-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathplot_dataset.py
101 lines (74 loc) · 3.66 KB
/
plot_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import torch
from datasets.apolloscape import Apolloscape
from utils.common import draw_poses, calc_poses_params
from utils.common import draw_record, make_video
import numpy as np
from torchvision import transforms
import torchvision.utils as vutils
from torch.utils.data import Dataset, DataLoader
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.animation as manimation
import os
import argparse
def get_args():
parser = argparse.ArgumentParser(description="Plot Apolloscape dataset poses per record or generate video of a record")
parser.add_argument("--data", metavar="DIR", required=True,
help="Path to Apollodataset")
parser.add_argument("--road", metavar="ROAD_DIR", default="road03_seg",
help="Path to the road within ApolloScape")
parser.add_argument("--show-records-count", dest="show_records_count", action="store_true",
help="Print all records with counts")
parser.add_argument("--record", metavar="RECORD_DIR",
help="Path to the record directory within road")
parser.add_argument("--sample-idx", metavar="SAMPLE_IDX", type=int,
help="Index to show. Should be in [0, len(dataset)] range")
parser.add_argument("--output-dir", metavar="OUTPUT_DIR", default="output_data",
help="Path save figures and videos")
parser.add_argument("--video", metavar="VIDEO_OUT_FILE", type=str, action="store", default=None, const="", nargs="?",
help="Generate and save video of an animated record to a file")
parser.add_argument("--no-display", dest="no_display", action="store_true", default=False,
help="Don't show graphs on screen")
return parser.parse_args()
def main():
args = get_args()
transform = transforms.Compose([transforms.Resize(250)])
apollo_dataset = Apolloscape(root=os.path.join(args.data), road=args.road, transform=transform, record=args.record)
print(apollo_dataset)
if args.show_records_count:
print("=== Records count: ")
recs_num = apollo_dataset.get_records_counts()
recs_num = sorted(recs_num.items(), key=lambda kv: kv[1], reverse=True)
print("\n".join(["\t{} - {}".format(r[0], r[1]) for r in recs_num ]))
return
if args.video is not None:
# Generate video for the record
if len(args.video) > 1:
video_outfile = os.path.join(os.path.expanduser(args.output_dir), args.video)
else:
# Make filename for the video
video_output_path = os.path.join(os.path.expanduser(args.output_dir), "videos")
video_outfile = os.path.join(video_output_path, "{}_{}.mp4".format(
apollo_dataset.road, apollo_dataset.record))
make_video(apollo_dataset, outfile=video_outfile)
else:
# No video, just draw images from the sample
sample_idx = args.sample_idx
if sample_idx is None:
sample_idx = np.random.randint(len(apollo_dataset))
fig = draw_record(apollo_dataset, idx=sample_idx)
# Make output_dirs for graphs
output_path = os.path.join(os.path.expanduser(args.output_dir))
if not os.path.exists(output_path):
os.makedirs(output_path)
# Save figure
image_fname = os.path.join(
output_path, "{}_{}_{:05d}.png".format(
apollo_dataset.road, apollo_dataset.record, sample_idx))
fig.savefig(image_fname)
# Show graph
if not args.no_display:
plt.show()
plt.close(fig)
if __name__=="__main__":
main()