-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpl_model.py
89 lines (67 loc) · 3.12 KB
/
pl_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import torch
import pytorch_lightning as pl
from torch.utils.data import DataLoader
from models.keypointdetr import KeypointDETR
from data.st_data import KPS_Geodesic_Dataset
from utils.loss import Criterion
class LitModel(pl.LightningModule):
def __init__(self, args):
super().__init__()
self.save_hyperparameters()
self.net = KeypointDETR(args)
self.criterion = Criterion(args)
def forward(self, x):
return self.net.forward(x)
def infer(self, pc, g_heat):
pts, gts = self.net.inference(pc, g_heat)
return pts, gts
def training_step(self, batch, _):
pc, heat, _ = batch
probs, pred_heat = self(pc)
loss = self.criterion(probs, pred_heat, heat)
self.log('loss', loss, batch_size=pc.size(0))
self.log('lr', self.optimizers().param_groups[0]['lr'])
return loss
def validation_step(self, batch, _):
pc, heat, _ = batch
probs, pred_heat = self(pc)
loss = self.criterion(probs, pred_heat, heat)
self.log('val_loss', loss, True, batch_size=pc.size(0))
def test_step(self, batch, _):
pc, heat, _ = batch
probs, pred_heat = self(pc)
loss = self.criterion(probs, pred_heat, heat)
self.log('test_loss', loss, True, batch_size=pc.size(0))
def configure_optimizers(self):
args = self.hparams.args
optimizer = torch.optim.Adam(self.net.parameters(), args.lr_max, weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, float(args.lr_max),
pct_start=args.pct_start, div_factor=float(args.div_factor),
final_div_factor=float(args.final_div_factor),
epochs=args.max_epochs,
steps_per_epoch=len(self.train_dataloader()))
return [optimizer], [{'scheduler': scheduler, 'interval': 'step'}]
def train_dataloader(self):
args = self.hparams.args
return DataLoader(KPS_Geodesic_Dataset(args, args.train_file, True),
batch_size=args.batch_size,
shuffle=True,
num_workers=args.train_workers,
pin_memory=True)
def val_dataloader(self):
args = self.hparams.args
return DataLoader(KPS_Geodesic_Dataset(args, args.val_file, False),
batch_size=args.batch_size,
shuffle=False,
num_workers=args.val_workers,
pin_memory=True)
def test_dataloader(self):
args = self.hparams.args
return DataLoader(KPS_Geodesic_Dataset(args, args.test_file, False),
batch_size=args.batch_size,
shuffle=False,
num_workers=args.test_workers,
pin_memory=True)
class LitModelInference(LitModel):
def forward(self, x):
return torch.argmax(self.net(x), dim=2)