-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhierachies.clj
767 lines (629 loc) · 20.1 KB
/
hierachies.clj
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
(ns hierachies
(:require
[tech.v3.datatype.functional :as f]
[tech.v3.datatype :as dtype]
[tech.v3.tensor :as dtt]
[tech.v3.datatype.bitmap :as bitmap]
[fastmath.random :as fm.rand]
[fastmath.core :as fm]
[bennischwerdtner.sdm.sdm :as sdm]
[bennischwerdtner.hd.binary-sparse-segmented :as hd]
[bennischwerdtner.pyutils :as pyutils]
[tech.v3.datatype.unary-pred :as unary-pred]
[tech.v3.datatype.argops :as dtype-argops]
[bennischwerdtner.hd.codebook-item-memory :as codebook]
[bennischwerdtner.hd.ui.audio :as audio]
[bennischwerdtner.hd.data :as hdd]))
(alter-var-root
#'hdd/*item-memory*
(constantly (codebook/codebook-item-memory 1000)))
;;
;; Sequence hierachies:
;; ---------------
;;
;; This is a place where there is not much empirical work afaik.
;;
;;
;;
;; Idea I:
;;
;; Make the first element 'stand for' the nested sequence
;;
;;
;; terminals:
;;
;; [ a b c d e f g ]
;; [ h j k l ... ]
;;
;;
;; higher order sequence:
;;
;;
;; [ a , h , ... ]
;; Questions:
;;
;; - how do you differentiate between pointers to a seq and the terminal?
;; -
;;
(def sdm (sdm/k-fold-sdm {:address-count (long 1e6)
:address-density 0.000006
:k-delays 5
:word-length (long 1e4)}))
(def alphabet (into [] (map keyword (map str (map char (range 97 123))))))
(partition-all 7 alphabet)
'((:a :b :c :d :e :f :g)
(:h :i :j :k :l :m :n)
(:o :p :q :r :s :t :u)
(:v :w :x :y :z))
(do
(sdm/reset sdm)
(for [subseq (partition-all 7 (map hdd/clj->vsa alphabet))]
(doseq [[addr content] (partition 2 1 subseq)]
(sdm/write sdm addr content 1))))
(do
(sdm/reset sdm)
(let [higher-order-seq
(map first
(partition-all 7 (map hdd/clj->vsa alphabet)))]
(doseq [[addr content] (partition 2 1 higher-order-seq)]
(sdm/write sdm addr content 1))))
(do
(sdm/reset sdm)
;; querying with top-k 2 results in both the
;; terminal and the higher order sequence
(let [a-kont (:result (sdm/lookup sdm (hdd/clj->vsa* :a) 2 1))]
(->>
(sdm/converged-lookup-impl
sdm
a-kont
{:decoder-threshold 1
:max-steps (count alphabet)
:stop? (fn [acc next-outcome]
(when (< (:confidence next-outcome) 0.05)
{:stop-reason :low-confidence :success? false}))
:top-k 1})
:result-xs
;; (map :result)
;; (map pyutils/ensure-jvm)
)))
(do
(sdm/reset sdm)
;; querying with top-k 2 results in both the
;; terminal and the higher order sequence
(let [a-kont (:result (sdm/lookup sdm (hdd/clj->vsa* :a) 2 1))]
(map hdd/cleanup*
(->>
(sdm/converged-lookup-impl
sdm
a-kont
{:decoder-threshold 1
:max-steps (count alphabet)
:stop? (fn [acc next-outcome]
(when (< (:confidence next-outcome) 0.5)
{:stop-reason :low-confidence :success? false}))
:top-k 1})
:result-xs
(map :result)
(map pyutils/ensure-jvm)))))
;; cool properties out of the box:
;; (note that it stopped after z when confidence was low)
;;
'(
;; superposition of terminal and higher order sequence
(:h :b)
(:c)
(:d)
(:e)
(:f)
(:g)
(:i)
(:j)
(:k)
(:l)
(:m)
(:n)
(:p)
(:q)
(:r)
(:s)
(:t)
(:u)
(:w)
(:x)
(:y)
(:z))
;;
;; let's say you *somehow* know that you can 'skip' `:b` ...
;; say we know that 'b' is a terminal, but we look for the higher order seq.
;;
(do
(sdm/reset sdm)
;; querying with top-k 2 results in both the
;; terminal and the higher order sequence
(let [a-kont (pyutils/ensure-jvm (:result (sdm/lookup sdm (hdd/clj->vsa* :a) 2 1)))
;; expressing the notion that you don't want to see `:b`
a-kont (hdd/difference a-kont (hdd/clj->vsa* :b))]
(map hdd/cleanup*
(->>
(sdm/converged-lookup-impl
sdm
a-kont
{:decoder-threshold 1
:max-steps (count alphabet)
:stop? (fn [acc next-outcome]
(when (< (:confidence next-outcome) 0.5)
{:stop-reason :low-confidence :success? false}))
:top-k 1})
:result-xs
(map :result)
(map pyutils/ensure-jvm)))))
'((:h) (:o) (:v))
;; ----------------------------------
;; Idea II:
;;
;; - like idea I, but permute the higher order sequence for each hierachy
;; - biologically: this might represent the hyper vector projected in a different
;; neuronal area.
