-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathGiveMeDefaultEnrichmentParams.m
55 lines (40 loc) · 2.31 KB
/
GiveMeDefaultEnrichmentParams.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
function enrichmentParams = GiveMeDefaultEnrichmentParams()
% Store everything you need in this structure:
enrichmentParams = struct();
%-------------------------------------------------------------------------------
% Generic details about the enrichment:
% (sufficient for conventional enrichment)
%-------------------------------------------------------------------------------
enrichmentParams.dataSource = 'human-direct';
% What high-level GO categories to filter:
enrichmentParams.processFilter = 'biological_process';
% What range of GO category sizes to include:
enrichmentParams.sizeFilter = [10,200];
% How many samples to compute per GO category (to estimate the null distribution):
enrichmentParams.numNullSamples = 4e4;
% Display categories with corrected p-value below this threshold:
enrichmentParams.sigThresh = 0.05;
% How to aggregate scores within a GO category:
enrichmentParams.aggregateHow = 'mean'; % 'mean', 'absmean', 'median', 'absmedian'
% Higher or lower scores are 'better' (compute p-value from right or left tail):
enrichmentParams.whatTail = 'right'; % higher scores (e.g., from aggregateHow) are 'better'.
%-------------------------------------------------------------------------------
% Additional details specific to the ensemble-based enrichment:
% (on the basis of spatial correlations)
%-------------------------------------------------------------------------------
% What type of correlation to use
enrichmentParams.whatCorr = 'Spearman'; % 'Pearson', 'Spearman'
% What type of null:
enrichmentParams.whatEnsemble = 'randomMap'; % 'randomMap', 'customEnsemble'
% Specify a custom data file in the case of running 'customEnsemble' enrichment:
% (file containing the matrix of null phenotypes):
enrichmentParams.dataFileSurrogate = [];
% Map parameters on to an appropriate file name to save results to:
% (can include different mappings for different combinations of parameter variation)
enrichmentParams.fileNameOut = sprintf('PhenotypeNulls_%s_%u.mat',...
enrichmentParams.whatEnsemble,...
enrichmentParams.numNullSamples);
% Store all null computations in a consistent directory:
enrichmentParams.fileNameOut = fullfile('EnsembleEnrichment','NullEnsembles',...
enrichmentParams.fileNameOut);
end