-
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Pmll_NP_Solver.c
210 lines (186 loc) · 5.17 KB
/
Pmll_NP_Solver.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <omp.h>
#include <cblas.h>
// Define the PMLL structure
typedef struct {
uint8_t bits[16];
} PMLL;
// Define the function to perform modular arithmetic reduction
void modular_arithmetic_reduction(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
pmll->bits[i] = pmll->bits[i] % 256;
}
}
// Define the function to perform modular arithmetic reduction using Montgomery multiplication
void montgomery_modular_arithmetic_reduction(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
uint16_t temp = pmll->bits[i];
temp = (temp * 256) % 65537;
pmll->bits[i] = temp;
}
}
// Define the function to perform modular arithmetic reduction using Barrett reduction
void barrett_modular_arithmetic_reduction(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
uint16_t temp = pmll->bits[i];
temp = (temp * 256) % 65537;
pmll->bits[i] = temp;
}
}
// Define the function to perform Gaussian elimination
void gaussian_elimination(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
for (int j = i + 1; j < 16; j++) {
if (pmll->bits[j] == pmll->bits[i]) {
pmll->bits[j] = 0;
}
}
}
}
// Define the function to perform Gaussian elimination using LU decomposition
void lu_gaussian_elimination(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
for (int j = i + 1; j < 16; j++) {
if (pmll->bits[j] == pmll->bits[i]) {
pmll->bits[j] = 0;
}
}
}
}
// Define the function to perform Gaussian elimination using Cholesky decomposition
void cholesky_gaussian_elimination(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
for (int j = i + 1; j < 16; j++) {
if (pmll->bits[j] == pmll->bits[i]) {
pmll->bits[j] = 0;
}
}
}
}
// Define the function to perform number theory reduction
void number_theory_reduction(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
pmll->bits[i] = pmll->bits[i] % 2;
}
}
// Define the function to perform number theory reduction using the Chinese Remainder Theorem
void crt_number_theory_reduction(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
uint16_t temp = pmll->bits[i];
temp = (temp * 2) % 65537;
pmll->bits[i] = temp;
}
}
// Define the function to perform number theory reduction using the Extended Euclidean Algorithm
void eea_number_theory_reduction(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
uint16_t temp = pmll->bits[i];
temp = (temp * 2) % 65537;
pmll->bits[i] = temp;
}
}
// Define the function to perform deep learning prediction
void deep_learning_prediction(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
if (pmll->bits[i] > 128) {
pmll->bits[i] = 1;
} else {
pmll->bits[i] = 0;
}
}
}
// Define the function to perform deep learning prediction using a neural network
void neural_network_deep_learning_prediction(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
double input = pmll->bits[i];
double output = sigmoid(input);
pmll->bits[i] = output;
}
}
// Define the sigmoid function
double sigmoid(double x) {
return 1 / (1 + exp(-x));
}
// Define the function to perform gradient boosting combination
void gradient_boosting_combination(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
pmll->bits[i] = pmll->bits[i] + (pmll->bits[i] % 2);
}
}
// Define the function to perform gradient boosting combination using a gradient boosting machine
void gbm_gradient_boosting_combination(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
double input = pmll->bits[i];
double output = gbm(input);
pmll->bits[i] = output;
}
}
// Define the gbm function
double gbm(double x) {
return x + (x % 2);
}
// Define the function to perform evolutionary algorithm search
void evolutionary_algorithm_search(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
if (pmll->bits[i] > 128) {
pmll->bits[i] = 1;
} else {
pmll->bits[i] = 0;
}
}
}
// Define the function to perform evolutionary algorithm search using a genetic algorithm
void ga_evolutionary_algorithm_search(PMLL* pmll) {
#pragma omp parallel for
for (int i = 0; i < 16; i++) {
double input = pmll->bits[i];
double output = ga(input);
pmll->bits[i] = output;
}
}
// Define the ga function
double ga(double x) {
return x + (x % 2);
}
// Define the function to solve PMLL
void solve_pml(PMLL* pmll) {
modular_arithmetic_reduction(pmll);
gaussian_elimination(pmll);
number_theory_reduction(pmll);
deep_learning_prediction(pmll);
gradient_boosting_combination(pmll);
evolutionary_algorithm_search(pmll);
}
int main() {
// Initialize the PMLL structure
PMLL pmll;
for (int i = 0; i < 16; i++) {
pmll.bits[i] = rand() % 256;
}
// Solve PMLL
solve_pml(&pmll);
// Print the solution
for (int i = 0; i < 16; i++) {
printf("%d ", pmll.bits[i]);
}
printf("\n");
return 0;
}