diff --git a/build.zig b/build.zig index 38d4634..4c3836b 100644 --- a/build.zig +++ b/build.zig @@ -15,6 +15,7 @@ pub fn build(b: *std.Build) void { const test_step = b.step("test", "Run library tests"); for ([_][]const u8{ "color", + "geometry", "matrix", "svd", }) |module| { diff --git a/src/geometry.zig b/src/geometry.zig new file mode 100644 index 0000000..a294ef7 --- /dev/null +++ b/src/geometry.zig @@ -0,0 +1,401 @@ +const std = @import("std"); +const Matrix = @import("matrix.zig").Matrix; +const Point2d = @import("point.zig").Point2d; +const svd = @import("svd.zig").svd; +const expectEqual = std.testing.expectEqual; +const expectEqualDeep = std.testing.expectEqualDeep; + +/// A generic rectangle object with some convenience functionality. +pub fn Rectangle(comptime T: type) type { + return struct { + const Self = @This(); + l: T, + t: T, + r: T, + b: T, + + /// Initialize a rectangle at center x, y with the specified width and height. + pub fn initCenter(x: T, y: T, w: T, h: T) Self { + switch (@typeInfo(T)) { + .Int => { + const l = x - @divFloor(w, 2); + const t = y - @divFloor(h, 2); + const r = l + w - 1; + const b = t + h - 1; + return Self{ .l = l, .t = t, .r = r, .b = b }; + }, + .Float => { + const l = x - w / 2; + const t = y - h / 2; + const r = l + w - 1; + const b = t + h - 1; + return Self{ .l = l, .t = t, .r = r, .b = b }; + }, + + else => @compileError("Unsupported type " ++ @typeName(T) ++ " for Rectangle"), + } + } + + pub fn width(self: Self) T { + return self.r - self.l + 1; + } + + pub fn height(self: Self) T { + return self.b - self.t + 1; + } + + /// Returns true if the point at x, y is inside the rectangle. + pub fn contains(self: Self, x: T, y: T) bool { + if (x < self.l or x > self.r or y < self.t or y > self.b) { + return false; + } + return true; + } + }; +} + +/// Applies a projective transform to a point. By default, it will be initialized to the identity +/// function. Use the fit method to update the transform to map between two sets of points. +pub fn ProjectiveTransform(comptime T: type) type { + return struct { + const Self = @This(); + matrix: Matrix(T, 3, 3) = Matrix(T, 3, 3).identity(), + + /// Finds the best projective transforms that maps between the two given sets of points. + pub fn find(from_points: []const Point2d(T), to_points: []const Point2d(T)) Self { + var transfrom = ProjectiveTransform(T){}; + transfrom.fit(from_points, to_points); + return transfrom; + } + + /// Projects the given point using the projective transform + pub fn project(self: Self, point: Point2d(T)) Point2d(T) { + const src = Matrix(T, 3, 1){ .items = .{ .{point.x}, .{point.y}, .{1} } }; + var dst = self.matrix.dot(src); + if (dst.at(2, 0) != 0) { + dst = dst.scale(1 / dst.at(2, 0)); + } + return .{ .x = dst.at(0, 0), .y = dst.at(1, 0) }; + } + + /// Finds the best projective transforms that maps between the two given sets of points. + pub fn fit(self: *Self, from_points: []const Point2d(T), to_points: []const Point2d(T)) void { + std.debug.assert(from_points.len == to_points.len); + var accum = Matrix(T, 9, 9).initAll(0); + var b = Matrix(T, 2, 9).initAll(0); + for (0..from_points.len) |i| { + const f = Matrix(T, 1, 3){ .items = .{.{ from_points[i].x, from_points[i].y, 1 }} }; + const t = Matrix(T, 1, 3){ .items = .{.{ to_points[i].x, to_points[i].y, 1 }} }; + b.setSubMatrix(0, 0, f.scale(t.at(0, 1))); + b.setSubMatrix(1, 0, f); + b.setSubMatrix(0, 3, f.scale(-t.at(0, 0))); + b.setSubMatrix(1, 6, f.scale(-t.at(0, 0))); + accum = accum.add(b.transpose().dot(b)); + } + const result = svd( + T, + accum.rows, + accum.cols, + accum, + .