forked from simulkade/PhreeqcMatlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Species.m
245 lines (199 loc) · 9.17 KB
/
Species.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
% Create PhreeqcRM
nxyz = 40;
nthreads = 3;
phreeqc_rm = PhreeqcRM(nxyz, nthreads);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% There's no need to run RM_Create() since it has been moved to the PhreeqcRM constructor.
% phreeqc_rm = phreeqc_rm.RM_Create();
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
status = phreeqc_rm.RM_SetErrorHandlerMode(1); % 1 = throw exception on error
status = phreeqc_rm.RM_SetSpeciesSaveOn(true);
% Open files
status = phreeqc_rm.RM_SetFilePrefix('Species');
phreeqc_rm.RM_OpenFiles();
% Set concentration units
status = phreeqc_rm.RM_SetUnitsSolution(2); % 1, mg/L; 2, mol/L; 3, kg/kgs
status = phreeqc_rm.RM_SetUnitsPPassemblage(1); % 0, mol/L cell; 1, mol/L water; 2 mol/kg rock
status = phreeqc_rm.RM_SetUnitsExchange(1); % 0, mol/L cell; 1, mol/L water; 2 mol/kg rock
status = phreeqc_rm.RM_SetUnitsSurface(1); % 0, mol/L cell; 1, mol/L water; 2 mol/kg rock
status = phreeqc_rm.RM_SetUnitsGasPhase(1); % 0, mol/L cell; 1, mol/L water; 2 mol/kg rock
status = phreeqc_rm.RM_SetUnitsSSassemblage(1); % 0, mol/L cell; 1, mol/L water; 2 mol/kg rock
status = phreeqc_rm.RM_SetUnitsKinetics(1); % 0, mol/L cell; 1, mol/L water; 2 mol/kg rock
% Set conversion from seconds to user units (days)
time_conversion = 1.0 / 86400;
status = phreeqc_rm.RM_SetTimeConversion(time_conversion);
% Set representative volume
rv = ones(1, nxyz);
status = phreeqc_rm.RM_SetRepresentativeVolume(rv);
% Set initial porosity
por = 0.2 * ones(1, nxyz);
status = phreeqc_rm.RM_SetPorosity(por);
% Set initial saturation
sat = ones(1, nxyz);
status = phreeqc_rm.RM_SetSaturation(sat);
% Set cells to print chemistry when print chemistry is turned on
print_chemistry_mask = zeros(1, nxyz);
print_chemistry_mask(1:nxyz/2) = 1;
status = phreeqc_rm.RM_SetPrintChemistryMask(print_chemistry_mask);
% Demonstration of mapping, two equivalent rows by symmetry
grid2chem = -1 * ones(1, nxyz);
grid2chem(1:nxyz/2) = 0:nxyz/2-1;
grid2chem(nxyz/2+1:end) = 0:nxyz/2-1;
status = phreeqc_rm.RM_CreateMapping(grid2chem);
nchem = phreeqc_rm.RM_GetChemistryCellCount();
% Set initial conditions
status = phreeqc_rm.RM_SetPrintChemistryOn(false, true, false); % workers, initial_phreeqc, utility
% Load database
status = phreeqc_rm.RM_LoadDatabase('../database/phreeqc.dat');
% Run file to define solutions and reactants for initial conditions, selected output
status = phreeqc_rm.RM_RunFile(true, true, true, 'advect.pqi');
% Clear contents of workers and utility
input = 'DELETE; -all';
status = phreeqc_rm.RM_RunString(true, false, true, input);
% Determine number of components to transport
ncomps = phreeqc_rm.RM_FindComponents();
% Print some of the reaction module information
fprintf('Number of threads: %d\n', phreeqc_rm.RM_GetThreadCount());
fprintf('Number of grid cells in the user''s model: %d\n', phreeqc_rm.RM_GetGridCellCount());
fprintf('Number of chemistry cells in the reaction module: %d\n', phreeqc_rm.RM_GetChemistryCellCount());
fprintf('Number of components for transport: %d\n', phreeqc_rm.RM_GetComponentCount());
components = phreeqc_rm.GetComponents();
gfw = phreeqc_rm.GetGfw();
for i = 1:ncomps
fprintf('%s %.4f\n', components{i}, gfw(i));
end
fprintf('\n');
% Determine species information
species = phreeqc_rm.GetSpeciesNames();
species_z = phreeqc_rm.GetSpeciesZ();
%species_d = phreeqc_rm.GetSpeciesD25(); % failed to retreive data
species_on = phreeqc_rm.RM_GetSpeciesSaveOn();
nspecies = phreeqc_rm.RM_GetSpeciesCount();
% Set array of initial conditions
ic1 = -1*ones(nxyz*7, 1);
ic2 = -1*ones(nxyz*7, 1);
f1 = ones(nxyz*7, 1);
for i = 1:nxyz
ic1(i) = 1; % Solution 1
ic1(nxyz + i) = -1; % Equilibrium phases none
ic1(2*nxyz + i) = 1; % Exchange 1
ic1(3*nxyz + i) = -1; % Surface none
ic1(4*nxyz + i) = -1; % Gas phase none
ic1(5*nxyz + i) = -1; % Solid solutions none
ic1(6*nxyz + i) = -1; % Kinetics none
end
status = phreeqc_rm.RM_InitialPhreeqc2Module(ic1,ic2,f1);
% Initial equilibration of cells
time = 0.0;
time_step = 0.0;
status = phreeqc_rm.RM_SetTime(time);