;; - (but more complicated things with timings etc might go on).
;; - either way, perhaps the humble permute already gives us certain expressivity.
;;
;; - Downside: If you have multiple hierachical seqs, you need to know the exact level
;; (permute correctly)
;; - I see this might in effect become a factorization problem, which might be suited to solve
;; with a resonator-like net.
;;
(do
(def sdm
(sdm/k-fold-sdm {:address-count (long 1e6)
:address-density 0.000006
:k-delays 5
:word-length (long 1e4)}))
(def alphabet
(into []
(map keyword
(map str (map char (range 97 123))))))
(sdm/reset sdm)
;;
;; terminal seq:
;;
(doseq
[subseq
(partition-all 7 (map hdd/clj->vsa alphabet))]
(doseq [[addr content] (partition 2 1 subseq)]
(sdm/write sdm addr content 1)))
;;
;; higher order seq:
;;
(do
(sdm/reset sdm)
(let [higher-order-seq
(map first
(partition-all 7 (map hdd/clj->vsa alphabet)))]
;; permute 1
(doseq [[addr content]
(partition 2 1 (map hd/permute higher-order-seq))]
(sdm/write sdm addr content 1)))))
;; -------------
(do (sdm/reset sdm)
(let [a-kont (:result
(sdm/lookup sdm (hdd/clj->vsa* :a) 1 1))]
(map hdd/cleanup*
(->> (sdm/converged-lookup-impl
sdm
a-kont
{:decoder-threshold 1
:max-steps (count alphabet)
:stop? (fn [acc next-outcome]
(when (< (:confidence next-outcome)
0.5)
{:stop-reason :low-confidence
:success? false}))
:top-k 1})
:result-xs
(map :result)
(map pyutils/ensure-jvm)))))
;; can query for terminal(s):
'((:b)
(:c)
(:d)
(:e)
(:f)
(:g)
(:i)
(:j)
(:k)
(:l)
(:m)
(:n)
(:p)
(:q)
(:r)
(:s)
(:t)
(:u)
(:w)
(:x)
(:y)
(:z))
;; ------------
;; Now higher order seq usage:
(do (sdm/reset sdm)
(let [ ;; query with p(a)
a-kont
(:result
(sdm/lookup sdm (hdd/clj->vsa* [:> :a]) 1 1))]
(map hdd/cleanup*
;; to cleanup you need to permute-inverse
(map hd/permute-inverse
(->> (sdm/converged-lookup-impl
sdm
a-kont
{:decoder-threshold 1
:max-steps (count alphabet)
:stop? (fn [acc next-outcome]
(when (< (:confidence
next-outcome)
0.5)
{:stop-reason :low-confidence
:success? false}))
:top-k 1})
:result-xs
(map :result)
(map pyutils/ensure-jvm))))))
'((:h) (:o) (:v))
;; Say you are capabable of knowing:
;; - I want a higher order sequence that starts with `:a`
;; - I want to skip 2 terminal sequences and list the 3rd.
;;
;; (skip a and h, find the seq starting with o...)
;;
(do
(sdm/reset sdm)
(let [ ;; query with p(a)
a-kont
(:result
(sdm/lookup sdm (hdd/clj->vsa* [:> :a]) 1 1))
higher-seq (->> (sdm/converged-lookup-impl
sdm
a-kont
{:decoder-threshold 1
:max-steps (count alphabet)
:stop? (fn [acc next-outcome]
(when (< (:confidence
next-outcome)
0.5)
{:stop-reason
:low-confidence
:success? false}))
:top-k 1})
:result-xs
(map :result)
(map pyutils/ensure-jvm))
;; in order to query 'one down' at this point,
;; you permute inverse once.
;; (could happen automagically in brain areas?)
;; -----
;; being able to do such a 'wait' / 'skip' kinda thing might be implemented with
;; higher order processes giving a rhythm, if the query elements flow in time
;; (which is the idea of k-fold sdm to begin with)
;; -----
;; Such a thing would be fundamentally useful, it would allow to percieve a sequence,
;; and 'jump ahead' in leaps of ~7.
;;
terminal-query (hd/permute-inverse
(first (drop 1 higher-seq)))]
;; I needed to reset this, too.
;; but perhaps you actually have multiple per hierachical seq anyway?
;; (since permuting puts it into an unrelated domain anyway).
