-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpicture_folder_env_actor_critic.py
143 lines (118 loc) · 4.45 KB
/
picture_folder_env_actor_critic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import sys
import argparse
import gym
import numpy as np
from itertools import count
from collections import namedtuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical
from custom_picture_folder_env import CustomPictureFolderEnv
parser = argparse.ArgumentParser(description='PyTorch actor-critic example')
parser.add_argument('--gamma', type=float, default=0.99, metavar='G',
help='discount factor (default: 0.99)')
parser.add_argument('--seed', type=int, default=543, metavar='N',
help='random seed (default: 543)')
parser.add_argument('--render', action='store_true',
help='render the environment')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='interval between training status logs (default: 10)')
parser.add_argument('--clip', type=float, default=0.25,
help='gradient clipping')
args = parser.parse_args()
# env = gym.make('CartPole-v0')
env = CustomPictureFolderEnv(picture_folder_path='pictures/*')
# env.seed(args.seed)
torch.manual_seed(args.seed)
SavedAction = namedtuple('SavedAction', ['log_prob', 'value'])
class Policy(nn.Module):
def __init__(self):
super(Policy, self).__init__()
self.affine1 = nn.Linear(14400, 128)
self.action_head = nn.Linear(128, 2)
self.value_head = nn.Linear(128, 1)
self.saved_actions = []
self.rewards = []
def forward(self, x):
x = F.relu(self.affine1(x))
action_scores = self.action_head(x)
state_values = self.value_head(x)
return F.softmax(action_scores, dim=-1), state_values
def init_weights(m):
if type(m) == nn.Linear:
torch.nn.init.xavier_uniform(m.weight)
# m.bias.data.fill_(0.01)
m.bias.data.fill_(0.0)
model = Policy()
model.apply(init_weights)
# optimizer = optim.Adam(model.parameters(), lr=3e-2)
optimizer = optim.Adam(model.parameters(), lr=3e-1)
eps = np.finfo(np.float32).eps.item()
def select_action(state, flatten=True):
if flatten:
state = state.flatten()
state = state / 255.0
state = torch.from_numpy(state).float() # .view(1, -1)
probs, state_value = model(state)
print(state.shape, probs + eps)
m = Categorical(probs + eps)
try:
action = m.sample()
except Exception as e:
print(e)
import pdb;pdb.set_trace()
sys.exit()
model.saved_actions.append(SavedAction(m.log_prob(action), state_value))
return action.item()
def finish_episode():
R = 0
if len(model.rewards) < 2:
del model.rewards[:]
del model.saved_actions[:]
return
saved_actions = model.saved_actions
policy_losses = []
value_losses = []
rewards = []
for r in model.rewards[::-1]:
R = r + args.gamma * R
rewards.insert(0, R)
rewards = torch.tensor(rewards)
rewards = (rewards - rewards.mean()) / (rewards.std() + eps)
for (log_prob, value), r in zip(saved_actions, rewards):
reward = r - value.item()
policy_losses.append(-log_prob * reward + eps)
value_losses.append(F.smooth_l1_loss(value, torch.tensor([r])) + eps)
optimizer.zero_grad()
loss = torch.stack(policy_losses).sum() + torch.stack(value_losses).sum() + eps
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
del model.rewards[:]
del model.saved_actions[:]
def main():
running_reward = 10
for i_episode in count(4):
state = env.reset(random_start=True)
for t in range(10000): # Don't infinite loop while learning
action = select_action(state)
# print('Action: {}'.format(action))
state, reward, done, _ = env.step(action)
if args.render:
env.render()
model.rewards.append(reward)
if done:
break
running_reward = running_reward * 0.99 + t * 0.01
finish_episode()
if i_episode % args.log_interval == 0:
print('Episode {}\tLast length: {:5d}\tAverage length: {:.2f}'.format(
i_episode, t, running_reward))
# if running_reward > env.spec.reward_threshold:
# print("Solved! Running reward is now {} and "
# "the last episode runs to {} time steps!".format(running_reward, t))
# break
if __name__ == '__main__':
main()