forked from haowang1992/PDFD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ijcai.py
354 lines (300 loc) · 16.3 KB
/
train_ijcai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import os
import random
import time
import numpy as np
from tqdm import tqdm
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader, WeightedRandomSampler
import torchvision.transforms as T
from config import Config
from dataset.data import load_files_sketchy_zeroshot, load_files_tuberlin_zeroshot, \
DataGeneratorImage, DataGeneratorPaired, DataGeneratorSketch
from model.ijcai_model import Baseline
from util import misc
from util.logger import Logger, AverageMeter
from test_ijcai import validate
def main():
cfg = Config().get_config()
if cfg.seed == -1:
cfg.seed = random.randint(1, 10000)
random.seed(cfg.seed)
os.environ['PYTHONHASHSEED'] = str(cfg.seed)
np.random.seed(cfg.seed)
torch.manual_seed(cfg.seed)
if torch.cuda.is_available():
torch.cuda.set_device(cfg.gpu_id)
torch.cuda.manual_seed(cfg.seed)
cudnn.deterministic = True
cudnn.benchmark = False
torch.autograd.set_detect_anomaly(True)
print(f'Experiment configurations are: {str(cfg)}')
# check configuration
if cfg.filter_sketch:
assert cfg.dataset == 'Sketchy'
if cfg.split_eccv_2018:
assert cfg.dataset == 'Sketchy_extended' or cfg.dataset == 'Sketchy'
if cfg.gzs_sbir:
cfg.test = True
ds_var = None
if '_' in cfg.dataset:
token = cfg.dataset.split('_')
cfg.dataset = token[0]
ds_var = token[1]
str_aux = 'None'
if cfg.split_eccv_2018:
str_aux = 'split_eccv_2018'
if cfg.gzs_sbir:
str_aux = '+'.join([str_aux, 'generalized'])
cfg.semantic_models = sorted(cfg.semantic_models)
model_name ='+'.join(cfg.semantic_models)
assert cfg.seed == 0
path_feature_pretrained = f'model/{cfg.dataset}_'
model_name += f'_c2f_{cfg.c2f}'
path_checkpoint = f"checkpoint/ijcai_{cfg.dataset}_{ds_var}_{str_aux.replace('+generalized', '')}_{model_name}_{cfg.dim_out}"
path_log = f'log/ijcai_{cfg.dataset}_{ds_var}_{str_aux}_{model_name}_{cfg.dim_out}'
path_result = f'result/ijcai_{cfg.dataset}_{ds_var}_{str_aux}_{model_name}_{cfg.dim_out}'
files_semantic_labels = []
files_semantic_dims = []
sem_dim = 0
for f in cfg.semantic_models:
fi = os.path.join('dataset', cfg.dataset, f + '.npy')
files_semantic_labels.append(fi)
files_semantic_dims.append(list(np.load(fi, allow_pickle=True).item().values())[0].shape[0])
sem_dim += files_semantic_dims[-1]
print('Checkpoint path: {}'.format(path_checkpoint))
print('Logger path: {}'.format(path_log))
print('Result path: {}'.format(path_result))
# Parameters for transforming the images
transform_image = T.Compose([T.Resize((cfg.image_size, cfg.image_size)), T.ToTensor()])
transform_sketch = T.Compose([T.Resize((cfg.sketch_size, cfg.sketch_size)), T.ToTensor()])
# Load the dataset
print('Loading data...', end='')
if cfg.dataset == 'Sketchy':
if ds_var == 'extended':
photo_dir = 'extended_photo' # photo or extended_photo
photo_sd = ''
else:
photo_dir = 'photo'
photo_sd = 'tx_000000000000'
sketch_dir = 'sketch'
sketch_sd = 'tx_000000000000'
splits = load_files_sketchy_zeroshot(root_path=f'{cfg.dataset_root}/{cfg.dataset}',
split_eccv_2018=cfg.split_eccv_2018,
photo_dir=photo_dir, sketch_dir=sketch_dir, photo_sd=photo_sd,
sketch_sd=sketch_sd, seed=cfg.seed)
elif cfg.dataset == 'TU-Berlin':
photo_dir = 'images'
sketch_dir = 'sketches'
photo_sd = ''
sketch_sd = ''
splits = load_files_tuberlin_zeroshot(root_path=f'{cfg.dataset_root}/{cfg.dataset}',
photo_dir=photo_dir, sketch_dir=sketch_dir,
photo_sd=photo_sd, sketch_sd=sketch_sd, seed=cfg.seed)
else:
raise Exception('Wrong dataset.')
