-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathunique_meteo_parameters.R
38 lines (33 loc) · 1.09 KB
/
unique_meteo_parameters.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
library(climate)
library(stringr)
m_hs <- meteo_metadata_imgw("hourly", "synop")
m_hc <- meteo_metadata_imgw("hourly", "climate")
m_ds <- meteo_metadata_imgw("daily", "synop")
m_dc <- meteo_metadata_imgw("daily", "climate")
m_dp <- meteo_metadata_imgw("daily", "precip")
m_ms <- meteo_metadata_imgw("monthly", "synop")
m_mc <- meteo_metadata_imgw("monthly", "climate")
m_mp <- meteo_metadata_imgw("monthly", "precip")
all_meteo_metadata = dplyr::bind_rows(
m_hs[[1]],
m_hc[[1]],
m_ds[[1]],
m_ds[[2]],
m_dc[[1]],
m_dc[[2]],
m_dp[[1]],
m_ms[[1]],
m_ms[[2]],
m_mc[[1]],
m_mc[[2]],
m_mp[[1]]
)
unique_meteo_parameters = str_squish(all_meteo_metadata$parameters) #usuwa podwojne spacje, etc.
unique_meteo_parameters = unique(unique_meteo_parameters)
unique_meteo_parameters = sort(unique_meteo_parameters)
View(unique_meteo_parameters)
# sprawdzenie czy stworzona recznie baza daje sie polaczyc left_joinem:
skroty <- read.csv("data-raw/parametry_skrot.csv", stringsAsFactors = F)
wsio <- data.frame(fullname = unique_meteo_parameters)
laczenie <- dplyr::left_join(wsio,skroty)
head(laczenie)