-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
162 lines (123 loc) · 4.2 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# -*- coding: utf-8 -*-
"""util.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1lnieii2o5KKsixekF6KAOJin3Aubldsp
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.style.use("ggplot")
import os
from bs4 import BeautifulSoup
import requests
import zipfile
import io
#import geopandas as gpd
#import shapely
import gensim
import re
import tqdm
import tensorflow as tf
import keras
import string
import re
import pickle
import os
from collections import defaultdict
from tqdm import tqdm
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.pipeline import make_pipeline
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
import nltk
from nltk.corpus import stopwords
nltk.download('stopwords')
stop_words = stopwords.words("english")
import tqdm
import pickle
from keras.applications.vgg16 import VGG16
#vggnet_model = VGG16()
pics_link_header = "https://lh5.googleusercontent.com/p/"
from keras.applications.vgg16 import preprocess_input
from keras.applications.vgg16 import decode_predictions
from PIL import Image
import requests
from io import BytesIO
from sklearn.preprocessing import LabelEncoder
import src.util as util
import src.data.etl as etl
import src.data.build_tfidf as build_tfidf
import src.data.build_word2vec as build_word2vec
import src.features.data_preparation_interaction as dpi
import src.models.model_interaction as mi
import findspark
import pyspark
import pyspark.sql.functions as F
import pyspark.sql.types as T
import pyspark.ml as M
from pyspark.sql.window import Window
from pyspark.sql import SparkSession
SPARK_SESSION_VERSION = 1
def spark_builder():
findspark.init()
if SPARK_SESSION_VERSION == 1:
spark = SparkSession.builder.getOrCreate()
elif SPARK_SESSION_VERSION == 2:
spark = SparkSession.builder \
.master('local[*]') \
.config("spark.driver.memory", "3g") \
.appName('food_rec') \
.getOrCreate()
return spark
def main_data(configs):
etl.main()
recipe_tfidf = build_tfidf.main(configs=configs, method="load")
recipe_word2vec = build_word2vec.main(configs=configs, method="load")
return recipe_tfidf, recipe_word2vec
def main(configs):
spark = None
recipe_tfidf, recipe_word2vec = main_data(configs)
if configs["Reviews_Dataset_Reader"]["using_spark"] == 1:
spark = spark_builder()
reviews_dataset_reader = util.Reviews_Dataset_Reader(path_folder, configs=configs, spark=spark)
reviews_df = reviews_dataset_reader.build_reviews_df()
stop_words = stopwords.words('english')
lexicon = [word for word in recipe_tfidf.vocab2idx if word not in stop_words]
word2vec_dataset_reader = util.Word2vec_Dataset_Reader(
recipe_word2vec,
lexicon,
configs=configs,
spark = spark
)
word2vec_df = word2vec_dataset_reader.build_word2vec_df()
if configs["Temp_Interaction_Data_Preparation_Builder"]["using_spark"] == 0:
temp_interaction_data_preparation_builder = dpi.Temp_Interaction_Data_Preparation_Builder(
recipe_tfidf,
word2vec_df,
configs=configs,
spark=spark
)
temp_interaction_model_builder = mi.Temp_Interaction_Model_Builder(
temp_interaction_data_preparation_builder
)
else:
temp_interaction_data_preparation_builder = dpi.Temp_Interaction_Data_Preparation_Builder_Pyspark(
recipe_tfidf,
word2vec_df,
configs=configs,
spark=spark
)
temp_interaction_model_builder = mi.Temp_Interaction_Model_Builder_Pyspark(
temp_interaction_data_preparation_builder
)
temp_interaction_model_builder.baseline()
if __name__ == "__main__":
with open("configs.json", "rb") as f:
configs = json.load(f)
main(configs)