# Combine the valid and test set into test set
splits['te_fls_sk'] = np.concatenate((splits['va_fls_sk'], splits['te_fls_sk']), axis=0)
splits['te_clss_sk'] = np.concatenate((splits['va_clss_sk'], splits['te_clss_sk']), axis=0)
splits['te_fls_im'] = np.concatenate((splits['va_fls_im'], splits['te_fls_im']), axis=0)
splits['te_clss_im'] = np.concatenate((splits['va_clss_im'], splits['te_clss_im']), axis=0)
if cfg.gzs_sbir:
_, idx_im = np.unique(splits['tr_all_fls_im'], return_index=True)
tr_all_fls_im_ = splits['tr_all_fls_im'][idx_im]
tr_all_clss_im_ = splits['tr_all_clss_im'][idx_im]
splits['te_fls_im'] = np.concatenate((tr_all_fls_im_, splits['te_fls_im']), axis=0)
splits['te_clss_im'] = np.concatenate((tr_all_clss_im_, splits['te_clss_im']), axis=0)
# class dictionary
dict_clss = misc.create_dict_texts(splits['tr_clss_im'])
def worker_init_fn(worker_id):
np.random.seed(cfg.seed + worker_id)
data_train = DataGeneratorPaired(cfg.dataset, f'{cfg.dataset_root}/{cfg.dataset}', photo_dir, sketch_dir, photo_sd,
sketch_sd, splits['tr_fls_sk'], splits['tr_fls_im'], splits['tr_clss_im'],
transforms_sketch=transform_sketch, transforms_image=transform_image)
data_valid_sketch = DataGeneratorSketch(cfg.dataset, f'{cfg.dataset_root}/{cfg.dataset}', sketch_dir, sketch_sd,
splits['va_fls_sk'], splits['va_clss_sk'], transforms=transform_sketch)
data_valid_image = DataGeneratorImage(cfg.dataset, f'{cfg.dataset_root}/{cfg.dataset}', photo_dir, photo_sd,
splits['va_fls_im'], splits['va_clss_im'], transforms=transform_image)
data_test_sketch = DataGeneratorSketch(cfg.dataset, f'{cfg.dataset_root}/{cfg.dataset}', sketch_dir, sketch_sd,
splits['te_fls_sk'], splits['te_clss_sk'], transforms=transform_sketch)
data_test_image = DataGeneratorImage(cfg.dataset, f'{cfg.dataset_root}/{cfg.dataset}', photo_dir, photo_sd,
splits['te_fls_im'], splits['te_clss_im'], transforms=transform_image)
print('Done')
train_sampler = WeightedRandomSampler(data_train.get_weights(), num_samples=cfg.epoch_size * cfg.batch_size,
replacement=True)
# PyTorch train loader
train_loader = DataLoader(dataset=data_train, batch_size=cfg.batch_size, sampler=train_sampler,
num_workers=cfg.num_workers, pin_memory=True, worker_init_fn=worker_init_fn)
# PyTorch valid loader for sketch
valid_loader_sketch = DataLoader(dataset=data_valid_sketch, batch_size=cfg.batch_size, shuffle=False,
num_workers=cfg.num_workers, pin_memory=True, worker_init_fn=worker_init_fn)
# PyTorch valid loader for image
valid_loader_image = DataLoader(dataset=data_valid_image, batch_size=cfg.batch_size, shuffle=False,
num_workers=cfg.num_workers, pin_memory=True, worker_init_fn=worker_init_fn)
# PyTorch test loader for sketch
test_loader_sketch = DataLoader(dataset=data_test_sketch, batch_size=cfg.batch_size, shuffle=False,
num_workers=cfg.num_workers, pin_memory=True, worker_init_fn=worker_init_fn)
# PyTorch test loader for image
test_loader_image = DataLoader(dataset=data_test_image, batch_size=cfg.batch_size, shuffle=False,
num_workers=cfg.num_workers, pin_memory=True, worker_init_fn=worker_init_fn)
# Model parameters
params_model = dict()
# Dimensions
params_model['dim_out'] = cfg.dim_out
params_model['sem_dim'] = sem_dim
params_model['feature_size'] = cfg.feature_size
# Number of classes
params_model['num_clss'] = len(dict_clss)
# Weight (on losses) parameters
params_model['lambda_rec'] = cfg.lambda_rec
params_model['lambda_gen_adv'] = cfg.lambda_gen_adv
