-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp_rsm.jl
256 lines (236 loc) · 9.55 KB
/
exp_rsm.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
include("RoSemi.jl")
include("expdriver.jl")
include("utils.jl")
using DelimitedFiles
using Random, Combinatorics
using MLBase, Hyperopt
"""
converts distance to r^k/(r^k+r0^k), k=1,2,3, r0 ≈ req
"""
function rdist(r,r0;c=1)
return r^c/(r^c + r0^c)
end
"""
converts distance to e^{-r/r0}
"""
function edist(r,r0)
return exp(-r/r0)
end
"""
rosemi wrapper fitter, can choose either with kfold or usequence (if kfold = true then pcs isnt used)
- F = feature vector (or matrix)
- E = target energy vector
- kfold = use kfold or usequence
- k = number of folds
- pcs = percentage of centers
- ptr = percentage of trainings
"""
function rosemi_fitter(F, E, folds; pcs = 0.8, ptr = 0.5, n_basis=4, λ = 0., force=true)
ndata = length(E)
#folds = collect(Kfold(ndata, k)) # for rosemi, these guys are centers, not "training set"
#println(folds)
MAEs = []; RMSEs = []; RMSDs = []; t_lss = []; t_preds = []
for (i,fold) in enumerate(folds)
# fitter:
ϕ, dϕ = extract_bspline_df(F', n_basis; flatten=true, sparsemat=true)
#fold = shuffle(fold);
centers = fold; lenctr = length(centers) # the center ids
trids = fold[1:Int(round(ptr*lenctr))] # train ids (K)
uids = setdiff(fold, trids) # unsupervised ids (U)
tsids = setdiff(1:ndata, fold)
D = fcenterdist(F, centers) .+ λ # temp fix for numericals stability
bsize = max(1, Int(round(0.25*length(tsids)))) # to avoid bsize=0
MAE, RMSE, RMSD, t_ls, t_pred = fitter(F', E, D, ϕ, dϕ, trids, centers, uids, tsids, size(F, 2), "test", bsize, 900, get_rmse=true, force=force)
MAE = MAE/627.503 ## MAE in energy input's unit
# store results:
push!(MAEs, MAE); push!(RMSEs, RMSE); push!(RMSDs, RMSD); push!(t_lss, t_ls); push!(t_preds, t_pred);
end
return MAEs, RMSEs, RMSDs, t_lss, t_preds
end
"""
rerun of HxOy using ROSEMi
"""
function main_rosemi_hxoy(;force=true, c=1, n_basis=4, ptr=0.5)
Random.seed!(603)
# pair HxOy fitting:
data = load("data/smallmol/hxoy_data_req.jld", "data") # load hxoy
# do fitting for each dataset:
# for each dataset split kfold
# possibly rerun with other models?
ld_res = []
for i ∈ eachindex(data)[3:3]
# extract data:
d = data[i]
req = d["req"]
F = rdist.(d["R"], req, c=c) #edist.(d["R"], req) # convert distance features
E = d["V"]
println([d["mol"], d["author"], d["state"]])
folds = shuffle.(collect(Kfold(length(d["V"]), 5))) # do 5-folds here
MAEs, RMSEs, RMSDs, t_lss, t_preds = rosemi_fitter(F, E, folds; n_basis=n_basis, ptr=ptr, force=force)
display([MAEs, RMSEs, RMSDs, t_lss, t_preds ])
println("RMSE = ", RMSEs)
# result storage:
d_res = Dict()
d_res["MAE"] = MAEs; d_res["RMSE"] = RMSEs; d_res["RMSD"] = RMSDs; d_res["t_train"] = t_lss; d_res["t_test"] = t_preds;
d_res["mol"] = d["mol"]; d_res["author"] = d["author"]; d_res["state"] = d["state"];
display(d_res)
push!(ld_res, d_res)
end
#save("result/hdrsm_[$force].jld", "data", ld_res)
end
"""
rerun of Hn, 3 ≤ n ≤ 5 molecules using ROSEMI
"""
function main_rosemi_hn(;force=true, c=1, n_basis=5, ptr=0.6) # the hyperparams are from the optimized H2 Kolos
Random.seed!(603)
data = load("data/smallmol/hn_data.jld", "data")
ld_res = []
for i ∈ setdiff(eachindex(data), [2,3]) # skip partial H4
λ = 0.
d = data[i]; F = rdist.(d["R"], 1.401, c=c); # req of H2
E = d["V"]
if d["mol"] == "H5" # for H5, add "regularizer"
λ = 1e-8
end
println(d["mol"])
folds = shuffle.(collect(Kfold(length(d["V"]), 5))) # do 5-folds here
MAEs, RMSEs, RMSDs, t_lss, t_preds = rosemi_fitter(F, E, folds; n_basis=n_basis, ptr=ptr, λ = λ, force=force)
display([MAEs, RMSEs, RMSDs, t_lss, t_preds])
# result storage:
d_res = Dict()
d_res["MAE"] = MAEs; d_res["RMSE"] = RMSEs; d_res["RMSD"] = RMSDs; d_res["t_train"] = t_lss; d_res["t_test"] = t_preds;
d_res["mol"] = d["mol"];
push!(ld_res, d_res)
end
timestamp = replace(replace(string(now()), "-"=>""), ":"=>"")[1:end-4] # exclude ms string
save("result/hn_rosemi_rerun_$timestamp.jld", "data", ld_res) #save("result/h5_rosemi_rerun_unstable.jld", "data", ld_res)
end
"""
-----------
hyperparamopt routines
-----------
"""
"""
objective function for hyperparam opt
"""
function rosemi_fobj(R, E, req, folds; force=true, c=1, n_basis=4, ptr=0.5, λ = 0.)
