-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathkd_search.m
85 lines (78 loc) · 4.11 KB
/
kd_search.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
function [nearest,nearestIndex] = kd_search(rootIndex,Tree,target, k)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 胡力
% 2018/8/6
% kd树的最邻近搜索
% rootIndex:数据点集建立的kd树的根节点下标(在树cell中的位置)
% target:目标点坐标
% Tree:kd树,cell类型
% nearst:点集中距离目标点最近的点下标
% nearst:点集中距离目标点最近的点坐标
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
currentNode = rootIndex; %当前节点下标,从根节点开始搜索
currentNode = search_down(Tree,currentNode,target);% 从currentNode向下搜索到底部
Tree{currentNode}.visited = 1;
currentNearest = Tree{currentNode}.val; % 当前最近点
currentNearestDist = norm(currentNearest-target); % 当前最近距离
currentNearestIndex = currentNode;
kNearestCandidate = [currentNearestDist, currentNearest', currentNearestIndex];
while Tree{currentNode}.isRoot == 0
isLeft = Tree{currentNode}.isLeft; %当前节点是左孩子标志
currentNode = Tree{Tree{currentNode}.parent}.index;
if Tree{currentNode}.visited == 0
Tree{currentNode}.visited = 1;%标记为已访问
temp = norm(Tree{currentNode}.val-target);
if temp<kNearestCandidate(end,1) || size(kNearestCandidate, 1)<k
currentNearest = Tree{currentNode}.val;
currentNearestDist = temp;
currentNearestIndex = currentNode;
% 加入,排序,末位&长尾淘汰
kNearestCandidate = [kNearestCandidate; currentNearestDist, currentNearest', currentNearestIndex];
kNearestCandidate = sortrows(kNearestCandidate);
if size(kNearestCandidate)>=k
kNearestCandidate(k+1:end,:) = [];
end
end
temp = abs(Tree{currentNode}.val(Tree{currentNode}.r)-target(Tree{currentNode}.r)); %与当前分割线的距离
if temp<kNearestCandidate(end,1) || size(kNearestCandidate, 1)<k
%当前分割线距离小于当前最小距离,在分割线另一边可能有更近点,跳到另外一边继续搜索
if isLeft == 1
if Tree{currentNode}.hasRight == 1 %当前节点的左孩子,且当前节点有右孩子,则搜索右孩子
currentNode = Tree{Tree{currentNode}.right}.index;
currentNode = search_down(Tree,currentNode,target);
Tree{currentNode}.visited = 1;%标记为已访问
temp = norm(target - Tree{currentNode}.val);
if temp<kNearestCandidate(end,1) || size(kNearestCandidate, 1)<k
currentNearest = Tree{currentNode}.val;
currentNearestDist = temp;
currentNearestIndex = currentNode;
kNearestCandidate = [kNearestCandidate; currentNearestDist, currentNearest', currentNearestIndex];
kNearestCandidate = sortrows(kNearestCandidate);
if size(kNearestCandidate)>=k
kNearestCandidate(k+1:end,:) = [];
end
end
end
else
if Tree{currentNode}.hasLeft == 1 %当前节点是右孩子,且父亲节点有左孩子,则搜索父亲节点的左孩子
currentNode = Tree{Tree{currentNode}.left}.index;
currentNode = search_down(Tree,currentNode,target);
Tree{currentNode}.visited = 1;%标记为已访问
temp = norm(target - Tree{currentNode}.val);
if temp<kNearestCandidate(end,1) || size(kNearestCandidate, 1)<k
currentNearest = Tree{currentNode}.val;
currentNearestDist = temp;
currentNearestIndex = currentNode;
kNearestCandidate = [kNearestCandidate; currentNearestDist, currentNearest', currentNearestIndex];
kNearestCandidate = sortrows(kNearestCandidate);
if size(kNearestCandidate)>=k
kNearestCandidate(k+1:end,:) = [];
end
end
end
end
end
end
end
nearest = kNearestCandidate(:,2:end-1);
nearestIndex = kNearestCandidate(:,end);