-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathtrain.py
405 lines (311 loc) · 17.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# *****************************************************************************
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
import os
import time
import argparse
import numpy as np
from common.utils import cosine_decay
from contextlib import contextmanager
from datetime import datetime
from plot import plot_alignment
import torch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.distributed as dist
from apex import amp
from apex.parallel import DistributedDataParallel as DDP
from tacotron2.loader import parse_tacotron2_args
from tacotron2.loader import get_tacotron2_model
from tacotron2.loss_function import Tacotron2Loss
from tacotron2.data_function import TextMelCollate
from tacotron2.data_function import TextMelDataset
from tacotron2.data_function import batch_to_gpu
from dllogger.logger import LOGGER
import dllogger.logger as dllg
from dllogger import tags
from dllogger.autologging import log_hardware, log_args
from scipy.io.wavfile import write as write_wav
def parse_training_args(parser):
"""
Parse commandline arguments.
"""
parser.add_argument('-o', '--output_dir', type=str, default='logs', required=True, help='Directory to save checkpoints')
parser.add_argument('-d', '--dataset-path', type=str, default='filelists', help='Path to dataset')
parser.add_argument('--log-file', type=str, default='nvlog.json', help='Filename for logging')
parser.add_argument('--latest-checkpoint-file', type=str, default='checkpoint_latest.pt', help='Store the latest checkpoint in each epoch')
parser.add_argument('--phrase-path', type=str, default=None, help='Path to phrase sequence file used for sample generation')
parser.add_argument('--tacotron2-checkpoint', type=str, default=None, help='Path to pre-trained Tacotron2 checkpoint for sample generation')
# training
training = parser.add_argument_group('training setup')
training.add_argument('--epochs', type=int, default=500, help='Number of total epochs to run')
training.add_argument('--epochs-per-alignment', type=int, default=1, help='Number of epochs per alignment')
training.add_argument('--epochs-per-checkpoint', type=int, default=50, help='Number of epochs per checkpoint')
training.add_argument('--seed', type=int, default=1234, help='Seed for PyTorch random number generators')
training.add_argument('--dynamic-loss-scaling', type=bool, default=True, help='Enable dynamic loss scaling')
training.add_argument('--amp-run', action='store_true', help='Enable AMP')
training.add_argument('--cudnn-enabled', default=True, help='Enable cudnn')
training.add_argument('--cudnn-benchmark', default=True, help='Run cudnn benchmark')
training.add_argument('--disable-uniform-initialize-bn-weight', action='store_true', help='disable uniform initialization of batchnorm layer weight')
optimization = parser.add_argument_group('optimization setup')
optimization.add_argument('--use-saved-learning-rate', default=False, type=bool)
optimization.add_argument('--init-lr', '--initial-learning-rate', default=1e-3, type=float, help='Initial learing rate')
optimization.add_argument('--final-lr', '--final-learning-rate', default=1e-5, type=float, help='Final earing rate')
optimization.add_argument('--weight-decay', default=1e-6, type=float, help='Weight decay')
optimization.add_argument('--grad-clip-thresh', default=1.0, type=float, help='Clip threshold for gradients')
optimization.add_argument('-bs', '--batch-size', default=32, type=int, help='Batch size per GPU')
