-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
490 lines (331 loc) · 11.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
"""
Helper functions for blim
Repo:
https://github.com/bean-mhm/blim
"""
import numpy as np
import colour
def lerp(a, b, t):
return a + t * (b - a)
def safe_divide(a, b):
if (b == 0.0):
return 0.0
return a / b
def safe_pow(a, b):
return np.sign(a) * (np.abs(a)**b)
def pivot_pow(a, b, pivot):
return pivot * ((a / pivot)**b)
def smootherstep(x, edge0, edge1):
x = np.clip(safe_divide((x - edge0), (edge1 - edge0)), 0.0, 1.0)
return x * x * x * (x * (x * 6.0 - 15.0) + 10.0)
def map_range(inp, inp_start, inp_end, out_start, out_end):
return out_start + ((out_end - out_start) / (inp_end - inp_start)) * (inp - inp_start)
def map_range_clamp(inp, inp_start, inp_end, out_start, out_end):
v = out_start + ((out_end - out_start) / (inp_end - inp_start)) * (inp - inp_start)
if v < out_start:
return out_start
if v > out_end:
return out_end
return v
def map_range_smootherstep(inp, inp_start, inp_end, out_start, out_end):
if (inp_start == inp_end):
return 0.0
fac = \
(1.0 - smootherstep(inp, inp_end, inp_start)) \
if inp_start > inp_end \
else smootherstep(inp, inp_start, inp_end)
return out_start + fac * (out_end - out_start)
def blender_rgb_to_hsv(inp):
h = 0.0
s = 0.0
v = 0.0
cmax = max(inp[0], max(inp[1], inp[2]))
cmin = min(inp[0], min(inp[1], inp[2]))
cdelta = cmax - cmin
v = cmax
if cmax != 0.0:
s = cdelta / cmax
if s != 0.0:
c = (-inp + cmax) / cdelta
if inp[0] == cmax:
h = c[2] - c[1]
elif inp[1] == cmax:
h = 2.0 + c[0] - c[2]
else:
h = 4.0 + c[1] - c[0]
h /= 6.0
if h < 0.0:
h += 1.0
return np.array([h, s, v])
def blender_hsv_to_rgb(inp):
h = inp[0]
s = inp[1]
v = inp[2]
if s == 0.0:
return np.array([v, v, v])
else:
if h == 1.0:
h = 0.0
h *= 6.0
i = np.floor(h)
f = h - i
p = v * (1.0 - s)
q = v * (1.0 - (s * f))
t = v * (1.0 - (s * (1.0 - f)))
if i == 0.0:
return np.array([v, t, p])
elif i == 1.0:
return np.array([q, v, p])
elif i == 2.0:
return np.array([p, v, t])
elif i == 3.0:
return np.array([p, q, v])
elif i == 4.0:
return np.array([t, p, v])
else:
return np.array([v, p, q])
def blender_hue_sat(inp, hue, sat, value):
hsv = blender_rgb_to_hsv(inp)
hsv[0] = np.modf(hsv[0] + hue + 0.5)[0]
hsv[1] = np.clip(hsv[1] * sat, 0, 1)
hsv[2] = hsv[2] * value
return blender_hsv_to_rgb(hsv)
def BT_709_to_XYZ(inp):
mat = np.array([
[ 0.4123908 , 0.35758434, 0.18048079],
[ 0.21263901, 0.71516868, 0.07219232],
[ 0.01933082, 0.11919478, 0.95053215]
])
return np.matmul(mat, inp)
def XYZ_to_BT_709(inp):
mat = np.array([
[ 3.24096994, -1.53738318, -0.49861076],
[-0.96924364, 1.8759675 , 0.04155506],
[ 0.05563008, -0.20397696, 1.05697151]
])
return np.matmul(mat, inp)
# Oklab implementation
# See: https://bottosson.github.io/posts/oklab
mat_Oklab_M1 = np.array([
[ 0.8189330101, 0.3618667424, -0.1288597137],
[ 0.0329845436, 0.9293118715, 0.0361456387],
[ 0.0482003018, 0.2643662691, 0.6338517070]
])
mat_Oklab_M1_inv = np.linalg.inv(mat_Oklab_M1)
mat_Oklab_M2 = np.array([
[ 0.2104542553, 0.7936177850, -0.0040720468],
[ 1.9779984951, -2.4285922050, 0.4505937099],
[ 0.0259040371, 0.7827717662, -0.8086757660]
])
mat_Oklab_M2_inv = np.linalg.inv(mat_Oklab_M2)
def BT_709_to_Oklab(inp):
inp = BT_709_to_XYZ(inp)
inp = np.matmul(mat_Oklab_M1, inp)
inp = safe_pow(inp, 1.0 / 3.0)
inp = np.matmul(mat_Oklab_M2, inp)
return inp
def Oklab_to_BT_709(inp):
inp = np.matmul(mat_Oklab_M2_inv, inp)
inp = safe_pow(inp, 3.0)
inp = np.matmul(mat_Oklab_M1_inv, inp)
inp = XYZ_to_BT_709(inp)
return inp
luminance_BT_709_I_D65 = np.array([0.299, 0.587, 0.114])
def rgb_lum(inp):
return np.dot(inp, luminance_BT_709_I_D65)
def rgb_avg(inp):
return (inp[0] + inp[1] + inp[2]) / 3.0
def rgb_sum(inp):
return inp[0] + inp[1] + inp[2]
def rgb_max(inp):
return max(max(inp[0], inp[1]), inp[2])
def rgb_min(inp):
return min(min(inp[0], inp[1]), inp[2])
def rgb_mag(inp):
return np.linalg.norm(inp)
def rgb_mag_over_sqrt3(inp):
