-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_v21.py
280 lines (224 loc) · 9.5 KB
/
model_v21.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
import pandas as pd
from TSData import TSData, TSTools
import os,sys
from sklearn import datasets, linear_model
import time
class Predictor(object):
def __init__(self, n_label, rate):
self.input = tf.placeholder(dtype='float', shape=[None,None]) # ( 40000, 4 )
self.output = tf.placeholder(dtype='float', shape=[None,None]) # ( werwer )
self.w = tf.Variable(tf.fill( (1,n_label), 20.0 )) # ( 4 )
self.b = tf.Variable(tf.fill( (1,n_label), -0.2 ))
# parameter for confidence; high beta, low confidence (high entropy)
self.beta = 0.01
self.rate = rate
# set effective start value (for sigmoid)
def assign_b(self, sess, v):
sess.run(tf.assign(self.b, v))
def predict(self):
# average by weight (divide by expressing feature count)
#f_count = tf.reduce_sum(self.input)
p = tf.sigmoid(tf.multiply(self.input + self.b, self.w))
return p
#return p / tf.reshape(tf.reduce_sum(p,axis=1),(-1,1)) # normalization(sum to 1) by row
def assign_bias(self, b):
return tf.assign(self.b, b)
# use CMCL loss
def loss(self):
loss_softmax = False # use softmax instead of CMCL
if (loss_softmax):
pred = self.predict()
return tf.nn.softmax_cross_entropy_with_logits(labels=self.output, logits=pred)
else:
# KL divergence calculate for CMCL
def CMCL_loss_v2():
p_y = self.predict()
return -self.beta * tf.log(p_y)
# to calculate loss, make predict result normalized in row
pred = self.predict()
pred = pred / tf.reshape(tf.reduce_sum(pred, axis=1), (-1,1))
# 1. loss reduction (in case of major one)
# 2. KL divergence (in case of minor one)
label = self.output
loss_e = label * (self.output-pred)**2
KL_label = 1.0 - label
loss_kl = KL_label * CMCL_loss_v2()
loss = tf.reduce_sum(loss_e + loss_kl)
return loss
def learn(self):
return tf.train.AdamOptimizer(self.rate).minimize(self.loss())
def learn_b(self):
return tf.train.AdamOptimizer(self.rate).minimize(self.loss(), var_list=[self.b,])
class Generator(object):
def __init__(self, n_features, n_label, rate):
self.n_features = n_features
self.n_label = n_label
# make placeholder
self.features = tf.placeholder(dtype='float', shape=[None,n_features])
self.label = tf.placeholder(dtype='float', shape=[None,n_label])
# main weights for each genes (projection)
self.weight = tf.Variable(tf.random_normal( (n_features, n_label) ))
self.rate = rate
def loss(self):
weight = self.weight
features = tf.matmul(self.label, tf.transpose(weight)) # pred_features
loss_pred_square = (tf.sigmoid(features) - self.features) ** 2
loss_pred_sigmoid = tf.nn.sigmoid_cross_entropy_with_logits(labels=self.features,logits=features)
#loss_pred_softmax = tf.nn.softmax_cross_entropy_with_logits(labels=self.label,logits=features)
loss_weight = tf.square(self.weight)
# integrated loss (relate to other stresses)
# TODO: reduce it's dimension, if updown is true?
updown = True
if (updown):
weight_feature = tf.reshape(self.weight, (self.n_features/2,-1))
else:
weight_feature = self.weight
loss_integrate = tf.reduce_sum(tf.sigmoid(weight_feature), axis=1)**2
return tf.reduce_mean(loss_pred_sigmoid) + tf.reduce_mean(loss_integrate)*0.06
def learn(self):
loss = self.loss()
return tf.train.AdamOptimizer(self.rate).minimize( loss )
def predict(self):
# calculate out probability
# (out : reverse calculated; [sample x label])
weight = tf.sigmoid(self.weight)
out = tf.matmul(self.features, weight)
# divide by sum of feature
out = out / tf.reshape(tf.reduce_sum(self.features, axis=1) + 0.000001, (-1,1))
return out
# (DEPRECIATED)
def save_calculated(save, sess, features, path="output/net_predict_v2.csv"):
# save calculated(predicted) result
labels_calc = sess.run(self.predict(), feed_dict={
self.features: features})
# design matrix (real result)
labels_encoded = self.datas.labels
print labels_calc.shape
print labels_encoded.shape
label_out = np.concatenate( (labels_calc, labels_encoded), axis=1)
cols = []
for n in ["predict","real"]:
for n2 in self.datas.label_names:
cols.append("%s_%s" % (n,n2))
df_label = pd.DataFrame(data=label_out, index=self.datas.sample_names, columns=cols)
df_label.to_csv(path)
# --------------------------
class Model(object):
def __init__(self):
self.epoch_count = 30000
self.epoch_pred_count = 1000
self.use_batch = True
self.batch_size = 40
self.learning_rate = 0.001
self.epoch_alert = 50
self.model_name = "model_v2"
self.only_predictor = False
def init(self, cnt_feature, cnt_label):
