forked from gadial/ECC
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathecbinary.h
173 lines (134 loc) · 3.5 KB
/
ecbinary.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/*
* ECBinary.h
*
* Created on: Nov 22, 2009
* Author: bhess
*
* Representation of an elliptic curve over a finite
* field with characteristic 2: F_2^m
*
* Equation: (non-supersingular)
* y^2+xy=x^3+Ax^2+B
*
*/
#ifndef ECBINARY_H_
#define ECBINARY_H_
#include "ellipticcurve.h"
#include "arith/GFE.h"
//#include <iostream>
//class GFE;
class ECBinary: public Ellipticcurve {
public:
ECBinary();
ECBinary(mpz_class _mod_poly, mpz_class _ECC_a, mpz_class _ECC_b) :
Ellipticcurve(_mod_poly, _ECC_a, _ECC_b) {
// mod=2^_mod_2b
//mod = 1;
//mod <<= _mod_2b.get_ui();
}
ECBinary(int _tri_d, int _tri_k, mpz_class _ECC_a, mpz_class _ECC_b) :
Ellipticcurve(0, _ECC_a, _ECC_b) {
tri_d = _tri_d;
tri_k = _tri_k;
mod |= (1 << tri_d);
mod |= (1 << tri_k);
mod |= 1;
sqrtx = GFE::get_sqrtx(tri_d, tri_k, mod);
sqrtx.print();
GFE xx = sqrtx * sqrtx;
xx.print();
GFE el(0b101011, mod);
el.print();
GFE elsq = el * el;
elsq.print();
GFE back = elsq.get_sqrt(sqrtx);
back.print();
}
ECBinary(const char* _mod_poly, int _mod_base, const char* _order,
int _order_base, const char* _ecc_a, int _ecc_a_base,
const char* _ecc_b, int _ecc_b_base, const char* _px, int _px_base,
const char* _py, int _py_base) :
Ellipticcurve(_mod_poly, _mod_base, _order, _order_base, _ecc_a,
_ecc_a_base, _ecc_b, _ecc_b_base, _px, _px_base, _py, _py_base) {
// mod = 2^_mod_2b
//unsigned long int tmp = mod.get_ui();
//mod = 1;
//mod <<= tmp;
}
/**
* Addition P+Q of a jacobian coordinate
* P and an affine coordinate Q
*/
Coordinate addition(Coordinate P, Coordinate Q);
/**
* Subtraction P-Q of a jacobian coordinate
* P and an affine coordinate Q
*/
Coordinate subtraction(Coordinate P, Coordinate Q);
/**
* Doubling of a point P -> 2P
* in jacobian coordinates
*/
Coordinate doubling(Coordinate P);
/**
* Repeated doubling of a point P in jacobian coordinates
* (m times) -> 2^m P
*/
Coordinate repeatedDoubling(Coordinate P, int m);
/**
* Point multiplication (k times)
* -> kP
*/
Coordinate pointMultiplication(Coordinate P, mpz_class k);
std::vector<GFE> get_jinvariants();
std::vector<GFE> update_js(int n, std::vector<GFE> Jinvs);
std::vector<GFE> lift_jinvariants(int n, std::vector<GFE> jinvs);
mpz_class satohfgh_point_counting();
Coordinate getPointCompressedForm(string from);
/*
* Gets a point, given the x coordinate for the following equation:
* y^2 + xy = x^3 + ax^2 + b
* Solves the quadratic equation f(y) = y^2 + xy - (x^3 + ax^2 + b) = 0
*/
Coordinate getPoint_interface(mpz_class x, bool negative_value = false);
string toCompressedForm(Coordinate c);
void check_coordinate(Coordinate c);
private:
Coordinate getNegative(Coordinate P);
/*
* modular equation phi_2
*/
inline GFE phi_2(GFE x, GFE y);
/*
* derivation of phi_2 with respect to x
*/
inline GFE phi_2_x(GFE x, GFE y);
inline mpz_class pi_j(mpz_class J) {
return 0;
}
LD doubling(LD P);
LD addition(LD P, Coordinate Q);
LD subtraction(LD P, Coordinate Q);
mpz_class binMult(mpz_class a, mpz_class b, mpz_class f) {
mpz_class res = 0;
mpz_class const_2 = 2;
mpz_class hiBitSet;
for (int i = 0; i < mod; ++i) {
if (b % const_2 == 1) {
res ^= a;
}
mpz_and(hiBitSet.get_mpz_t(), a.get_mpz_t(), mod.get_mpz_t());
a <<= 1;
if (hiBitSet != 0) {
a ^= f;
}
b >>= 1;
}
return res;
}
Coordinate toCoordinate(const LD& ld);
int tri_d, tri_k;
GFE sqrtx;
};
#define WORD 32
#endif /* ECBINARY_H_ */