F = rdist.(R, req; c=c)
MAEs, RMSEs, RMSDs, t_lss, t_preds = rosemi_fitter(F, E, folds; n_basis=n_basis, ptr=ptr, force=force, λ = λ)
#display(RMSEs)
return mean(RMSEs) # would mean() be a better metric here? or min() is preferrable?
end
"""
call this by calling:
strnow = replace(replace(string(now()), "-"=>""), ":"=>"")[1:end-4] # current datetime in string format
main_hpopt_rsm(load("data/smallmol/hxoy_data_req.jld", "data")[setdiff(1:15, 10)]; iters=540, simid="hxoy_"*strnow, save_folds=true)
"""
function main_hpopt_rsm(data; iters=100, simid="", save_folds=false)
Random.seed!(603)
#data = load("data/smallmol/hxoy_data_req.jld", "data") # load hxoy
# do fitting for each dataset:
# for each dataset split kfold
# possibly rerun with other models?
ld_res = []
foldss = [] # k-fold storage, in case random gives different numbers (in different machine could happen)
for j ∈ eachindex(data)
λ = 0.
d = data[j]
req = d["req"]
println(d["mol"])
if d["mol"] ∈ ["H4", "H5"] # λ > 0 if H4 or H5 for numerical stability
println("λ is activated")
λ = 1e-8
end
folds = shuffle.(collect(Kfold(length(d["V"]), 5))) # do 5-folds here
if save_folds
fd = Dict("mol" => d["mol"], "folds"=>folds)
push!(foldss, fd)
end
t = @elapsed begin
ho = @thyperopt for i=iters, # hpspace = 2*3*10*9 = 540
sampler = RandomSampler(),
#force=[false,true],
c=[1,2,3],
n_basis = collect(1:10),
ptr = LinRange(0.1, 0.9, 9)
fobj = rosemi_fobj(d["R"], d["V"], req, folds; force=false, c=c, n_basis=n_basis, ptr=ptr, λ = λ)
end
end
best_params, min_f = ho.minimizer, ho.minimum
display(best_params)
display(min_f)
# save using txt to avoid parallelization crash:
dj = vcat(d["mol"], d["author"], min_f, t, collect(best_params))
push!(ld_res, dj)
out = reduce(vcat,permutedims.(ld_res))
writedlm("data/smallmol/hpopt_rsm_$simid.text", out)
if save_folds
save("data/smallmol/folds_$simid.jld", "data", foldss)
end
end
end
"""
!! for earlier ver, the hyperparameters are in index 5:8, current ver: 5:7 (true/false removed, shift -1 index)
batch run using params obtained from hpopt
e.g.:
params = readdlm("data/smallmol/hpopt_hxoy_rsm.text", '\t')
data = load("data/smallmol/hxoy_data_req.jld", "data")
sim_id = replace(replace(string(now()), "-"=>""), ":"=>"")[1:end-4]
main_eval_rsm(data, params; sim_id = sim_id)
example script in vsc:
main_eval_rsm(load("data/smallmol/hxoy_data_req.jld", "data")[setdiff(1:15, 10)], readdlm("data/smallmol/hpopt_rsm_hxoy_20241107T124925.text", '\t'); sim_id=strnow, foldss=load("data/smallmol/folds_hxoy_20241107T124925.jld", "data"))
"""
function main_eval_rsm(data, hpopt_params; sim_id="", foldss=[])
Random.seed!(603) # still set seed for folds
# match each result with the corresponding dataset
λ = 0.
ld_res = []
for d ∈ data
# determine which result id:
id = findall(d["mol"] .== hpopt_params[:,1])[1]
hp = hpopt_params[id,:]
println([d["mol"], hp[5:end]])
# load data:
E = d["V"]
F = rdist.(d["R"], d["req"], c=hp[5]);
folds = [] # reinitialization
if isempty(foldss)
folds = shuffle.(collect(Kfold(length(d["V"]), 5))) # do 5-folds here
else
for cfold in foldss
if cfold["mol"] == d["mol"]
folds = cfold["folds"]
end
end
end
display(folds)
println(hp[5:7])
MAEs, RMSEs, RMSDs, t_lss, t_preds = rosemi_fitter(F, E, folds; n_basis=hp[6], ptr=hp[7], force=false, λ = λ)
println(mean(RMSEs))
# result storage:
d_res = Dict()
d_res["MAE"] = MAEs; d_res["RMSE"] = RMSEs; d_res["RMSD"] = RMSDs; d_res["t_train"] = t_lss; d_res["t_test"] = t_preds;
d_res["mol"] = d["mol"];
push!(ld_res, d_res)
end
save("result/hdrsm_$sim_id.jld", "data", ld_res)
end
"""
singlet eval only
example script in VSC:
main_single_eval_rsm(load("data/smallmol/hxoy_data_req.jld", "data")[10], readdlm("data/smallmol/hpopt_rsm_hxoy_20241107T124925.text", '\t')[9,:]; sim_id="H2_2_0711")
"""
function main_single_eval_rsm(data, hp; sim_id="", folds=[], λ = 0.)
E = data["V"]
F = rdist.(data["R"], data["req"], c=hp[5])
if isempty(folds)
folds = shuffle.(collect(Kfold(length(E), 5)))
end
MAEs, RMSEs, RMSDs, t_lss, t_preds = rosemi_fitter(F, E, folds; n_basis=hp[6], ptr=hp[7], force=false, λ = λ)
println(mean(RMSEs))
d_res = Dict()
d_res["MAE"] = MAEs; d_res["RMSE"] = RMSEs; d_res["RMSD"] = RMSDs; d_res["t_train"] = t_lss; d_res["t_test"] = t_preds;
d_res["mol"] = data["mol"];
display(d_res)
save("result/hdrsm_singlet_$sim_id.jld", "data", d_res)
end