return np.linalg.norm(inp) / 1.7320508075688772935274463415059
def rgb_hue(inp):
x1 = (inp[1] - inp[2]) * np.sqrt(3)
x2 = inp[0]*2 - inp[1] - inp[2]
hue = np.rad2deg(np.arctan2(x1, x2))
if hue < 0.0:
hue += 360.0
if hue > 360.0:
hue -= 360.0
return hue
def rgb_sat(inp):
inp_norm = inp / rgb_max(inp)
return np.clip(rgb_max(inp_norm) - rgb_min(inp_norm), 0, 1)
def rgb_monotone(inp, col, amount):
inp_mag = rgb_mag(inp)
inp_norm = inp / inp_mag
col_norm = col / rgb_mag(col)
dot = np.dot(inp_norm, col_norm)
out = col_norm * (inp_mag * dot)
return inp + amount * (out - inp)
def rgb_monotone_in_Oklab(inp, col, amount):
# Convert to Oklab
inp = BT_709_to_Oklab(inp)
col = BT_709_to_Oklab(col)
# Dot product
dot = np.dot(inp / inp[0], col / col[0])
dot = max(0.0, dot)
dot = dot**3.0
# Target color
out = col * (inp[0] / col[0]) * dot
# Mix
out = lerp(inp, out, amount)
# Convert from Oklab
out = Oklab_to_BT_709(out)
out = np.maximum(out, 0.0)
return out
def rgb_hue_selection(inp, hue, max_distance):
inp_hue = rgb_hue(inp)
dist1 = np.abs(inp_hue - hue)
dist2 = np.abs(inp_hue - 360 - hue)
dist3 = np.abs(inp_hue + 360 - hue)
min_dist = min(min(dist1, dist2), dist3)
return 1 - np.clip(min_dist / max_distance, 0, 1)
def rgb_selective_hsv(
inp,
hue_red,
hue_yellow,
hue_green,
hue_cyan,
hue_blue,
hue_magenta,
sat_red,
sat_yellow,
sat_green,
sat_cyan,
sat_blue,
sat_magenta,
val_red,
val_yellow,
val_green,
val_cyan,
val_blue,
val_magenta
):
hue_max_distance = 60
reds = inp * rgb_hue_selection(inp, 0, hue_max_distance)
yellows = inp * rgb_hue_selection(inp, 60, hue_max_distance)
greens = inp * rgb_hue_selection(inp, 120, hue_max_distance)
cyans = inp * rgb_hue_selection(inp, 180, hue_max_distance)
blues = inp * rgb_hue_selection(inp, 240, hue_max_distance)
magentas = inp * rgb_hue_selection(inp, 300, hue_max_distance)
reds = blender_hue_sat(reds, hue_red, sat_red, val_red)
yellows = blender_hue_sat(yellows, hue_yellow, sat_yellow, val_yellow)
greens = blender_hue_sat(greens, hue_green, sat_green, val_green)
cyans = blender_hue_sat(cyans, hue_cyan, sat_cyan, val_cyan)
blues = blender_hue_sat(blues, hue_blue, sat_blue, val_blue)
magentas = blender_hue_sat(magentas, hue_magenta, sat_magenta, val_magenta)
return reds + yellows + greens + cyans + blues + magentas
# Shift a certain tone as it gets logarithmically brighter
def rgb_hue_shift(inp, channel, threshold, hue, sat, val):
# Only take more saturated colors into account
sat_fac = rgb_sat(inp)**2
sat_fac = map_range_clamp(sat_fac, 0.6, 1.0, 0.0, 1.0)
# See how much the input matches the channel
mask = np.dot(channel, np.log2(inp + 1.0))
# Saturation factor
mask = max(0.0, mask * sat_fac)
# Threshold
mask = max(0.0, mask - threshold)
# Define HSV adjustments
hue = mask * hue + 0.5
sat = mask * sat + 1.0
val = mask * val + 1.0
# HSV
return blender_hue_sat(inp, hue, sat, val)
def fractional_hue_transform(inp, amount):
out = safe_pow(inp*2.0 - 1.0, amount*0.3 + 1.0)
return np.clip((out + 1.0) / 2.0, 0, 1)
magenta_mul_norm = np.array([1, -1, 1]) / rgb_mag(np.array([1, -1, 1]))
blue = np.array([0, 0, 1])
def rgb_perceptual_hue_shifts(inp):
sat_mask = np.clip(rgb_sat(inp)**5.0 - 0.1, 0, 1)
magenta_mask = max(0.0, np.dot(inp / rgb_mag(inp), magenta_mul_norm))
magenta_mask = magenta_mask ** 3.0
magenta_mask = map_range_smootherstep(magenta_mask, 0.0, 0.5, 1.0, 0.0)
amount = rgb_mag(rgb_monotone(inp, blue, 0.8))
amount = np.log2(amount + 1.0)
amount = pivot_pow(amount, 1.0, 1.73205)
amount *= 3.0
amount *= sat_mask
amount *= magenta_mask
hsv = blender_rgb_to_hsv(inp)
hue_fract, hue_int = np.modf(hsv[0] * 3.0)
new_hue = (hue_int + fractional_hue_transform(hue_fract, amount)) / 3.0
return blender_hsv_to_rgb(np.array([new_hue, hsv[1], hsv[2]]))
def rgb_path_to_white_mask(mono, min_exp, max_exp, mask_pow):
mask = np.log2(mono)
mask = map_range_clamp(mask, min_exp, max_exp, 0.0, 1.0)
mask = mask**mask_pow
return mask
white_Oklab = BT_709_to_Oklab(np.array([1,1,1]))