{ .with_u = true, .with_v = false, .mode = .full_u }, + ); + const u: *const Matrix(T, 9, 9) = &result[0]; + const q: *const Matrix(T, 9, 1) = &result[1]; + self.matrix = blk: { + var min: T = q.at(0, 0); + var idx: usize = 0; + for (1..q.rows) |i| { + const val = q.at(i, 0); + if (val < min) { + min = val; + idx = i; + } + } + break :blk u.getCol(idx).reshape(3, 3); + }; + } + }; +} + +test "projection4" { + const T = f64; + const from_points: []const Point2d(T) = &.{ + .{ .x = 199.67754364, .y = 200.17905235 }, + .{ .x = 167.90229797, .y = 175.55920601 }, + .{ .x = 270.33649445, .y = 207.96521187 }, + .{ .x = 267.53637314, .y = 188.24442387 }, + }; + const to_points: []const Point2d(T) = &.{ + .{ .x = 440.68012238, .y = 275.45248032 }, + .{ .x = 429.62512970, .y = 262.64307976 }, + .{ .x = 484.23328400, .y = 279.44332123 }, + .{ .x = 488.08315277, .y = 272.79547691 }, + }; + const transform = ProjectiveTransform(f64).find(from_points, to_points); + const matrix = Matrix(T, 3, 3){ + .items = .{ + .{ -5.9291612941280800e-03, 7.0341614664190845e-03, -8.9922894648198459e-01 }, + .{ -2.8361695646354147e-03, 2.9060176209597761e-03, -4.3735741833190661e-01 }, + .{ -1.0156215756801098e-05, 1.3270311721030187e-05, -2.1603199531972065e-03 }, + }, + }; + for (0..transform.matrix.rows) |r| { + for (0..transform.matrix.cols) |c| { + try std.testing.expectApproxEqAbs(transform.matrix.at(r, c), matrix.at(r, c), 1e-3); + } + } + for (0..from_points.len) |i| { + const p = transform.project(from_points[i]); + try std.testing.expectApproxEqRel(p.x, to_points[i].x, 1e-5); + try std.testing.expectApproxEqRel(p.y, to_points[i].y, 1e-5); + } +} + +test "projection8" { + const T = f64; + const from_points: []const Point2d(T) = &.{ + .{ .x = 319.48406982, .y = 240.21486282 }, + .{ .x = 268.64367676, .y = 210.67104721 }, + .{ .x = 432.53839111, .y = 249.55825424 }, + .{ .x = 428.05819702, .y = 225.89330864 }, + .{ .x = 687.00787354, .y = 240.97020721 }, + .{ .x = 738.32287598, .y = 208.32876205 }, + .{ .x = 574.62890625, .y = 250.60971451 }, + .{ .x = 579.63378906, .y = 225.37580109 }, + }; + + const to_points: []const Point2d(T) = &.{ + .{ .x = 330.48120117, .y = 408.22596359 }, + .{ .x = 317.55538940, .y = 393.26282501 }, + .{ .x = 356.74267578, .y = 411.06428146 }, + .{ .x = 349.94784546, .y = 400.26379395 }, + .{ .x = 438.15582275, .y = 411.75442886 }, + .{ .x = 452.01367188, .y = 398.08815765 }, + .{ .x = 398.66107178, .y = 413.83139420 }, + .{ .x = 395.29974365, .y = 401.73685455 }, + }; + const transform = ProjectiveTransform(T).find(from_points, to_points); + const matrix = Matrix(T, 3, 3){ .items = .{ + .{ 7.9497770144471079e-05, 8.6315632819330035e-04, -6.3240797603906806e-01 }, + .{ 3.9739851020393160e-04, 6.4356336568222570e-04, -7.7463154396817901e-01 }, + .{ 1.0207719920241196e-06, 2.6961794891002063e-06, -2.1907681782918601e-03 }, + } }; + const tol = std.math.sqrt(std.math.floatEps(T)); + for (0..transform.matrix.rows) |r| { + for (0..transform.matrix.cols) |c| { + try std.testing.expectApproxEqAbs(transform.matrix.at(r, c), matrix.at(r, c), tol); + } + } + for (0..from_points.len) |i| { + const p = transform.project(from_points[i]); + try std.testing.expectApproxEqRel(p.x, to_points[i].x, 1e-2); + try std.testing.expectApproxEqRel(p.y, to_points[i].y, 1e-2); + } +} + +/// Applies a similarity transform to a point. By default, it will be initialized to the identity +/// function. Use the fit method to update the transform to map between two sets of points. +pub fn SimilarityTransform(comptime T: type) type { + return struct { + const Self = @This(); + matrix: