From 7c4cf1b437b742f25e67d2b28a3015cd151cda4f Mon Sep 17 00:00:00 2001 From: "J. K. Edwards" Date: Sun, 12 Jan 2025 15:51:13 -0500 Subject: [PATCH] Update coderabbitai.cpp Signed-off-by: J. K. Edwards --- .engine/coderabbitai.cpp | 140 +++++++++++++++++++++++++++++++++++---- 1 file changed, 128 insertions(+), 12 deletions(-) diff --git a/.engine/coderabbitai.cpp b/.engine/coderabbitai.cpp index c0b9428..122727d 100644 --- a/.engine/coderabbitai.cpp +++ b/.engine/coderabbitai.cpp @@ -1,3 +1,7 @@ +#include "coderabbitai/core.h" +#include "coderabbitai/neural_net.h" +#include "coderabbitai/memory.h" +#include "coderabbitai/error.h" #include #include #include @@ -11,18 +15,130 @@ #include #include #include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include "codingrabbitaibrain.h" -#include + +// Initialize logging +void init_logging() { + spdlog::set_pattern("[%Y-%m-%d %H:%M:%S.%e] [%^%l%$] [%s:%#] %v"); + spdlog::set_level(spdlog::level::debug); +} + +// Neural Network Implementation +void init_neural_network(NeuralNetwork& nn) { + LOG_INFO("Initializing neural network"); + try { + auto rand_double = [](std::mt19937& gen) { + std::uniform_real_distribution<> dis(-1.0, 1.0); + return dis(gen); + }; + + std::random_device rd; + std::mt19937 gen(rd()); + + nn.weights = std::vector>(NN_HIDDEN_SIZE, std::vector(NN_INPUT_SIZE)); + nn.bias = std::vector(NN_HIDDEN_SIZE); + nn.output_weights = std::vector>(NN_OUTPUT_SIZE, std::vector(NN_HIDDEN_SIZE)); + nn.output_bias = std::vector(NN_OUTPUT_SIZE); + + for (auto& layer : nn.weights) { + std::generate(layer.begin(), layer.end(), [&]() { return rand_double(gen); }); + } + std::generate(nn.bias.begin(), nn.bias.end(), [&]() { return rand_double(gen); }); + + LOG_INFO("Neural network initialized successfully"); + } catch (const std::exception& e) { + LOG_ERROR("Neural network initialization failed: {}", e.what()); + throw std::runtime_error("Neural network initialization failed"); + } +} + +// Code Pattern Management +std::unique_ptr create_code_pattern(const std::string& snippet, const std::string& language, double complexity) { + if (snippet.empty() || language.empty()) { + LOG_ERROR("Invalid code pattern parameters: snippet or language is empty"); + throw std::invalid_argument("Snippet or language cannot be empty"); + } + + try { + auto pattern = std::make_unique(); + pattern->snippet = snippet; + pattern->language = language; + pattern->complexity = complexity; + + LOG_INFO("Created code pattern: language={}, complexity={}", language, complexity); + return pattern; + } catch (const std::exception& e) { + LOG_ERROR("Failed to create code pattern: {}", e.what()); + throw; + } +} + +void add_pattern_to_memory(CodeMemory& memory, std::unique_ptr&& pattern) { + try { + if (memory.patterns.size() >= CODE_PATTERN_LIMIT) { + LOG_INFO("Memory limit reached, removing oldest pattern"); + memory.patterns.erase(memory.patterns.begin()); + } + memory.patterns.push_back(std::move(pattern)); + LOG_INFO("Pattern added to memory, total patterns: {}", memory.patterns.size()); + } catch (const std::exception& e) { + LOG_ERROR("Failed to add pattern to memory: {}", e.what()); + throw; + } +} + +// Main processing functions +void process_code_request(CodeWorkbench& workbench, CodeMemory& memory, EmotionalGraph& eg) { + if (workbench.code_request.empty()) { + LOG_ERROR("Empty code request"); + throw std::runtime_error("No code request provided"); + } + + try { + // Use async for parallel processing + auto pattern_match = std::async(std::launch::async, [&]() { + LOG_INFO("Starting pattern matching"); + // Pattern matching logic + }); + + auto analysis = std::async(std::launch::async, [&]() { + LOG_INFO("Starting code analysis"); + // Analysis logic + }); + + pattern_match.get(); + analysis.get(); + + LOG_INFO("Code request processed successfully"); + } catch (const std::exception& e) { + LOG_ERROR("Failed to process code request: {}", e.what()); + ErrorRecovery::recover_from_neural_network_failure(workbench.nn); + throw; + } +} + +// Main entry point +int main() { + try { + init_logging(); + LOG_INFO("Starting CodeRabbitAI"); + + CodeMemory memory; + EmotionalGraph eg; + CodeWorkbench workbench{"Create a function to sort an array"}; + + NeuralNetwork nn; + init_neural_network(nn); + + process_code_request(workbench, memory, eg); + + LOG_INFO("CodeRabbitAI completed successfully"); + return 0; + } catch (const std::exception& e) { + LOG_ERROR("Fatal error: {}", e.what()); + return 1; + } +} + // Constants using constexpr constexpr int CODE_PATTERN_LIMIT = 10000;