# Compress the highlights so that the output values fit into
# the [0, 1] range.
def rgb_compress_highlights(inp):
inp_sum = rgb_sum(inp)
inp_avg = rgb_avg(inp)
inp_max = rgb_max(inp)
# Path-to-white factors
white_mix_1 = rgb_path_to_white_mask(inp_avg, min_exp = -3.0, max_exp = 7.0, mask_pow = 1.732)
white_mix_2 = rgb_path_to_white_mask(inp_avg, min_exp = -1.0, max_exp = 7.0, mask_pow = 4.0)
white_mix_3 = rgb_path_to_white_mask(inp_max, min_exp = 0.0, max_exp = 6.9, mask_pow = 2.0)
# Reinhard
inp = inp / (inp_sum + 1.0)
# The Reinhard transform scales the input uniformly. This might
# turn down bright colors extensively and make them look
# saturated, leading to uncanny results. That's why we mix with
# white based on the exposure. The mixing is done in Oklab to
# try to preserve the hue in a perceptual way, although it's
# just an approximation.
# Convert to Oklab
inp = BT_709_to_Oklab(inp)
# Mix with white
inp = lerp(inp, white_Oklab, white_mix_1)
inp = lerp(inp, white_Oklab, white_mix_2)
inp = lerp(inp, white_Oklab, white_mix_3)
# Convert from Oklab
inp = Oklab_to_BT_709(inp)
# Clip
inp = np.clip(inp, 0, 1)
return inp
cmfs = (
colour.MSDS_CMFS["CIE 1931 2 Degree Standard Observer"]
.copy()
.align(colour.SpectralShape(360, 780, 20))
)
illuminant_d65_sd = colour.SDS_ILLUMINANTS["D65"].copy().align(cmfs.shape)
illuminant_d65_sd.normalise()
illuminant_d65_xy = colour.temperature.CCT_to_xy_CIE_D(6500.0 * 1.438776877 / 1.4380)
def rgb_compress_highlights_spectral(inp, mono):
inp_reinhard = inp * (1.0 / (mono + 1.0))
white_mix = np.log2(mono + 1.0)
white_mix = map_range_smootherstep(white_mix, -0.7, 9.0, 0.0, 1.0)
white_mix = white_mix**2.0
xyz = colour.RGB_to_XYZ(
RGB = inp_reinhard,
illuminant_RGB = illuminant_d65_xy,
illuminant_XYZ = illuminant_d65_xy,
matrix_RGB_to_XYZ = colour.models.RGB_COLOURSPACE_BT709.matrix_RGB_to_XYZ
)
sd = colour.XYZ_to_sd(xyz, method="Jakob 2019", cmfs=cmfs, illuminant=illuminant_d65_sd)
sd.values = sd.values + white_mix * (illuminant_d65_sd.values - sd.values)
xyz = colour.sd_to_XYZ(sd, cmfs=cmfs, illuminant=illuminant_d65_sd, method="Integration")
return colour.XYZ_to_RGB(
XYZ = xyz,
illuminant_XYZ = illuminant_d65_xy,
illuminant_RGB = illuminant_d65_xy,
matrix_XYZ_to_RGB = colour.models.RGB_COLOURSPACE_BT709.matrix_XYZ_to_RGB
) / 100.0
# Adjust the highlights and the shadows in a smooth way.
# Note: All arguments must be scalars.
def enhance_curve(inp, shadow_pow, highlight_pow, mix_pow):
a = inp**shadow_pow
b = 1.0 - (1.0 - inp)**highlight_pow
mix = inp**mix_pow
return lerp(a, b, mix)