Matrix(T, 2, 2) = Matrix(T, 2, 2).identity(), + bias: Matrix(T, 2, 1) = Matrix(T, 2, 1).setAll(0), + + /// Finds the best similarity transforms that maps between the two given sets of points. + pub fn find(from_points: []const Point2d(T), to_points: []const Point2d(T)) Self { + var transfrom = SimilarityTransform(T){}; + transfrom.fit(from_points, to_points); + return transfrom; + } + + /// Projects the given point using the projective transform + pub fn project(self: Self, point: Point2d(T)) Point2d(T) { + const src = Matrix(T, 2, 1){ .items = .{ .{point.x}, .{point.y} } }; + var dst = self.matrix.dot(src); + return .{ .x = dst.at(0, 0) + self.bias.at(0, 0), .y = dst.at(1, 0) + self.bias.at(1, 0) }; + } + + /// Finds the best similarity transforms that maps between the two given sets of points. + pub fn fit(self: *Self, from_points: []const Point2d(T), to_points: []const Point2d(T)) void { + std.debug.assert(from_points.len == to_points.len); + std.debug.assert(from_points.len >= 2); + const num_points: T = @floatFromInt(from_points.len); + var mean_from: Point2d(T) = .{ .x = 0, .y = 0 }; + var mean_to: Point2d(T) = .{ .x = 0, .y = 0 }; + var sigma_from: T = 0; + var sigma_to: T = 0; + var cov = Matrix(T, 2, 2).setAll(0); + self.matrix = cov; + for (0..from_points.len) |i| { + mean_from.x += from_points[i].x; + mean_from.y += from_points[i].y; + mean_to.x += to_points[i].x; + mean_to.y += to_points[i].y; + } + mean_from.x /= num_points; + mean_from.y /= num_points; + mean_to.x /= num_points; + mean_to.y /= num_points; + + for (0..from_points.len) |i| { + const from = Point2d(T){ .x = from_points[i].x - mean_from.x, .y = from_points[i].y - mean_from.y }; + const to = Point2d(T){ .x = to_points[i].x - mean_to.x, .y = to_points[i].y - mean_to.y }; + + sigma_from += from.x * from.x + from.y * from.y; + sigma_to += to.x * to.x + to.y * to.y; + + const from_mat = Matrix(T, 1, 2){ .items = .{.{ from.x, from.y }} }; + const to_mat = Matrix(T, 2, 1){ .items = .{ .{to.x}, .{to.y} } }; + cov = cov.add(to_mat.dot(from_mat)); + } + sigma_from /= num_points; + sigma_to /= num_points; + cov = cov.scale(1.0 / num_points); + const det_cov = cov.at(0, 0) * cov.at(1, 1) - cov.at(0, 1) * cov.at(1, 0); + const result = svd( + T, + cov.rows, + cov.cols, + cov, + .{ .with_u = true, .with_v = true, .mode = .skinny_u }, + ); + const u: *const Matrix(T, 2, 2) = &result[0]; + const d = Matrix(T, 2, 2){ .items = .{ .{ result[1].at(0, 0), 0 }, .{ 0, result[1].at(1, 0) } } }; + const v: *const Matrix(T, 2, 2) = &result[2]; + const det_u = u.at(0, 0) * u.at(1, 1) - u.at(0, 1) * u.at(1, 0); + const det_v = v.at(0, 0) * v.at(1, 1) - v.at(0, 1) * v.at(1, 0); + var s = Matrix(T, cov.rows, cov.cols).identity(); + if (det_cov < 0 or (det_cov == 0 and det_u * det_v < 0)) { + if (d.at(1, 1) < d.at(0, 0)) { + s.set(1, 1, -1); + } else { + s.set(0, 0, -1); + } + } + const r = u.dot(s.dot(v.transpose())); + var c: T = 1; + if (sigma_from != 0) { + c = 1.0 / sigma_from * d.dot(s).trace(); + } + const m_from = Matrix(T, 2, 1){ .items = .{ .{mean_from.x}, .{mean_from.y} } }; + const m_to = Matrix(T, 2, 1){ .items = .{ .{mean_to.x}, .