-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFaceDetection.py
99 lines (77 loc) · 2.84 KB
/
FaceDetection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import cv2
import numpy as np
import pickle
import xlwt
from xlwt import Workbook
import datetime
def detectFaces():
wb = Workbook()
sheet1 = wb.add_sheet('Sheet 1')
face_cascade = cv2.CascadeClassifier('cascades/data/haarcascade_frontalface_alt2.xml')
recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read("trainer.yml")
labels = {"person_name": 1}
with open("labels.pickle", 'rb') as f:
labels = pickle.load(f)
# inverting labels
labels = {v:k for k,v in labels.items()}
att = {}
cap = cv2.VideoCapture(0)
while True:
# ret, frame = cap.read()
# Capture frame-by-frame
ret, frame = cap.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.5,minNeighbors=5)
for(x, y, w, h) in faces:
# region of interset -> roi
# print(x,y,w,h)
# recoginze ? the roi
# deep learned model keras, tensorflow, pytorch, scikit learm
roi_gray = gray[y:y+h, x:x+w] #(y_cord_start, y_cord_end)
roi_color = frame[y:y + h, x:x+w]
id_, conf = recognizer.predict(roi_gray)
if conf >= 45: # and conf <= 85:
# print(id_)
font = cv2.FONT_HERSHEY_SIMPLEX
name = labels[id_]
color = (255, 255, 255)
stroke = 2
cv2.putText(frame, name, (x, y), font, 1, color, stroke, cv2.LINE_AA)
att[name] = id_
# img_item = "my_image.png"
# img_item1 = "my_color.png"
# cv2.imwrite(img_item, roi_gray)
# cv2.imwrite(img_item1, roi_color)
color = (255, 0, 0) # not BGR -> Blue, Green, Red
Stroke = 2 # thickness
width = x+w # end_cord_x
height = y+h # end_cord_y
cv2.rectangle(frame, (x,y), (width, height), color, Stroke)
# eyes = smile_cascade.detectMultiScale(roi_gray)
#
# for (ex, ey, ew, eh) in eyes:
# cv2.rectangle(roi_color, (ex, ey), (ex+ew, ey+eh), (0,255,0),2)
cv2.imshow('frame', frame)
if cv2.waitKey(20) & 0xFF == ord('q'):
break
lname = []
for key in att.keys():
lname.append(key)
lname.sort()
s = "S. No."
n = "Name"
sheet1.write(0, 0, s)
sheet1.write(0, 1, n)
for i in range(len(lname)):
sheet1.write(i+1, 0 , i+1)
sheet1.write(i+1, 1, lname[i])
date = datetime.date.today()
print(date)
fileName = str(date)
fileName += ".xls"
wb.save(fileName)
# When everything done, release the capture
cap.release()
cv2.destroyAllWindows()
return fileName