-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproblem27.rb
49 lines (40 loc) · 1.34 KB
/
problem27.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
=begin
Euler published the remarkable quadratic formula:
n² + n + 41
It turns out that the formula will produce 40 primes for the consecutive values n = 0 to 39. However, when n = 40, 402 + 40 + 41 = 40(40 + 1) + 41 is divisible by 41, and certainly when n = 41, 41² + 41 + 41 is clearly divisible by 41.
Using computers, the incredible formula n² 79n + 1601 was discovered, which produces 80 primes for the consecutive values n = 0 to 79. The product of the coefficients, 79 and 1601, is 126479.
Considering quadratics of the form:
n² + an + b, where |a| 1000 and |b| 1000
where |n| is the modulus/absolute value of n
e.g. |11| = 11 and |4| = 4
Find the product of the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n = 0.
=end
require 'rspec'
require 'prime'
module Euler27
class << self
def formula(a,b)
return [] if b<a
ar = (0...(b-a)).map {|n| (n**2 + a*n + b)}
ar.any?{|i| !i.prime?} ? 0 : ar.length
end
def primes
a=[]
Prime.each{|i|break if i >= 1000; a<< i}
a
end
end
end
describe Euler27 do
specify {Euler27.formula(1,41).size.should == 40}
it "" do
sizes=[]
primes = Euler27.primes
(0...1000).each do |a|
primes.each do |b|
sizes << Euler27.formula(a,b)
end
end
sizes.size.should == 134
end
end