params_model['lambda_ret_cls'] = cfg.lambda_ret_cls
params_model['lambda_domain_cls'] = cfg.lambda_domain_cls
params_model['lambda_disc_se'] = cfg.lambda_disc_se
params_model['lambda_mm_euc'] = cfg.lambda_mm_euc
params_model['drop'] = cfg.drop
# Optimizers' parameters
params_model['lr'] = cfg.lr
params_model['momentum'] = cfg.momentum
params_model['milestones'] = cfg.milestones
params_model['gamma'] = cfg.gamma
# Files with semantic labels
params_model['files_semantic_labels'] = files_semantic_labels
params_model['files_semantic_dims'] = files_semantic_dims
# Class dictionary
params_model['dict_clss'] = dict_clss
params_model['device'] = torch.device(f'cuda:{cfg.gpu_id}')
params_model['path_feature_pretrained'] = path_feature_pretrained
# Model
net = Baseline(params_model)
# Logger
print('Setting logger...', end='')
logger = Logger(path_log, force=True)
print('Done')
# Check cuda
print('Checking cuda...', end='')
# Check if CUDA is enabled
if cfg.ngpu > 0 & torch.cuda.is_available():
print('*Cuda exists*...', end='')
net = net.to(torch.device(f'cuda:{cfg.gpu_id}'))
print('Done')
best_map = 0
early_stop_counter = 0
# Epoch for loop
if not cfg.test:
print('***Train***')
print('***First: Train model***')
for epoch in range(cfg.epochs):
net.scheduler_gen.step()
net.scheduler_disc.step()
# train on training set
losses = train(train_loader, net, epoch, cfg)
# evaluate on validation set, map_ since map is already there
print('***Validation***')
valid_data = validate(valid_loader_sketch, valid_loader_image, net, epoch, False, cfg)
# H mean
map_ = 2.0 * (np.mean(valid_data['aps@all'])
* np.mean(valid_data['aps@all_bin'])) / (np.mean(valid_data['aps@all'])
+ np.mean(valid_data['aps@all_bin']))
print('mAP@all on validation set after {0} epochs: {1:.4f} (real), {2:.4f} (binary)'
.format(epoch + 1, map_, np.mean(valid_data['aps@all_bin'])))
del valid_data
if map_ > best_map:
best_map = map_
early_stop_counter = 0
misc.save_checkpoint({'exp_seed': cfg.seed, 'epoch': epoch + 1, 'state_dict': net.state_dict(), 'best_map':
best_map}, directory=path_checkpoint)
else:
if cfg.early_stop == early_stop_counter:
break
early_stop_counter += 1
# Logger step
logger.add_scalar('generator classification loss', losses['ret_cls'].avg)
logger.add_scalar('generator loss', losses['gen'].avg)
logger.add_scalar('discriminator loss', losses['disc'].avg)
logger.add_scalar('mean average precision', map_)
logger.step()
# load the best model yet
best_model_file = os.path.join(path_checkpoint, 'model_best.pth')
if os.path.isfile(best_model_file):
print("Loading best model from '{}'".format(best_model_file))
checkpoint = torch.load(best_model_file)
epoch = checkpoint['epoch']
best_map = checkpoint['best_map']
exp_seed = checkpoint['exp_seed']
model_dict_pretrained = checkpoint['state_dict']
model_dict_org = net.state_dict()
model_dict_pretrained = {k: v for k, v in model_dict_pretrained.items() if k in model_dict_org}
model_dict_org.update(model_dict_pretrained)
# net.load_state_dict(model_dict_pretrained)
print("Loaded best model '{0}' (epoch {1}; mAP@all {2:.4f}) with seed {3}".format(best_model_file, epoch, best_map, exp_seed))
print('***Test***')
valid_data = validate(test_loader_sketch, test_loader_image, net, epoch,False, cfg)
if not os.path.exists(f'result/ijcai_1.baseline_c2f_{cfg.dataset}.txt'):
fr = open(f'result/ijcai_1.baseline_c2f_{cfg.dataset}.txt', 'w+')
else:
