-
-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathGPU.c
167 lines (142 loc) · 6.88 KB
/
GPU.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#include <cuda_runtime.h>
#include <stdio.h>
#include <math.h> // For pairwise distance calculations
#define BLOCK_SIZE 256 // Threads per block
#define MAX_CLUSTERS 9 // Total clusters
#define MAX_ITERATIONS 1024 // Total iterations
#define MAX_NODES 1024 // Nodes for TSP example
#define INF 1e9 // Infinity for TSP comparison
// Error checking macro
#define CUDA_CHECK(call) \
do { \
cudaError_t err = call; \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA Error: %s\n", \
cudaGetErrorString(err)); \
exit(err); \
} \
} while (0)
// Device function for distance calculation
__device__ float calculate_distance(float x1, float y1, float x2, float y2) {
return sqrtf((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1));
}
// Device function for EFLL to check memory integrity
__device__ bool EFLL_JudgeMemory(const float *memory_data, int size) {
float threshold = 0.5; // Arbitrary threshold for obfuscation
float total_variance = 0.0;
for (int i = 1; i < size; ++i) {
total_variance += fabsf(memory_data[i] - memory_data[i - 1]);
}
// Memory is considered "good" if variance is below threshold
return (total_variance / size) < threshold;
}
// Kernel for logic loop iteration with ARLL and EFLL
__global__ void LogicLoop_GPU(
int *cluster_states, float *node_positions, float *memory_data,
int num_nodes, int max_iterations, int *iteration_count, int *arll_rewards, int *efll_flags)
{
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int cluster_id = blockIdx.x; // Each block handles one cluster
if (tid < num_nodes) {
// Loop over the maximum iterations
for (int iter = 0; iter < max_iterations; ++iter) {
// Calculate pairwise distances for TSP-like logic
__shared__ float local_min_distance; // Shared memory for results
__shared__ int best_node;
if (threadIdx.x == 0) {
local_min_distance = INF;
best_node = -1;
}
__syncthreads();
for (int i = 0; i < num_nodes; ++i) {
float distance = calculate_distance(
node_positions[2 * tid], // x-coordinate of current node
node_positions[2 * tid + 1], // y-coordinate of current node
node_positions[2 * i], // x-coordinate of node i
node_positions[2 * i + 1] // y-coordinate of node i
);
if (distance < local_min_distance && tid != i) {
local_min_distance = distance;
best_node = i;
}
}
// Update global cluster state atomically
if (threadIdx.x == 0) {
atomicAdd(&cluster_states[cluster_id], best_node);
}
__syncthreads(); // Synchronize before next iteration
// Update iteration count
if (tid == 0) {
atomicAdd(iteration_count, 1);
// EFLL checks memory integrity
bool is_good_memory = EFLL_JudgeMemory(memory_data, num_nodes);
atomicAdd(&efll_flags[tid], is_good_memory ? 0 : 1);
// ARLL rewards "good" memory
if (is_good_memory) {
atomicAdd(&arll_rewards[tid], 1);
}
}
}
}
}
void RunLogicLoop() {
// Host variables
int h_cluster_states[MAX_CLUSTERS] = {0};
float h_node_positions[2 * MAX_NODES];
float h_memory_data[MAX_NODES]; // Simulated memory data
int h_iteration_count = 0;
int h_arll_rewards[MAX_NODES] = {0};
int h_efll_flags[MAX_NODES] = {0};
// Initialize node positions and memory data
for (int i = 0; i < MAX_NODES; ++i) {
h_node_positions[2 * i] = rand() % 100;
h_node_positions[2 * i + 1] = rand() % 100;
h_memory_data[i] = ((float)rand() / RAND_MAX); // Random memory values
}
// Device variables
int *d_cluster_states, *d_iteration_count, *d_arll_rewards, *d_efll_flags;
float *d_node_positions, *d_memory_data;
// Allocate device memory
CUDA_CHECK(cudaMalloc((void **)&d_cluster_states, MAX_CLUSTERS * sizeof(int)));
CUDA_CHECK(cudaMalloc((void **)&d_node_positions, 2 * MAX_NODES * sizeof(float)));
CUDA_CHECK(cudaMalloc((void **)&d_memory_data, MAX_NODES * sizeof(float)));
CUDA_CHECK(cudaMalloc((void **)&d_iteration_count, sizeof(int)));
CUDA_CHECK(cudaMalloc((void **)&d_arll_rewards, MAX_NODES * sizeof(int)));
CUDA_CHECK(cudaMalloc((void **)&d_efll_flags, MAX_NODES * sizeof(int)));
// Copy data to device
CUDA_CHECK(cudaMemcpy(d_cluster_states, h_cluster_states, MAX_CLUSTERS * sizeof(int), cudaMemcpyHostToDevice));
CUDA_CHECK(cudaMemcpy(d_node_positions, h_node_positions, 2 * MAX_NODES * sizeof(float), cudaMemcpyHostToDevice));
CUDA_CHECK(cudaMemcpy(d_memory_data, h_memory_data, MAX_NODES * sizeof(float), cudaMemcpyHostToDevice));
CUDA_CHECK(cudaMemset(d_iteration_count, 0, sizeof(int)));
CUDA_CHECK(cudaMemset(d_arll_rewards, 0, MAX_NODES * sizeof(int)));
CUDA_CHECK(cudaMemset(d_efll_flags, 0, MAX_NODES * sizeof(int)));
// Define grid and block dimensions
dim3 blockSize(BLOCK_SIZE);
dim3 gridSize(MAX_CLUSTERS);
// Launch kernel
LogicLoop_GPU<<<gridSize, blockSize>>>(
d_cluster_states, d_node_positions, d_memory_data, MAX_NODES,
MAX_ITERATIONS, d_iteration_count, d_arll_rewards, d_efll_flags);
// Synchronize device
CUDA_CHECK(cudaDeviceSynchronize());
// Copy results back to host
CUDA_CHECK(cudaMemcpy(h_cluster_states, d_cluster_states, MAX_CLUSTERS * sizeof(int), cudaMemcpyDeviceToHost));
CUDA_CHECK(cudaMemcpy(&h_iteration_count, d_iteration_count, sizeof(int), cudaMemcpyDeviceToHost));
CUDA_CHECK(cudaMemcpy(h_arll_rewards, d_arll_rewards, MAX_NODES * sizeof(int), cudaMemcpyDeviceToHost));
CUDA_CHECK(cudaMemcpy(h_efll_flags, d_efll_flags, MAX_NODES * sizeof(int), cudaMemcpyDeviceToHost));
// Display results
printf("Total iterations processed: %d\n", h_iteration_count);
for (int i = 0; i < MAX_CLUSTERS; ++i) {
printf("Cluster %d state: %d\n", i, h_cluster_states[i]);
}
for (int i = 0; i < MAX_NODES; ++i) {
printf("Node %d - ARLL Rewards: %d, EFLL Flags: %d\n", i, h_arll_rewards[i], h_efll_flags[i]);
}
// Free device memory
CUDA_CHECK(cudaFree(d_cluster_states));
CUDA_CHECK(cudaFree(d_node_positions));
CUDA_CHECK(cudaFree(d_memory_data));
CUDA_CHECK(cudaFree(d_iteration_count));
CUDA_CHECK(cudaFree(d_arll_rewards));
CUDA_CHECK(cudaFree(d_efll_flags));
}