{mean_to.y} } }; + self.matrix = r.scale(c); + self.bias = m_to.add(r.dot(m_from).scale(-c)); + } + }; +} + +/// Struct that encapsulates all logic for a Convex Hull computation. +pub fn ConvexHull(comptime T: type) type { + return struct { + const Self = @This(); + points: std.ArrayList(Point2d(T)), + hull: std.ArrayList(Point2d(T)), + + pub fn init(allocator: std.mem.Allocator) Self { + return Self{ + .points = std.ArrayList(Point2d(T)).init(allocator), + .hull = std.ArrayList(Point2d(T)).init(allocator), + }; + } + + pub fn deinit(self: Self) void { + self.points.deinit(); + self.hull.deinit(); + } + + const Orientation = enum { + collinear, + clockwise, + counter_clockwise, + }; + + /// Returns the orientation of the three points. + fn computeOrientation(a: Point2d(T), b: Point2d(T), c: Point2d(T)) Orientation { + const v: T = a.x * (b.y - c.y) + b.x * (c.y - a.y) + c.x * (a.y - b.y); + if (v < 0) return .clockwise; + if (v > 0) return .counter_clockwise; + return .collinear; + } + + /// Compares the points by polar angle in clockwise order. + fn clockwiseOrder(p: Point2d(T), a: Point2d(T), b: Point2d(T)) bool { + return switch (computeOrientation(p, a, b)) { + .clockwise => true, + .counter_clockwise => false, + .collinear => p.distance_squared(a) < p.distance_squared(b), + }; + } + + /// Returns the convex hull of a set of points using the Graham's scan algorithm. + pub fn find(self: *Self, points: []const Point2d(T)) !?[]Point2d(T) { + // We need at least 3 points to compute a hull. + if (points.len < 3) { + return null; + } + self.points.clearRetainingCapacity(); + try self.points.resize(points.len); + @memcpy(self.points.items, points); + + // Find the point with the lowest y-coordinate. + // If there are ties, choose the one with the lowest x-coordinate. + var lowest: Point2d(T) = .{ .x = std.math.floatMax(T), .y = std.math.floatMax(T) }; + for (self.points.items) |p| { + if (p.y < lowest.y or (p.y == lowest.y and p.x < lowest.x)) { + lowest = p; + } + } + + // Sort the points by polar angle in clockwise order. + std.mem.sort(Point2d(T), self.points.items, lowest, clockwiseOrder); + self.hull.clearRetainingCapacity(); + for (self.points.items) |p| { + while (self.hull.items.len > 1 and computeOrientation( + self.hull.items[self.hull.items.len - 2], + self.hull.items[self.hull.items.len - 1], + p, + ) != .clockwise) { + _ = self.hull.pop(); + } + try self.hull.append(p); + } + + // Handle the case were all input points were collinear. + if (self.hull.items.len < 3) { + return null; + } + + return self.hull.items; + } + }; +} + +test "convex hull" { + const points: []const Point2d(f32) = &.{ + .{ .x = 0.0, .y = 0.0 }, + .{ .x = 1.0, .y = 1.0 }, + .{ .x = 2.0, .y = 2.0 }, + .{ .x = 3.0, .y = 1.0 }, + .{ .x = 4.0, .y = 0.0 }, + .{ .x = 2.0, .y = 4.0 }, + .{ .x = 1.0, .y = 3.0 }, + }; + var convex_hull = ConvexHull(f32).init(std.testing.allocator); + defer convex_hull.deinit(); + const hull = (try convex_hull.find(points)).?; + try expectEqual(hull.len, 4); + try expectEqualDeep(hull[0], points[0]); + try expectEqualDeep(hull[1], points[6]); + try expectEqualDeep(hull[2], points[5]); + try expectEqualDeep(hull[3], points[4]); + + // check passing an empty slice + var empty = convex_hull.find(&.{}); + try expectEqual(empty, null); + // check passing less than 3 points + empty = convex_hull.find(points[3..5]); + try expectEqual(empty, null); + // check passing aligned points + empty = convex_hull.find(points[0..3]); + try expectEqual(empty, null); +} diff --git a/src/zignal.zig b/src/zignal.zig index c9da209..7e1b901 100644 --- a/src/zignal.zig +++ b/src/zignal.zig @@ -12,4 +12,12 @@ pub const Point3d = @import("point.zig").Point3d; pub const Matrix = @import("matrix.zig").Matrix; +pub const Image = @import("image.zig").Image; + pub const svd = @import("svd.zig").svd; + +const geometry = @import("geometry.zig"); +pub const Rectangle = geometry.Rectangle; +pub const ProjectiveTransform = geometry.ProjectiveTransform; +pub const SimilarityTransform = geometry.SimilarityTransform; +pub const ConvexHull = geometry.ConvexHull;