fr = open(f'result/ijcai_1.baseline_c2f_{cfg.dataset}.txt', 'a+')
print('lambda_ret_cls={10}, lambda_domain_cls={11} lambda_gen_adv={12}, lambda_disc_se={13}, drop={14}, lambda_rec = {15} '
'Results on test set: mAP@all = {1:.4f}, Prec@100 = {0:.4f}, mAP@200 = {3:.4f}, Prec@200 = {2:.4f}, '
'Time = {4:.6f} || mAP@all (binary) = {6:.4f}, Prec@100 (binary) = {5:.4f}, mAP@200 (binary) = {8:.4f}, '
'Prec@200 (binary) = {7:.4f}, Time (binary) = {9:.6f} \n\n'
.format(valid_data['prec@100'], np.mean(valid_data['aps@all']), valid_data['prec@200'],
np.mean(valid_data['aps@200']), valid_data['time_euc'], valid_data['prec@100_bin'],
np.mean(valid_data['aps@200']), valid_data['time_euc'], valid_data['prec@100_bin'],
np.mean(valid_data['aps@all_bin']), valid_data['prec@200_bin'], np.mean(valid_data['aps@200_bin'])
, valid_data['time_bin'], cfg.lambda_ret_cls, cfg.lambda_domain_cls, cfg.lambda_gen_adv, cfg.lambda_disc_se, cfg.drop, cfg.lambda_rec), file=fr)
fr.close()
print('Saving qualitative results...', end='')
path_qualitative_results = os.path.join(path_result, 'qualitative_results')
misc.save_qualitative_results(f'{cfg.dataset_root}/{cfg.dataset}', sketch_dir, sketch_sd, photo_dir, photo_sd,
splits['te_fls_sk'], splits['te_fls_im'], path_qualitative_results, valid_data['aps@all'],
valid_data['sim_euc'], valid_data['str_sim'], save_image=cfg.save_image_results,
nq=cfg.number_qualit_results, best=cfg.save_best_results)
print('Done')
else:
print("No best model found at '{}'. Exiting...".format(best_model_file))
exit()
def train(train_loader, net, epoch, cfg):
# Switch to train mode
net.train()
batch_time = AverageMeter()
losses_gen = AverageMeter()
losses_disc = AverageMeter()
losses_adv = AverageMeter()
losses_ret_cls = AverageMeter()
losses_rec = AverageMeter()
losses_domain_cls = AverageMeter()
# Start counting time
time_start = time.time()
for i, (sk, im, cl) in enumerate(train_loader):
# Transfer sk and im to cuda
if torch.cuda.is_available():
sk, im = sk.to(torch.device(f'cuda:{cfg.gpu_id}')), im.to(torch.device(f'cuda:{cfg.gpu_id}'))
# Optimize parameters
loss = net.optimize_params(sk, im, cl)
# Store losses for visualization
losses_gen.update(loss['gen'].item(), sk.size(0))
losses_disc.update(loss['disc'].item(), sk.size(0))
losses_adv.update(loss['gen_adv'].item(), sk.size(0))
losses_ret_cls.update(loss['ret_cls'].item(), sk.size(0))
losses_rec.update(loss['rec'].item(), sk.size(0))
losses_domain_cls.update(loss['domain_cls'].item(), sk.size(0))
# time
time_end = time.time()
batch_time.update(time_end - time_start)
time_start = time_end
if (i + 1) % cfg.log_interval == 0:
print('[Train] Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Gen. Loss {loss_gen.val:.4f} ({loss_gen.avg:.4f})\t'
'Disc. Loss {loss_disc.val:.4f} ({loss_disc.avg:.4f})\t'
'Adv. Loss {loss_adv.val:.4f} ({loss_adv.avg:.4f})\t'
'Ret. Cls Loss {loss_ret_cls.val:.4f} ({loss_ret_cls.avg:.4f})\t'
'Dom. Cls Loss {loss_domain_cls.val:.4f} ({loss_domain_cls.avg:.4f})\t'
'Rec. Loss {loss_rec.val:.4f} ({loss_rec.avg:.4f})\t'
.format(epoch + 1, i + 1, len(train_loader), batch_time=batch_time, loss_gen=losses_gen,
loss_disc=losses_disc, loss_adv=losses_adv, loss_ret_cls = losses_ret_cls , loss_domain_cls = losses_domain_cls, loss_rec = losses_rec))
losses = {'gen': losses_gen, 'disc': losses_disc, 'gen_adv': losses_adv, 'ret_cls': losses_ret_cls, 'domain_cls': losses_domain_cls, 'rec': losses_rec}
return losses
if __name__ == '__main__':
main()