|
| 1 | + |
| 2 | +/** |
| 3 | + * @namespace artificial_intelligence |
| 4 | + * @brief algoritma knn |
| 5 | + */ |
| 6 | +#include <algorithm> |
| 7 | +#include <cassert> |
| 8 | +#include <cmath> |
| 9 | +#include <cstddef> |
| 10 | +#include <iostream> |
| 11 | +#include <iterator> |
| 12 | +#include <numeric> |
| 13 | +#include <unordered_map> |
| 14 | +#include <utility> |
| 15 | +#include <vector> |
| 16 | +namespace artificial_intelligence { |
| 17 | +/** |
| 18 | + * @brief fungsi k nearest neighbour |
| 19 | + */ |
| 20 | +namespace k_nearest_neighbour { |
| 21 | +/** |
| 22 | + * @brief menghitung jarak euclidean antara dua vektor |
| 23 | + * @param T tipe data vektor |
| 24 | + * @param a vektor pertama |
| 25 | + * @param b vektor kedua |
| 26 | + * @return double nilai jarak euclidean antara kedua vektor |
| 27 | + */ |
| 28 | +template <typename T> |
| 29 | +double jarak_euclidean(const std::vector<T> &a, const std::vector<T> &b) { |
| 30 | + std::vector<double> hasil_antara; |
| 31 | + std::transform( |
| 32 | + a.begin(), a.end(), b.begin(), std::back_inserter(hasil_antara), |
| 33 | + [](T elemen1, T elemen2) { return std::pow((elemen1 - elemen2), 2); }); |
| 34 | + // kecilin ukuran dari vektor |
| 35 | + hasil_antara.shrink_to_fit(); |
| 36 | + return std::sqrt( |
| 37 | + std::accumulate(hasil_antara.begin(), hasil_antara.end(), 0.0)); |
| 38 | +} |
| 39 | + |
| 40 | +/** |
| 41 | + * @brief class dari knn menggunakan jarak euclidean sebagai metriks dari jarak |
| 42 | + */ |
| 43 | +class knn { |
| 44 | +private: |
| 45 | + // vektor attribut |
| 46 | + std::vector<std::vector<double>> X_; |
| 47 | + std::vector<int> Y_; |
| 48 | + |
| 49 | +public: |
| 50 | + /** |
| 51 | + * @brief buat jarak knn terdekat |
| 52 | + * @param X vektor attribut |
| 53 | + * @param Y vektor label |
| 54 | + */ |
| 55 | + explicit knn(std::vector<std::vector<double>> &X, std::vector<int> &Y) |
| 56 | + : X_(X), Y_(Y){}; |
| 57 | + // copy konstruktor |
| 58 | + knn(const knn &model) = default; |
| 59 | + // copy assignment |
| 60 | + knn &operator=(const knn &model) = default; |
| 61 | + // pindah konstruktor |
| 62 | + knn(knn &&) = default; |
| 63 | + // pindah juga assigmentnya |
| 64 | + knn &operator=(knn &&) = default; |
| 65 | + // lalu buat destruktor |
| 66 | + ~knn() = default; |
| 67 | + |
| 68 | + /** |
| 69 | + * @brief klasifikasikan sampel |
| 70 | + * @param sampel sample yang ingin diklasifikasikan |
| 71 | + * @param k jumlah neighbour yang mau dilihat |
| 72 | + * @return int label dari neighbour yang paling sering muncul |
| 73 | + */ |
| 74 | + int prediksi(std::vector<double> &sampel, int k) { |
| 75 | + std::vector<int> neighbour; |
| 76 | + std::vector<std::pair<double, int>> jarak; |
| 77 | + |
| 78 | + // hitung jarak euclidean antara sampel dan setiap data dalam |
| 79 | + // sebuah dataset |
| 80 | + for (std::size_t i = 0; i < this->X_.size(); ++i) { |
| 81 | + auto data_sekarang = this->X_.at(i); |
| 82 | + auto label = this->Y_.at(i); |
| 83 | + auto jarak_data = jarak_euclidean(data_sekarang, sampel); |
| 84 | + jarak.emplace_back(jarak_data, label); |
| 85 | + } |
| 86 | + |
| 87 | + // urutkan jarak berdasarkan kedekatan |
| 88 | + std::sort(jarak.begin(), jarak.end()); |
| 89 | + |
| 90 | + // ambil label dari knn |
| 91 | + for (int i = 0; i < k; i++) { |
| 92 | + auto label = jarak.at(i).second; |
| 93 | + neighbour.push_back(label); |
| 94 | + } |
| 95 | + |
| 96 | + // hitung frekuensi dari setiap label |
| 97 | + std::unordered_map<int, int> frekuensi; |
| 98 | + for (auto label : neighbour) { |
| 99 | + ++frekuensi[label]; |
| 100 | + } |
| 101 | + |
| 102 | + // temukan label dengan frekuensi tertinggi |
| 103 | + std::pair<int, int> prediksi; |
| 104 | + // label hasil prediksi |
| 105 | + prediksi.first = -1; |
| 106 | + // frekuensi tertinggi |
| 107 | + prediksi.second = -1; |
| 108 | + |
| 109 | + for (auto &pasangan : frekuensi) { |
| 110 | + if (pasangan.second > prediksi.second) { |
| 111 | + prediksi.second = pasangan.second; |
| 112 | + prediksi.first = pasangan.first; |
| 113 | + } |
| 114 | + } |
| 115 | + // return hasil prediksi |
| 116 | + return prediksi.first; |
| 117 | + } |
| 118 | +}; |
| 119 | +} // namespace k_nearest_neighbour |
| 120 | +} // namespace artificial_intelligence |
| 121 | + |
| 122 | +/** |
| 123 | + * @brief fungsi untuk testing knn |
| 124 | + */ |
| 125 | +static void uji() { |
| 126 | + std::cout << "testing knn" << std::endl; |
| 127 | + std::vector<std::vector<double>> X1 = {{0.0, 0.0}, {0.25, 0.25}, {0.0, 0.5}, |
| 128 | + {0.5, 0.5}, {1.0, 0.5}, {1.0, 1.0}}; |
| 129 | + std::vector<int> Y1 = {1, 1, 1, 1, 2, 2}; |
| 130 | + auto model1 = artificial_intelligence::k_nearest_neighbour::knn(X1, Y1); |
| 131 | + std::vector<double> sampel_pertama = {1.2, 1.2}; |
| 132 | + assert(model1.prediksi(sampel_pertama, 2) == 2); |
| 133 | + std::cout << "testing pass" << std::endl; |
| 134 | +} |
| 135 | + |
| 136 | +int main() { |
| 137 | + uji(); |
| 138 | + return 0; |
| 139 | +} |
0 commit comments