]))
for i in range(Xs.shape[0]):
for j in range(Ys.shape[0]):
K[i, j] = 9303.9 * numpy.exp(-0.82 * pow(Xs[i, 0] - Ys[j, 0], 2)
-5.38 * pow(Xs[i, 1] - Ys[j, 1], 2)
-1.09 * pow(Xs[i, 2] - Ys[j, 2], 2));
return K
K = cov(Xs, Xs)
b = numpy.linalg.solve(K, Ys[:, 0])# + 29.51 * numpy.eye(S)
#%%
s = []
i = 0
while i < S:
c11 = numpy.random.rand() * (maxc11 - minc11) + minc11
a = numpy.random.rand() * (maxa - mina) + mina
c44 = numpy.random.rand() * (maxc44 - minc44) + minc44
y = func(c11, a, c44)
if numpy.isnan(y).any():
continue
else:
Ks = cov(Xs, [[c11, a, c44]])
print Ks.T.dot(b)[0], y[0]
s.append(Ks.T.dot(b)[0] - y[0])
#Xs.append([c11, a, c44])
#Ys.append(y)
print i, " / ", S
#i += 1
#%%
#%%
model_code = """
data {
int<lower=1> N; // Number of single samples
int<lower=1> L;
matrix<lower=0.0>[N, 3] x;
matrix<lower=0.0>[N, L] y;
vector<lower=0.0>[L] yd;
real<lower=0.0> etasq;
real<lower=0.0> sigmasq;
real<lower=0.0> rho1;
real<lower=0.0> rho2;
real<lower=0.0> rho3;
}
transformed data {
vector[N] z;
matrix[N, N] Sigma;
matrix[N, L] Kiy;
for(i in 1:N)
z[i] = 0.0;
//matrix[N, N] L;
// off-diagonal elements
for (i in 1:(N-1)) {
for (j in (i+1):N) {
Sigma[i, j] = etasq * exp(-rho1 * pow(x[i, 1] - x[j, 1], 2)
-rho2 * pow(x[i, 2] - x[j, 2], 2)
-rho3 * pow(x[i, 3] - x[j, 3], 2));
Sigma[j, i] = Sigma[i, j];
}
}
for (k in 1:N)
Sigma[k, k] = etasq + sigmasq; // + jitter
Kiy = Sigma \ y;
//L = cholesky_decompose(Sigma);
}
parameters {
real<lower = 0.0> dsigma;
real<lower = 0.1, upper = 4.0> c11;
real<lower = 0.5, upper = 2.0> a;
real<lower = 0.1, upper = 1.0> c44;
}
model {
row_vector[N] Ks;
real Kv;
vector[L] tmp;
// diagonal elements
for(k in 1:N)
Ks[k] = etasq * exp(-rho1 * pow(x[k, 1] - c11, 2)
-rho2 * pow(x[k, 2] - a, 2)
-rho3 * pow(x[k, 3] - c44, 2));
Kv = sqrt(etasq + sigmasq - Ks * (Sigma \ Ks'));
dsigma ~ cauchy(0.0, 10.0);
//for(i in 1:N)
// tmp[i] = ;
yd ~ normal(Ks * Kiy, Kv + dsigma);
//y ~ normal(mu, );
}
generated quantities {
real Kv;
{
row_vector[N] Ks;
// diagonal elements
for(k in 1:N)
Ks[k] = etasq * exp(-rho1 * pow(x[k, 1] - c11, 2)
-rho2 * pow(x[k, 2] - a, 2)
-rho3 * pow(x[k, 3] - c44, 2));
Kv = sqrt(etasq + sigmasq - Ks * (Sigma \ Ks'));
}
}
"""
#generated quantities {
# vector[N] yhat;
#
# for(n in 1:N) {
# yhat[n] <- normal_rng(a * x[n] + b, sigma);
# }
#}
#"""
sm2 = pystan.StanModel(model_code = model_code)
#%%
fit = sm2.sampling(data = {
"N" : S,
"L" : Ys.shape[1],
"x" : Xs,
"y" : Ys,
"yd" : data,
"etasq" : etasq,
"sigmasq" : sigmasq,
"rho1" : rho1,
"rho2" : rho2,
"rho3" : rho3
})
print fit
#%%
import matplotlib.pyplot as plt
a = fit.extract()
plt.plot(a['c11'], a['a'], '*')
plt.xlabel('c11')
plt.ylabel('a')
plt.show()
plt.plot(a['c11'], a['c44'], '*')
plt.xlabel('c11')
plt.ylabel('c44')
plt.show()
plt.plot(a['a'], a['c44'], '*')
plt.xlabel('a')
plt.ylabel('c44')
plt.show()
#%%
import seaborn
seaborn.distplot(a['c11'], kde = False, fit = scipy.stats.norm)
plt.title('$c_{11}$ (truth: $1.685$)', fontsize = 32)
plt.tick_params(axis='x', which='major', labelsize=24)
plt.show()
seaborn.distplot(a['a'], kde = False, fit = scipy.stats.norm)
plt.title('$a$ (truth: $1.00$)', fontsize = 32)
plt.tick_params(axis='x', which='major', labelsize=24)
plt.show()
seaborn.distplot(a['c44'], kde = False, fit = scipy.stats.norm)
plt.title('$c_{44}$ (truth: $0.446$)', fontsize = 32)
plt.tick_params(axis='x', which='major', labelsize=24)
plt.show()
#%%
L = Ys.shape[1]