# dataset parameters
dataset = parser.add_argument_group('dataset parameters')
dataset.add_argument('--load-mel-from-disk', action='store_true', help='Loads mel spectrograms from disk instead of computing them on the fly')
dataset.add_argument('--training-anchor-dirs', default=['ljs_mel_text_train_filelist.txt'], type=str, nargs='*', help='Path to training filelist')
dataset.add_argument('--validation-anchor-dirs', default=['ljs_mel_text_val_filelist.txt'], type=str, nargs='*', help='Path to validation filelist')
dataset.add_argument('--text-cleaners', nargs='*', default=['basic_cleaners'], type=str, help='Type of text cleaners for input text')
# audio parameters
audio = parser.add_argument_group('audio parameters')
audio.add_argument('--max-wav-value', default=32768.0, type=float, help='Maximum audiowave value')
audio.add_argument('--sampling-rate', default=22050, type=int, help='Sampling rate')
audio.add_argument('--filter-length', default=1024, type=int, help='Filter length')
audio.add_argument('--hop-length', default=256, type=int, help='Hop (stride) length')
audio.add_argument('--win-length', default=1024, type=int, help='Window length')
audio.add_argument('--mel-fmin', default=50.0, type=float, help='Minimum mel frequency')
audio.add_argument('--mel-fmax', default=7600.0, type=float, help='Maximum mel frequency')
distributed = parser.add_argument_group('distributed setup')
distributed.add_argument('--distributed-run', default=False, type=bool, help='enable distributed run')
distributed.add_argument('--rank', default=0, type=int, help='Rank of the process, do not set! Done by multiproc module')
distributed.add_argument('--world-size', default=1, type=int, help='Number of processes, do not set! Done by multiproc module')
distributed.add_argument('--dist-url', type=str, default='tcp://localhost:23456', help='Url used to set up distributed training')
distributed.add_argument('--group-name', type=str, default='group_name', help='Distributed group name')
distributed.add_argument('--dist-backend', default='nccl', type=str, choices={'nccl'}, help='Distributed run backend')
return parser
def reduce_tensor(tensor, num_gpus):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.reduce_op.SUM)
rt /= num_gpus
return rt
def init_distributed(args, world_size, rank, group_name):
assert torch.cuda.is_available(), "Distributed mode requires CUDA."
print("Initializing Distributed")
# Set cuda device so everything is done on the right GPU.
torch.cuda.set_device(rank % torch.cuda.device_count())
# Initialize distributed communication
dist.init_process_group(
backend=args.dist_backend, init_method=args.dist_url,
world_size=world_size, rank=rank, group_name=group_name)
print("Done initializing distributed")
def save_eval(model, filepath, args):
if args.phrase_path:
phrase = torch.load(args.phrase_path, map_location='cpu')
with torch.no_grad():
model.eval()
mel = model.infer(phrase.cuda())[0].cpu()
model.train()
# audio = audio[0].numpy()
# audio = audio.astype('int16')
# write_wav(filepath, sampling_rate, audio)
# adapted from: https://discuss.pytorch.org/t/opinion-eval-should-be-a-context-manager/18998/3
# Following snippet is licensed under MIT license
@contextmanager
def evaluating(model):
'''Temporarily switch to evaluation mode.'''
try:
model.eval()
yield model
finally:
if model.training:
model.train()
def validate(model, criterion, valate_dataset, iteration, collate_fn, distributed_run, args):
"""Handles all the validation scoring and printing"""
with evaluating(model), torch.no_grad():
val_loader = DataLoader(valate_dataset, num_workers=1, shuffle=False,
batch_size=args.batch_size//len(args.validation_anchor_dirs),
