-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheeg_fooof.m
79 lines (68 loc) · 3.53 KB
/
eeg_fooof.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
function EEG = eeg_fooof(EEG, datatype, ids, epoch_range, percent, f_range, settings)
% Author: The Voytek Lab and Brian Barry
% Calls FOOOF wrapper on spectral data from EEGLAB
% calls pop_spectopo.m to retrieve desired channel or component spectra
% calls fooof_group even if only one component queried.
% Inputs:
% EEG
% epoch_range = [min_ms, max_ms]
% percent = [float 0 to 100] percent of the data to sample for computing the spectra. Values < 100 speed up the computation. {default: 100}
% f_range = spectral computation range AND fitting range (Hz)
% ids = ICA components to include
% settings = fooof model settings, in a struct, including:
% settings.peak_width_limits
% settings.max_n_peaks
% settings.min_peak_height
% settings.peak_threshold
% settings.aperiodic_mode
% settings.verbose
% Current outputs (default from fooof_mat)
% fooof_results = fooof model ouputs, in a struct, including:
% fooof_results.aperiodic_params
% fooof_results.peak_params
% fooof_results.gaussian_params
% fooof_results.error
% fooof_results.r_squared
% and with return_model hard-coded as true, it also includes:
% fooof_results.freqs
% fooof_results.power_spectrum
% fooof_results.fooofed_spectrum
% fooof_results.ap_fit
if ~exist('epoch_range', 'var')
epoch_range = [EEG.xmin*1000, EEG.xmax*1000];
end
if ~exist('percent', 'var')
percent = 100;
end
if ~exist('settings', 'var')
settings = struct();
end
% compute spectrum and fit
% extracting power spectrum w/ pop_spectopo
% psds as ___specdB = matrix of power values, with each row representing a spectrum)
if datatype == "component"
[eegspecdB, specfreqs, compeegspecdB] = pop_spectopo(EEG, 0, epoch_range, 'EEG', 'percent', percent , 'freq', [10], 'freqrange',f_range, 'plotchan', 0, 'icacomps', ids, 'nicamaps', 0,'electrodes','off', 'plot', 'off'); % icacomps actually useless
compeegspecdB = compeegspecdB(ids,:); % only selecting desired rows (or should it be cols?) since pop_spectopo returns all components
specdata = arrayfun(@(y) 10^(y/10), compeegspecdB'); % reshaping + undoing the 10*log10(power) transformation
specfreqs = specfreqs'; %reshaping frequencies
fooof_results = cell([size(EEG.icaweights,1), 1]); % indexed by component
% computing FOOOF
fooof_results_temp = fooof_group(specfreqs, specdata, f_range, settings, true);
for i = 1:numel(ids)
comp_i = ids(i);
fooof_results{comp_i} = fooof_results_temp(i);
end
else % channel case
[eegspecdB, specfreqs] = pop_spectopo(EEG, 1, epoch_range, 'EEG' , 'percent', percent, 'freq', [10], 'freqrange',f_range,'electrodes','off', 'plot', 'off');
eegspecdB = eegspecdB(ids,:);
specdata = arrayfun(@(y) 10^(y/10), eegspecdB'); % reshaping + undoing the 10*log10(power) transformation
specfreqs = specfreqs'; % reshaping frequencies
fooof_results = cell([size(EEG.chanlocs,2), 1]);
% computing FOOOF
fooof_results_temp = fooof_group(specfreqs, specdata, f_range, settings, true);
for i = 1:numel(ids)
comp_i = ids(i);
fooof_results{comp_i} = fooof_results_temp(i);
end
end
EEG.etc.FOOOF_results = fooof_results;