Sigma = numpy.zeros((S, S))
Kiy = numpy.zeros((S, L))
for i in range(S - 1):
for j in range(i + 1, S):
Sigma[i, j] = etasq * numpy.exp(-rho1 * (Xs[i, 0] - Xs[j, 0])**2 - rho2 * (Xs[i, 1] - Xs[j, 1])**2 - rho3 * (Xs[i, 2] - Xs[j, 2])**2)
Sigma[j, i] = Sigma[i, j]
for k in range(S):
Sigma[k, k] = etasq + sigmasq
Kiy = numpy.linalg.solve(Sigma, Ys)
def UgradU(q):
c11, anisotropic, c44, std = q
Ks = numpy.zeros(S)
dKsdc11 = numpy.zeros(S)
dKsda = numpy.zeros(S)
dKsdc44 = numpy.zeros(S)
for k in range(S):
Ks[k] = etasq * numpy.exp(-rho1 * (Xs[k, 0] - c11)**2 -rho2 * (Xs[k, 1] - anisotropic)**2 - rho3 * (Xs[k, 2] - c44)**2)
dKsdc11[k] = 2 * rho1 * (Xs[k, 0] - c11) * Ks[k]
dKsda[k] = 2 * rho2 * (Xs[k, 1] - anisotropic) * Ks[k]
dKsdc44[k] = 2 * rho3 * (Xs[k, 2] - c44) * Ks[k]
e = Ks.dot(Kiy)
dedc11 = dKsdc11.dot(Kiy)
deda = dKsda.dot(Kiy)
dedc44 = dKsdc44.dot(Kiy)
dlpde = (data - e) / std ** 2
dlpdstd = sum((-std ** 2 + (e - data) **2) / std ** 3)
dlpdc11 = dlpde.dot(dedc11)
dlpda = dlpde.dot(deda)
dlpdc44 = dlpde.dot(dedc44)
logp = sum(0.5 * (-((e - data) **2 / std**2) + numpy.log(1.0 / (2 * numpy.pi)) - 2 * numpy.log(std)))
return -logp, -numpy.array([dlpdc11, dlpda, dlpdc44, dlpdstd])
#%%
d = 0.00001
q = numpy.array([1.6, 1.0, 0.7, 1.0])
nlogp, dnlogp = UgradU(q)
for i in range(3):
q_ = q.copy()
q_[i] += d
nlogp_, _ = UgradU(q_)
print dnlogp[i], (nlogp_ - nlogp) / d
#%%
import polybasisqu
import sys
sys.path.append('/home/bbales2/gpc')
import gpc
func2 = lambda c11, a, c44 : func(c11, 1.0, c44)
hd = gpc.GPC(5, func2, [('n', (2.0, 0.5), 3),
('u', (mina, maxa), 5),
('u', (minc44, maxc44), 5)])
#%%
#This block runs the HMC
def UgradU(q):
c11, anisotropic, c44, std = q
try:
e = hd.approx(c11, anisotropic, c44)
dedc11 = hd.approxd(0, c11, anisotropic, c44)
deda = hd.approxd(1, c11, anisotropic, c44)
dedc44 = hd.approxd(2, c11, anisotropic, c44)
except Exception as e:
e = numpy.nan
dedc11 = [numpy.nan] * len(data)
deda = [numpy.nan] * len(data)
dedc44 = [numpy.nan] * len(data)
dlpde = (data - e) / std ** 2
dlpdstd = sum((-std ** 2 + (e - data) **2) / std ** 3)
#dlpde = numpy.array(dlpde)
dlpdc11 = dlpde.dot(dedc11)
dlpda = dlpde.dot(deda)
dlpdc44 = dlpde.dot(dedc44)
logp = sum(0.5 * (-((e - data) **2 / std**2) + numpy.log(1.0 / (2 * numpy.pi)) - 2 * numpy.log(std)))
return -logp, -numpy.array([dlpdc11, 0.0, dlpdc44, dlpdstd])
#%%
d = 0.00001
q = numpy.array([1.6, 1.0, 0.7, 1.0])
nlogp, dnlogp = UgradU(q)
for i in range(3):
q_ = q.copy()
q_[i] += d
nlogp_, _ = UgradU(q_)
print dnlogp[i], (nlogp_ - nlogp) / d
#%%
c11 = 1.7
anisotropic = 1.0
c44 = 0.5
qs = []
logps = []
accepts = []
current_q = numpy.array([c11, anisotropic, c44, std])
accepts.append(current_q)
debug = False
while True:
q = current_q.copy()
p = numpy.random.randn(len(q)) # independent standard normal variates
current_p = p
# Make a half step for momentum at the beginning
U, gradU = UgradU(q)
p = p - epsilon * gradU / 2
# Alternate full steps for position and momentum
for i in range(L):
# Make a full step for the position
q = q + epsilon * p
#q[-3:] = inv_rotations.qu2eu(symmetry.Symmetry.Cubic.fzQuat(quaternion.Quaternion(inv_rotations.eu2qu(q[-3:]))))
# Make a full step for the momentum, except at end of trajectory
if i != L - 1:
U, gradU = UgradU(q)
p = p - epsilon * gradU
#print 'hi'
if debug:
print "New q: ", q
print "H (constant or decreasing): ", U + sum(p ** 2) / 2, U, sum(p **2) / 2.0
print ""
U, gradU = UgradU(q)
