forked from gadial/ECC
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathzp_int.h
114 lines (97 loc) · 3.56 KB
/
zp_int.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
/*
* File: zp_int.h
* Author: gadial
*
* Created on January 3, 2010, 3:41 PM
*/
//zp_int is an element of Z_p, for some prime p
//this class wraps the basic arithmetic functions of such numbers, in order to simplify algorithms using it.
//We rely on the gmp library in order to allow arbitarly-large numbers
#ifndef _ZP_INT_H
#define _ZP_INT_H
#include <iostream>
#include <gmpxx.h>
#include "coordinates.h"
using std::ostream;
class zp_int{
public:
zp_int(const mpz_class& _val = 0, const mpz_class& _p = 0):val(_val),p(_p){normalize();};
zp_int(int _val):val(_val),p(0){};
bool is_equal(const zp_int&) const;
bool is_smaller(const zp_int&) const;
zp_int& operator=(const zp_int&);
zp_int& operator+=(const zp_int&);
zp_int& operator-=(const zp_int&);
zp_int operator-() const;
zp_int& operator*=(const zp_int&);
zp_int& operator/=(const zp_int&);
zp_int& operator^=(const mpz_class&); //miuse of ^ - means exponent here. WARNING: ^ has low precedence, always use parentheis!
zp_int& invert();
zp_int inverse() const;
int operator%(const int n) const {mpz_class temp = val % n; return temp.get_ui();}
ostream& print(ostream&) const;
ostream& full_print(ostream&) const;
operator mpz_class(){return val;}
mpz_class get_p() const {return p;};
string to_s(int base = 10) const;
private:
mpz_class val;
mpz_class p; // p=0 means we treat it as a normal integer
zp_int& normalize(); //sets val to be the equivalent value mod p
};
zp_int operator+(const zp_int&, const zp_int&);
zp_int operator-(const zp_int&, const zp_int&);
zp_int operator*(const zp_int&, const zp_int&);
zp_int operator/(const zp_int&, const zp_int&);
zp_int operator^(const zp_int&, const mpz_class&);
bool operator==(const zp_int&, const zp_int&);
bool operator!=(const zp_int&, const zp_int&);
bool operator<(const zp_int&, const zp_int&);
ostream& operator<<(ostream&, const zp_int&);
//zp_int based coordinates
class ZpCoordinate;
class ZpJacobian;
class ZpCoordinate {
public:
ZpCoordinate() {}
// ZpCoordinate(mpz_class _x, mpz_class _y, mpz_class _p):
// X(_x,_p), Y(_y,_p),p(_p) {}
ZpCoordinate(zp_int _x, zp_int _y, mpz_class _p):
X(_x), Y(_y),p(_p) {}
ZpCoordinate(const ZpJacobian& jac);
ZpCoordinate(const Coordinate& cor, mpz_class _p):
X(cor.X,_p),Y(cor.Y,_p),p(_p){}
operator Coordinate(){return Coordinate(X,Y);}
string toCompressedForm();
//returns the point at infinity, as is represented by this class in the context of elliptic curves
static ZpCoordinate infinity(){return ZpCoordinate(0,0,0);}
bool operator==(const ZpCoordinate& eqTo) {
return X == eqTo.X && Y == eqTo.Y;
}
bool isInfinite() const {
return X == 0 && Y == 0;
}
zp_int X, Y;
mpz_class p;
};
ostream& operator<<(ostream& out, const ZpCoordinate& rhs);
class ZpJacobian {
public:
ZpJacobian() {}
ZpJacobian(mpz_class _x, mpz_class _y, mpz_class _z, mpz_class _p):
X(_x, _p), Y(_y, _p), Z(_z, _p), p(_p) {}
ZpJacobian(zp_int _x, zp_int _y, zp_int _z):
X(_x), Y(_y), Z(_z), p(_x.get_p()) {}
ZpJacobian(const ZpCoordinate& rhs):
X(rhs.X), Y(rhs.Y), Z(1,rhs.p),p(rhs.p) {}
static ZpJacobian infinity(mpz_class p = 0){return ZpJacobian(1, 1, 0, p);}
operator Jacobian(){return Jacobian(X,Y,Z);}
bool isInfinite() const {
// return X == 1 && Y == 1 && Z == 0;
return Z == 0; //it's possible to get X,Y != 1
}
zp_int X, Y, Z;
mpz_class p;
};
ostream& operator<<(ostream& out, const ZpJacobian& rhs);
#endif /* _ZP_INT_H */