pin_memory=False, collate_fn=collate_fn)
val_loss = 0.0
for i, batch in enumerate(val_loader):
x, y, num_frames = batch_to_gpu(batch)
y_pred = model(x)
loss = criterion(y_pred, y)
if distributed_run:
reduced_val_loss = reduce_tensor(loss.data, args.world_size).item()
else:
reduced_val_loss = loss.item()
val_loss += reduced_val_loss
val_loss = val_loss / (i + 1)
LOGGER.log(key="val_iter_loss", value=reduced_val_loss)
def adjust_learning_rate(optimizer, epoch, args):
lr = cosine_decay(args.init_lr, args.final_lr, epoch, args.epochs)
if optimizer.param_groups[0]['lr'] != lr:
LOGGER.log_event("learning_rate changed",
value=str(optimizer.param_groups[0]['lr']) + " -> " + str(lr))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def main():
parser = argparse.ArgumentParser(description='PyTorch Tacotron 2 Training')
parser = parse_training_args(parser)
args, _ = parser.parse_known_args()
LOGGER.set_model_name("Tacotron2_PyT")
LOGGER.set_backends([
dllg.StdOutBackend(log_file=None, logging_scope=dllg.TRAIN_ITER_SCOPE, iteration_interval=1),
dllg.JsonBackend(log_file=os.path.join(args.output_dir, args.log_file) if args.rank == 0 else None,
logging_scope=dllg.TRAIN_ITER_SCOPE, iteration_interval=1)
])
LOGGER.timed_block_start("run")
LOGGER.register_metric(tags.TRAIN_ITERATION_LOSS, metric_scope=dllg.TRAIN_ITER_SCOPE)
LOGGER.register_metric("iter_time", metric_scope=dllg.TRAIN_ITER_SCOPE)
LOGGER.register_metric("epoch_time", metric_scope=dllg.EPOCH_SCOPE)
LOGGER.register_metric("run_time", metric_scope=dllg.RUN_SCOPE)
LOGGER.register_metric("val_iter_loss", metric_scope=dllg.EPOCH_SCOPE)
LOGGER.register_metric("train_epoch_frames/sec", metric_scope=dllg.EPOCH_SCOPE)
LOGGER.register_metric("train_epoch_avg_frames/sec", metric_scope=dllg.EPOCH_SCOPE)
LOGGER.register_metric("train_epoch_avg_loss", metric_scope=dllg.EPOCH_SCOPE)
log_hardware()
parser = parse_tacotron2_args(parser)
args = parser.parse_args()
log_args(args)
torch.backends.cudnn.enabled = args.cudnn_enabled
torch.backends.cudnn.benchmark = args.cudnn_benchmark
distributed_run = args.world_size > 1
if distributed_run:
init_distributed(args, args.world_size, args.rank, args.group_name)
os.makedirs(args.output_dir, exist_ok=True)
LOGGER.log(key=tags.RUN_START)
run_start_time = time.time()
model = get_tacotron2_model(args, len(args.training_anchor_dirs), is_training=True)
if not args.amp_run and distributed_run:
model = DDP(model)
model.restore_checkpoint(os.path.join(args.output_dir, args.latest_checkpoint_file))
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, weight_decay=args.weight_decay)
writer = SummaryWriter(args.output_dir)
if args.amp_run:
model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
if distributed_run:
model = DDP(model)
criterion = Tacotron2Loss()
collate_fn = TextMelCollate(args)
train_dataset = TextMelDataset(args, args.training_anchor_dirs)
train_loader = DataLoader(train_dataset, num_workers=2, shuffle=False,
batch_size=args.batch_size//len(args.training_anchor_dirs),
pin_memory=False, drop_last=True, collate_fn=collate_fn)
# valate_dataset = TextMelDataset(args, args.validation_anchor_dirs)
model.train()
elapsed_epochs = model.get_elapsed_epochs()
epochs = args.epochs - elapsed_epochs
iteration = elapsed_epochs * len(train_loader)
LOGGER.log(key=tags.TRAIN_LOOP)
for epoch in range(1, epochs + 1):
LOGGER.epoch_start()
epoch_start_time = time.time()
epoch += elapsed_epochs
LOGGER.log(key=tags.TRAIN_EPOCH_START, value=epoch)
# used to calculate avg frames/sec over epoch
reduced_num_frames_epoch = 0
# used to calculate avg loss over epoch
train_epoch_avg_loss = 0.0