status = phreeqc_rm.RM_SetTimeStep(time_step);
status = phreeqc_rm.RM_RunCells();
c = phreeqc_rm.GetSpeciesConcentrations();
lg = phreeqc_rm.GetSpeciesLog10Gammas();
lm = phreeqc_rm.GetSpeciesLog10Molalities();
component_c = phreeqc_rm.GetConcentrations();
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Set boundary condition
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
nbound = 1;
nspecies = phreeqc_rm.RM_GetSpeciesCount();
bc1 = zeros(1, nbound);
bc2 = -ones(1, nbound);
bc_f1 = 1.0*ones(1, nbound);
bc_conc = 1.0*ones(1, nspecies*nbound);
[status,bc_conc] = phreeqc_rm.RM_InitialPhreeqc2SpeciesConcentrations(bc_conc, nbound, bc1, bc2, bc_f1);
% Transient loop
nsteps = 10;
initial_density = ones(1, nxyz);
temperature = 20.0 * ones(1, nxyz);
pressure = 2.0 * ones(1, nxyz);
phreeqc_rm.RM_SetDensity(initial_density);
phreeqc_rm.RM_SetTemperature(temperature);
phreeqc_rm.RM_SetPressure(pressure);
time_step = 86400.0;
status = phreeqc_rm.RM_SetTimeStep(time_step);
component_c = zeros(nxyz * ncomps, 1);
for isteps = 1:nsteps
% Transport calculation here
fprintf('Beginning transport calculation %.2f days\n', phreeqc_rm.RM_GetTime() * phreeqc_rm.RM_GetTimeConversion());
fprintf(' Time step %.2f days\n', phreeqc_rm.RM_GetTimeStep() * phreeqc_rm.RM_GetTimeConversion());
c = speciesAdvection(c, bc_conc, nspecies, nxyz, nbound);
% Set print flag
if isteps == nsteps
status = phreeqc_rm.RM_SetSelectedOutputOn(1); % enable selected output
status = phreeqc_rm.RM_SetPrintChemistryOn(1, 0, 0); % print at last time step, workers, initial_phreeqc, utility
else
status = phreeqc_rm.RM_SetSelectedOutputOn(0); % disable selected output
status = phreeqc_rm.RM_SetPrintChemistryOn(0, 0, 0); % workers, initial_phreeqc, utility
end
status = phreeqc_rm.RM_SetPorosity(por);
status = phreeqc_rm.RM_SetSaturation(sat);
status = phreeqc_rm.RM_SetTemperature(temperature);
status = phreeqc_rm.RM_SetPressure(pressure);
status = phreeqc_rm.RM_SpeciesConcentrations2Module(c);
status = phreeqc_rm.RM_SetTimeStep(time_step);
time = time + time_step;
status = phreeqc_rm.RM_SetTime(time);
% Run cells with transported conditions
fprintf('Beginning reaction calculation %.2f days\n', time * phreeqc_rm.RM_GetTimeConversion());
status = phreeqc_rm.RM_RunCells();
% Transfer data from PhreeqcRM for transport
c = phreeqc_rm.GetSpeciesConcentrations();
lg = phreeqc_rm.GetSpeciesLog10Gammas();
lm = phreeqc_rm.GetSpeciesLog10Molalities();
component_c = phreeqc_rm.GetConcentrations();
density = phreeqc_rm.GetDensity();
volume = phreeqc_rm.GetSolutionVolume();
% Print results at last time step
if isteps == nsteps
% Loop through possible multiple selected output definitions
for isel = 0:phreeqc_rm.RM_GetSelectedOutputCount()-1
n_user = phreeqc_rm.RM_GetNthSelectedOutputUserNumber(isel);
status = phreeqc_rm.RM_SetCurrentSelectedOutputUserNumber(n_user);
fprintf('Selected output sequence number: %d\n', isel);
fprintf('Selected output user number: %d\n', n_user);
% Get double array of selected output values
col = phreeqc_rm.RM_GetSelectedOutputColumnCount();
selected_out = zeros(nxyz, col);
[status, selected_out] = phreeqc_rm.RM_GetSelectedOutput(selected_out);
% Print results
for i = 1:1
fprintf('Cell number %d\n', i);
fprintf(' Density: %f\n', density(i));
fprintf(' Volume: %f\n', volume(i));
fprintf(' Components: \n');
for j = 1:ncomps
fprintf(' %2d %10s: %10.4f\n', j, components{j}, component_c(i, j));
end
fprintf(' Species: \n');
str = phreeqc_rm.GetSpeciesNames();
for j = 1:nspecies
fprintf(' %2d %10s: %10.2e %10.4f %10.2e\n', j, str{j}, c(i, j), lg(i, j), lm(i, j));
end
fprintf(' Selected output: \n');
heading = phreeqc_rm.GetSelectedOutputHeadings(n_user);
for j = 1:col
fprintf(' %2d %10s: %10.4f\n', j, heading{j}, selected_out(i, j));
end
end
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Additional features and finalize
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Clean up
status = phreeqc_rm.RM_CloseFiles();
status = phreeqc_rm.RM_Destroy();
function c = speciesAdvection(c, bc_conc, ncomps, nxyz, dim)
for i = nxyz/2:-1:2
for j = 1:ncomps
c(i, j) = c(i - 1, j); % component j
end
end
% Cell zero gets boundary condition
for j = 1:ncomps
c(1, j) = bc_conc(j* dim); % component j
end
end