From d850f97de6fb104bb5d81a36805729fae3240d30 Mon Sep 17 00:00:00 2001 From: Josef Kurk Edwards Date: Thu, 26 Dec 2024 02:12:01 -0500 Subject: [PATCH] Create Finn.py FINN! Signed-off-by: Josef Kurk Edwards --- Finn.py | 104 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 104 insertions(+) create mode 100644 Finn.py diff --git a/Finn.py b/Finn.py new file mode 100644 index 0000000..49bba8e --- /dev/null +++ b/Finn.py @@ -0,0 +1,104 @@ +from fastapi import FastAPI, Depends, HTTPException +from pydantic import BaseModel +import pickle +from typing import List +import json + +# Initialize FastAPI +app = FastAPI() + +# ---- Core Brain Components (PMLL, ARLL, EFLL) ---- +class PMLLMemory: + """Persistent Memory to store historical data.""" + def __init__(self): + self.history = [] + + def save(self, input_text, prediction, feedback=None): + entry = {"text": input_text, "prediction": prediction, "feedback": feedback} + self.history.append(entry) + + def get_history(self): + return self.history + + +class ARLL: + """Adaptive Reinforcement Learning for model improvement.""" + def __init__(self, model): + self.model = model + self.feedback_data = [] + + def record_feedback(self, input_text, true_sentiment): + self.feedback_data.append((input_text, true_sentiment)) + + def retrain_model(self): + # Simulated model improvement logic + print(f"Retraining model with {len(self.feedback_data)} feedback entries.") + + +class EFLL: + """Emotional Feedback Learning for empathetic responses.""" + def provide_emotional_feedback(self, sentiment): + feedback_map = { + "positive": "That's great to hear!", + "negative": "I'm sorry to hear that. Let me know how I can help.", + "neutral": "Thanks for sharing your thoughts." + } + return feedback_map.get(sentiment, "Thank you for your input.") + +# ---- Initialize Framework Components ---- +pmll_memory = PMLLMemory() +arll = ARLL(model=None) # Model will be loaded dynamically +efll = EFLL() + +# ---- Model Loading ---- +def load_model(): + try: + with open("sentiment_model.pkl", "rb") as f: + return pickle.load(f) + except FileNotFoundError: + raise HTTPException(status_code=500, detail="Model file not found.") + +@app.on_event("startup") +def startup_event(): + global model + model = load_model() + arll.model = model # Link the loaded model to ARLL + + +# ---- FastAPI Endpoints ---- +class TextInput(BaseModel): + text: str + +class FeedbackInput(BaseModel): + text: str + true_sentiment: str + +@app.post("/predict") +async def predict(input: TextInput, model=Depends(load_model)): + try: + prediction = model.predict([input.text])[0] + pmll_memory.save(input.text, prediction) # Store in PMLL + emotional_feedback = efll.provide_emotional_feedback(prediction) # Generate EFLL response + return {"text": input.text, "sentiment": prediction, "emotional_feedback": emotional_feedback} + except Exception as e: + raise HTTPException(status_code=500, detail=str(e)) + +@app.post("/feedback") +async def feedback(input: FeedbackInput): + arll.record_feedback(input.text, input.true_sentiment) + pmll_memory.save(input.text, None, feedback=input.true_sentiment) # Log feedback in PMLL + return {"message": "Feedback recorded. Thank you!"} + +@app.post("/retrain") +async def retrain_model(): + arll.retrain_model() + return {"message": "Model retrained successfully."} + +@app.get("/history") +async def get_history(): + return pmll_memory.get_history() + +# ---- Finn Initialization ---- +@app.get("/") +async def root(): + return {"message": "Welcome to Finn, the Brain of ChatGPT and OpenAI."}