train_epoch_avg_frames_per_sec = 0.0
num_iters = 0
adjust_learning_rate(optimizer, epoch, args)
for i, batch in enumerate(train_loader):
print(f"Batch: {i}/{len(train_loader)} epoch {epoch}")
LOGGER.iteration_start()
iter_start_time = time.time()
LOGGER.log(key=tags.TRAIN_ITER_START, value=i)
# start = time.perf_counter()
optimizer.zero_grad()
x, y, num_frames = batch_to_gpu(batch)
outputs = model(x)
y_pred = [output.cpu() for output in outputs]
loss = criterion(y_pred, y)
if distributed_run:
reduced_loss = reduce_tensor(loss.data, args.world_size).item()
reduced_num_frames = reduce_tensor(num_frames.data, 1).item()
else:
reduced_loss = loss.item()
reduced_num_frames = num_frames.item()
if np.isnan(reduced_loss):
raise Exception("loss is NaN")
LOGGER.log(key=tags.TRAIN_ITERATION_LOSS, value=reduced_loss)
train_epoch_avg_loss += reduced_loss
num_iters += 1
# accumulate number of frames processed in this epoch
reduced_num_frames_epoch += reduced_num_frames
if args.amp_run:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.grad_clip_thresh)
else:
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip_thresh)
optimizer.step()
iteration += 1
writer.add_scalar('Training/Loss', reduced_loss, iteration)
LOGGER.log(key=tags.TRAIN_ITER_STOP, value=i)
iter_stop_time = time.time()
iter_time = iter_stop_time - iter_start_time
frames_per_sec = reduced_num_frames/iter_time
train_epoch_avg_frames_per_sec += frames_per_sec
LOGGER.log(key="train_iter_frames/sec", value=frames_per_sec)
LOGGER.log(key="iter_time", value=iter_time)
LOGGER.iteration_stop()
LOGGER.log(key=tags.TRAIN_EPOCH_STOP, value=epoch)
epoch_stop_time = time.time()
epoch_time = epoch_stop_time - epoch_start_time
LOGGER.log(key="train_epoch_frames/sec", value=(reduced_num_frames_epoch/epoch_time))
LOGGER.log(key="train_epoch_avg_frames/sec", value=(train_epoch_avg_frames_per_sec/num_iters if num_iters > 0 else 0.0))
LOGGER.log(key="train_epoch_avg_loss", value=(train_epoch_avg_loss/num_iters if num_iters > 0 else 0.0))
LOGGER.log(key="epoch_time", value=epoch_time)
LOGGER.log(key=tags.EVAL_START, value=epoch)
# validate(model, criterion, valate_dataset, iteration, collate_fn, distributed_run, args)
LOGGER.log(key=tags.EVAL_STOP, value=epoch)
# Store latest checkpoint in each epoch
model.elapse_epoch()
checkpoint_path = os.path.join(args.output_dir, args.latest_checkpoint_file)
model.save_checkpoint(checkpoint_path)
# Plot alignemnt
if epoch % args.epochs_per_alignment == 0 and args.rank == 0:
alignments = y_pred[3].data.numpy()
index = np.random.randint(len(alignments))
plot_alignment(alignments[index], # [enc_step, dec_step]
os.path.join(args.output_dir, f"align_{epoch:04d}_{iteration}.png"),
info=f"{datetime.now().strftime('%Y-%m-%d %H:%M')} Epoch={epoch:04d} Iteration={iteration} Average loss={train_epoch_avg_loss/num_iters:.5f}")
# Save checkpoint
if epoch % args.epochs_per_checkpoint == 0 and args.rank == 0:
checkpoint_path = os.path.join(args.output_dir, f"checkpoint_{epoch:04d}.pt")
print(f"Saving model and optimizer state at epoch {epoch:04d} to {checkpoint_path}")
model.save_checkpoint(checkpoint_path)
# Save evaluation
# save_sample(model, args.tacotron2_checkpoint, args.phrase_path,
# os.path.join(args.output_dir, f"sample_{epoch:04d}_{iteration}.wav"), args.sampling_rate)
LOGGER.epoch_stop()
run_stop_time = time.time()
run_time = run_stop_time - run_start_time
LOGGER.log(key="run_time", value=run_time)
LOGGER.log(key=tags.RUN_FINAL)
print("training time", run_stop_time - run_start_time)
writer.close()
LOGGER.timed_block_stop("run")
if args.rank == 0:
LOGGER.finish()
if __name__ == '__main__':
main()