@@ -260,7 +260,7 @@ meta_sm %>% sanitize_datatable()
260
260
261
261
## Total reads
262
262
263
- Here, we want to see consistency and a minimum of 20 million reads.
263
+ Here, we want to see consistency and a minimum of 20 million reads (the grey line) .
264
264
265
265
``` {r plot_total_reads}
266
266
metrics %>%
@@ -271,7 +271,8 @@ metrics %>%
271
271
coord_flip() +
272
272
scale_y_continuous(name = "million reads") +
273
273
scale_fill_cb_friendly() + xlab("") +
274
- ggtitle("Total reads")
274
+ ggtitle("Total reads") +
275
+ geom_hline(yintercept=20000000, color = "grey", size=2)
275
276
276
277
metrics %>%
277
278
ggplot(aes(x = .data[[factor_of_interest]],
@@ -292,7 +293,7 @@ max_pct_mapped <- round(max(metrics$mapped_reads/metrics$total_reads)*100,1)
292
293
293
294
## Mapping rate
294
295
295
- The genomic mapping rate represents the percentage of reads mapping to the reference genome. We want to see consistent mapping rates between samples and over 70% mapping. These samples have mapping rates ( ` r min_pct_mapped ` - ` r max_pct_mapped ` %) .
296
+ The genomic mapping rate represents the percentage of reads mapping to the reference genome. We want to see consistent mapping rates between samples and over 70% mapping (the grey line) . These samples have mapping rates: ` r min_pct_mapped ` - ` r max_pct_mapped ` %.
296
297
297
298
``` {r plot_mapping_rate}
298
299
metrics$mapped_reads_pct <- round(metrics$mapped_reads/metrics$total_reads*100,1)
@@ -304,14 +305,14 @@ metrics %>%
304
305
coord_flip() +
305
306
scale_color_cb_friendly() +
306
307
ylim(0, 100) +
307
- ggtitle("Mapping rate") +
308
+ ggtitle("Mapping rate") + xlab("") +
308
309
geom_hline(yintercept=70, color = "grey", size=2)
309
310
```
310
311
311
312
312
313
## Number of genes detected
313
314
314
- The number of genes represented in every sample is expected to be consistent and over 20K (blue line).
315
+ The number of genes represented in every sample is expected to be consistent and over 20K (grey line).
315
316
316
317
``` {r calc_genes_detected}
317
318
genes_detected <- colSums(assays(se)[["counts"]] > 0) %>% enframe()
@@ -370,7 +371,7 @@ metrics %>%
370
371
371
372
## Exonic mapping rate
372
373
373
- Here we are looking for consistency, and exonic mapping rates around 70% or 75 % (blue and red lines, respectively ).
374
+ Here we are looking for consistency, and exonic mapping rates around or above 70 % (grey line ).
374
375
375
376
``` {r plot_exonic_mapping_rate}
376
377
metrics %>%
@@ -389,7 +390,7 @@ metrics %>%
389
390
390
391
## Intronic mapping rate
391
392
392
- Here, we expect a low intronic mapping rate (≤ 15% - 20%)
393
+ Here, we expect a low intronic mapping rate (≤ 15% - 20%). The grey line indicates 20%.
393
394
394
395
``` {r plot_intronic_mapping_rate}
395
396
metrics %>%
@@ -408,7 +409,7 @@ metrics %>%
408
409
409
410
## Intergenic mapping rate
410
411
411
- Here, we expect a low intergenic mapping rate, which is true for all samples.
412
+ Here, we expect a low intergenic mapping rate, which is true for all samples. The grey line indicates 15%
412
413
413
414
``` {r plot_intergenic_mapping_rate}
414
415
metrics %>%
@@ -421,12 +422,12 @@ metrics %>%
421
422
coord_flip() + xlab("") +
422
423
scale_color_cb_friendly() +
423
424
ylim(c(0, 100)) +
424
- geom_hline(yintercept=20 , color = "grey", size=2)
425
+ geom_hline(yintercept=15 , color = "grey", size=2)
425
426
```
426
427
427
428
## tRNA/rRNA mapping rate
428
429
429
- Samples should have a ribosomal RNA (rRNA) "contamination" rate below 10%
430
+ Samples should have a ribosomal RNA (rRNA) "contamination" rate below 10% (the grey line).
430
431
431
432
``` {r plot_rrna_mapping_rate}
432
433
@@ -441,8 +442,8 @@ metrics %>%
441
442
ggtitle("tRNA/rRNA mapping rate") +
442
443
coord_flip() +
443
444
scale_color_cb_friendly() +
444
- ylim(c(0, 100)) +
445
- geom_hline(yintercept=20 , color = "grey", size=2)
445
+ ylim(c(0, 100)) + xlab("") +
446
+ geom_hline(yintercept=10 , color = "grey", size=2)
446
447
```
447
448
448
449
## 5'->3' bias
0 commit comments