# Make a half step for momentum at the end.
p = p - epsilon * gradU / 2
# Negate momentum at end of trajectory to make the proposal symmetric
p = -p
# Evaluate potential and kinetic energies at start and end of trajectory
UC, gradUC = UgradU(current_q)
current_U = UC
current_K = sum(current_p ** 2) / 2
proposed_U = U
proposed_K = sum(p ** 2) / 2
# Accept or reject the state at end of trajectory, returning either
# the position at the end of the trajectory or the initial position
dQ = current_U - proposed_U + current_K - proposed_K
logps.append(UC)
dQ2 = Ul(current_q) - Ul(q)
print dQ, dQ2
if numpy.random.rand() < min(1.0, numpy.exp(dQ)) and not numpy.isnan(proposed_U) and numpy.random.rand() < min(1.0, numpy.exp(dQ2)):
current_q = q # accept
accepts.append(len(qs) - 1)
print "Accepted ({0} accepts so far): {1}".format(len(accepts), current_q)
else:
print "Rejected: ", current_q
qs.append(q.copy())
print "Energy change ({0} samples, {1} accepts): ".format(len(qs), len(accepts)), min(1.0, numpy.exp(dQ)), dQ, current_U, proposed_U, current_K, proposed_K
#%%
# Save samples (qs)
# First argument is filename
import os
import tempfile
import datetime
_, filename = tempfile.mkstemp(prefix = "data_{0}_".format(datetime.datetime.now().strftime("%Y-%m-%d")), suffix = ".txt", dir = os.getcwd())
numpy.savetxt(filename, qs, header = 'c11 anisotropic c44 std')
#%%
# This block does the plotting
c11s, anisotropics, c44s, stds = [numpy.array(a) for a in zip(*qs)]#
import matplotlib.pyplot as plt
import seaborn
for name, data1 in zip(['c11', 'anisotropic ratio', 'c44', 'std deviation', '-logp'],
[c11s, anisotropics, c44s, stds, logps]):
plt.plot(data1)
plt.title('{0}'.format(name, numpy.mean(data1), numpy.std(data1)), fontsize = 24)
plt.tick_params(axis='y', which='major', labelsize=16)
plt.show()
#seaborn.distplot(d[-650:], kde = False, fit = scipy.stats.norm)
#plt.title('{0} u = {1:.3e}, std = {2:.3e}'.format(name, numpy.mean(data1), numpy.std(data1)))
#plt.show()
#plt.plot(as_, ys_)
#plt.ylabel('eu[2]s')
#plt.xlabel('eu[0]s')
#plt.show()
#%%
import seaborn
c11s, anisotropics, c44s, stds = [numpy.array(a)[-1500:] for a in zip(*qs)]#
for name, data1 in zip(['C11', 'A Ratio', 'C44', 'std dev'],
[c11s, anisotropics, c44s, stds]):
seaborn.distplot(data1, kde = False, fit = scipy.stats.norm)
plt.title('{0}, $\mu$ = {1:0.3f}, $\sigma$ = {2:0.3f}'.format(name, numpy.mean(data1), numpy.std(data1)), fontsize = 36)
plt.tick_params(axis='x', which='major', labelsize=16)
plt.show()
#seaborn.distplot(d[-650:], kde = False, fit = scipy.stats.norm)
#plt.title('{0} u = {1:.3e}, std = {2:.3e}'.format(name, numpy.mean(data1), numpy.std(data1)))
#plt.show()
#%%
while 1:
U, gradU = UgradU(current_q)
current_q += 0.0001 * gradU
#%%
# Forward problem
# This snippet is helpful to test the last accepted sample
c11, anisotropic, c44, std = qs[accepts[-1]]
c12 = -(c44 * 2.0 / anisotropic - c11)
dp, pv, ddpdX, ddpdY, ddpdZ, dpvdX, dpvdY, dpvdZ = polybasis.build(N, X, Y, Z)
C = numpy.array([[c11, c12, c12, 0, 0, 0],
[c12, c11, c12, 0, 0, 0],
[c12, c12, c11, 0, 0, 0],
[0, 0, 0, c44, 0, 0],
[0, 0, 0, 0, c44, 0],
[0, 0, 0, 0, 0, c44]])
K, M = polybasis.buildKM(C, dp, pv, density)
eigs, evecs = scipy.linalg.eigh(K, M, eigvals = (6, 6 + len(data) - 1))
print "computed, accepted"
for e1, dat in zip(eigs, data):
print "{0:0.3f} {1:0.3f}".format(e1, dat)