;; (then, you have an sdm for each permutation level and we are halfway to a resonator net)
;;
(sdm/reset sdm)
(map hdd/cleanup*
(->> (sdm/converged-lookup-impl
sdm
terminal-query
{:decoder-threshold 1
:max-steps (count alphabet)
:stop? (fn [acc next-outcome]
(when (< (:confidence next-outcome)
0.5)
{:stop-reason :low-confidence
:success? false}))
:top-k 1})
:result-xs
(map :result)
(map pyutils/ensure-jvm)))))
'((:o) (:p) (:q) (:r) (:s) (:t) (:u) (:w) (:x) (:y) (:z))
;; I get of course the whole terminal seq,
;; But in brain, everything presumably chunks to 7 elements (7 gamma per theta cycle)
;;
(do
(sdm/reset sdm)
(let [a-kont
(:result
(sdm/lookup sdm (hdd/clj->vsa* [:> :a]) 1 1))
higher-seq (->> (sdm/converged-lookup-impl
sdm
a-kont
{:decoder-threshold 1
:max-steps (count alphabet)
:stop? (fn [acc next-outcome]
(when (< (:confidence
next-outcome)
0.5)
{:stop-reason
:low-confidence
:success? false}))
:top-k 1})
:result-xs
(map :result)
(map pyutils/ensure-jvm))
terminal-query (hd/permute-inverse
(first (drop 1 higher-seq)))]
(sdm/reset sdm)
(map hdd/cleanup*
(->> (sdm/converged-lookup-impl
sdm
terminal-query
{:decoder-threshold 1
;; -------------------------------
:max-steps 7 ;; 👈
;; ------------------------------
:stop? (fn [acc next-outcome]
(when (< (:confidence next-outcome)
0.5)
{:stop-reason :low-confidence
:success? false}))
:top-k 1})
:result-xs
(map :result)
(map pyutils/ensure-jvm)))))
'((:o) (:p) (:q) (:r) (:s) (:t) (:u) (:w))
;; ------------
;;
;; side note:
;; -------------
;;
;;
;; (accidentally did top-k 2, then out comes q b)
;; is something not figured out in the current read version.
;; 'confidence' is high, even though the contribution from q is probably spurious.
;;
;; it would be fixed with a read-threshold
;;
(do (sdm/reset sdm)
(let [a-kont (:result
(sdm/lookup sdm (hdd/clj->vsa* :a) 2 1))]
(map hdd/cleanup*
(->> (sdm/converged-lookup-impl
sdm
a-kont
{:decoder-threshold 1
:max-steps (count alphabet)
:stop? (fn [acc next-outcome]
(when (< (:confidence next-outcome)
0.5)
{:stop-reason :low-confidence
:success? false}))
:top-k 1})
:result-xs
(map :result)
(map pyutils/ensure-jvm)))))
'((:q :b)
(:c)
(:d)
(:e)
(:f)
(:g)
(:i)
(:j)
(:k)
(:l)
(:m)
(:n)
(:p)
(:q)
(:r)
(:s)
(:t)
(:u)
(:w)
(:x)
(:y)
(:z))
;; ------------------------------------------
(defprotocol TrajectoryEngine
(seed [this])
(replay [this query]))
(defn ->trajectory-engine
[{:keys [trajectory-length k-delays]}]
(let [sdm (sdm/k-fold-sdm {:address-count (long 1e6)
:address-density 0.000006
:k-delays k-delays
:word-length (long 1e4)})]
(reify
TrajectoryEngine
(seed [this]
(let [trajectory (repeatedly trajectory-length hd/->seed)]
(sdm/reset sdm)
(doseq [[addr content]
(partition 2 1 trajectory)]
(sdm/write sdm addr content 1))
trajectory))
(replay [this q]
(sdm/reset sdm)
(->> (sdm/converged-lookup-impl
sdm
;; (reify sdm/SDM
;; (lookup [this addr n k]
;; (sdm/lookup
;; sdm-cleanup
;; (:result (sdm/lookup sdm addr
;; n k))
;; 1
;; 1)))
(hdd/clj->vsa* q)
{:decoder-threshold 1
:max-steps trajectory-length
:stop? (fn [acc next-outcome]
(when (< (:confidence
next-outcome)
0.05)
:low-confidence))
:top-k 1})
:result-xs
(map :result)
(map pyutils/ensure-jvm))))))
(for [k-delay [5 10 15]]
(let [trajector (->trajectory-engine {:k-delays k-delay
:trajectory-length
20})
x (seed trajector)]
(let [sims (map #(hd/similarity %1 %2)
(replay trajector (first x))
x)]
[(every? #(< 0.99 %) sims) (count sims)])))
'([true 20] [true 20] [true 20])
;; - that is with a single round of presentation.
;; Address count is ca 120, which is split on k-delay delay lines.