# ??
if (self.use_batch):
cnt_sample = self.batch_size
else:
cnt_sample = 0
self.learner = Generator(cnt_feature,cnt_label,self.learning_rate)
self.op_learn = self.learner.learn()
self.op_decode = self.learner.predict()
self.op_loss = self.learner.loss()
self.learner_pred = Predictor(cnt_label,self.learning_rate*10)
self.op_learn_pred = self.learner_pred.learn()
self.op_learn_pred_b = self.learner_pred.learn_b()
self.saver = tf.train.Saver()
def save(self, sess, path):
self.saver.save(sess, path)
def restore(self, sess, path):
self.saver.restore(sess, path)
def init_sess(self, sess):
init = tf.global_variables_initializer()
sess.run(init)
# no return
def learn(self, sess, df_expr, df_label):
learner = self.learner
learner_pred = self.learner_pred
learning_rate = self.learning_rate
batch_size = self.batch_size
use_batch = self.use_batch
op_learn = self.op_learn
op_decode = self.op_decode
op_loss = self.op_loss
print 'learning generative ...'
if (self.only_predictor):
print 'skip learning predictor due to option'
else:
for i in range(self.epoch_count):
# adaptive epoch rate?
if (i < 100):
learner.rate = learning_rate*10
elif (i < 1000):
learner.rate = learning_rate
if (use_batch):
batch_microarrays, batch_labels = TSTools.batch(batch_size, (df_expr.values, df_label.values), dim=0)
else:
batch_microarrays, batch_labels = df_expr, df_label
sess.run(op_learn, feed_dict={
learner.features: batch_microarrays,
learner.label: batch_labels
})
if (i % self.epoch_alert == 0):
loss = sess.run(op_loss, feed_dict={
learner.features: batch_microarrays,
learner.label: batch_labels
})
print 'epoch: %d, loss: %f' % (i, np.mean(loss))
mat_gen = sess.run(op_decode, feed_dict={
learner.features: df_expr
})
# for debugging
print np.hstack( (mat_gen, df_label) )
print np.mean(mat_gen, axis=0)
sess.run(learner_pred.assign_bias(-np.reshape(np.mean(mat_gen, axis=0), (1,-1)) ))
print 'learning predictor ...'
"""
for _ in range(100):
sess.run(self.op_learn_pred_b, feed_dict={
learner_pred.input: mat_gen,
learner_pred.output: df_label
})
"""
for _ in range(self.epoch_pred_count):
sess.run(self.op_learn_pred, feed_dict={
learner_pred.input: mat_gen,
learner_pred.output: df_label
})
# returns 'numpy' matrix
def predict(self, sess, df_expr):
learner = self.learner
learner_pred = self.learner_pred
mat_gen = sess.run(learner.predict(), feed_dict={
learner.features: df_expr
})
mat_pred = sess.run(learner_pred.predict(), feed_dict={
learner_pred.input: mat_gen
})
return mat_pred
# return readable result (dataframe)
def get_result(self, sess, df_expr, df_label):
learner = self.learner
learner_pred = self.learner_pred
# save weight of generator
weight = sess.run(learner.weight)
weight = 1/(1+np.exp(-weight)) # recalculate weight to sigmoid (Easy-to-interpret)
df_generator = pd.DataFrame(data=weight, index=df_expr.index, columns=df_label.columns)
# save weight
w = sess.run(learner_pred.w)
b = sess.run(learner_pred.b)
df_predictor = pd.DataFrame(data=np.concatenate((w,b),axis=0),
index=['weight','b'],
columns=df_label.columns)
#beta = sess.run(learner_pred.beta)
#df_predictor['beta'] = [beta,0]
return {
'generator': df_generator,
'predictor': df_predictor
}