;;
;; - this is perhaps more similar to the 'scaffold' mem. of Papadimitriou 2023
;; - I see the analogy roughly between delay lines and preallocated scaffold trajectories.
;;
;;
;; ------------------------
;; This memory also has the capability to distinguish higher order sequences.
;;
;; as single order mem:
;; (when k-delay = 1), then first order memory.
(for [k-delay [1 5 10]]
(let [trajector (->trajectory-engine
{:k-delays 1
:trajectory-length 50})
x (seed trajector)]
(let [sims (map #(hd/similarity %1 %2)
(replay trajector (first x))
x)]
[(every? #(< 0.99 %) sims) (count sims)])))
'([true 50] [true 50] [true 50])
;; (k-delay doesn't matter in this context, because there is only 1 thing in memory)
;;
(for [k-delay [5]
sequence-count [1 10 20 50]]
(let [trajector (->trajectory-engine
{:k-delays 1 :trajectory-length 50})
_ (doseq [x (range sequence-count)]
(seed trajector))
x (seed trajector)]
(let [sims (map #(hd/similarity %1 %2)
(replay trajector (first x))
x)]
[(every? #(< 0.99 %) sims) (count sims)])))
'([true 50] [true 50] [true 50] [true 50])
;; I'm not showing it here rn, but it handles overlapping sequences well.
;;
;; ---------------------------------------------------
;; This is a kind of polychronous bind:
;; -------------------
(do
(def sdm (sdm/k-fold-sdm {:address-count (long 1e6)
:address-density 0.000006
:k-delays 2
:word-length (long 1e4)}))
(sdm/reset sdm)
(sdm/write sdm (hdd/clj->vsa* :a) (hdd/clj->vsa* :a) 1)
(sdm/write sdm (hdd/clj->vsa* :b) (hdd/clj->vsa* :b) 1)
(sdm/write sdm (hdd/clj->vsa* :c) (hdd/clj->vsa* :c) 1))
(do
(sdm/reset sdm)
(sdm/lookup sdm (hdd/clj->vsa* #{:a :b}) 2 1)
(def current (sdm/lookup sdm (hdd/clj->vsa* #{:a :b}) 3 1)))
(hdd/cleanup* (pyutils/torch->jvm (:result current)))
;; -----------------------------
;; capacity?
;;
(do (def sdm
(sdm/k-fold-sdm {:address-count (long 1e6)
:address-density 0.000006
:k-delays 2
:word-length (long 1e4)}))
(sdm/reset sdm)
(sdm/write sdm
(hdd/clj->vsa* :left)
(hdd/clj->vsa* :left)
1)
(sdm/write sdm
(hdd/clj->vsa* :right)
(hdd/clj->vsa* :right)
1)
(sdm/write sdm
(hdd/clj->vsa* :right)
(hdd/clj->vsa* :right)
1)
(sdm/write sdm
(hdd/clj->vsa* [:*> :left :right :right])
(hdd/clj->vsa* [:*> :left :right :right])
1))
(do (sdm/reset sdm)
(def query (hdd/clj->vsa* [:*> :left :right :right]))
(let [x1 (pyutils/torch->jvm
(:result (sdm/lookup sdm
(hdd/clj->vsa*
#{:left :right})
2
1)))
x2 (pyutils/torch->jvm
(:result (sdm/lookup sdm
(hdd/clj->vsa*
#{:left :right})
2
1)))
x3 (pyutils/torch->jvm
(:result (sdm/lookup sdm
(hdd/clj->vsa*
#{:left :right})
2
1)))
xr (pyutils/torch->jvm
(:result (sdm/lookup sdm
(hdd/clj->vsa*
#{:left :right})
3
1)))]
;; [x1 x2 x3]
(map hdd/cleanup* [x1 x2 x3])
(map hdd/cleanup*
(map-indexed (fn [i x]
(hd/unbind query (hd/permute-n x i)))
[x1 x2 x3]))))
(hdd/cleanup* (pyutils/torch->jvm (:result current)))
;; Idea II:
;;
;; - similarly, you could take the ensemble of highest activation in a 7 ensemble neuronal word
;; - that corresponds to the 'now' place field in a hippocampal trajectory
;;
;;
;;
;;
;;
;;
;;
;; ----------------------------------------
;; Lit
;;
;; - https://arxiv.org/abs/2306.03812
;; - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5628090/
;; - https://www.sciencedirect.com/science/article/pii/S009286742031388X
;;
;; - https://pubmed.ncbi.nlm.nih.gov/15105494/
(comment
(time
(do
(def m (sdm/->sdm
{:address-count (long 1e6)
:address-density 0.000003
:word-length (long 1e4)}))
(dotimes [n 500]
(sdm/write m (hd/->seed) (hd/->seed) 1))
(dotimes [n 500]
(sdm/lookup m (hd/->seed) 1 1)))))