diff --git a/src/files/nifti.ts b/src/files/nifti.ts index c6c7af10..19704b66 100644 --- a/src/files/nifti.ts +++ b/src/files/nifti.ts @@ -59,68 +59,26 @@ export async function loadHeader(file: BIDSFile): Promise { } } +/** Vector addition */ function add(a: number[], b: number[]): number[] { return a.map((x, i) => x + b[i]) } +/** Vector subtraction */ function sub(a: number[], b: number[]): number[] { return a.map((x, i) => x - b[i]) } +/** Scalar multiplication */ function scale(vec: number[], scalar: number): number[] { return vec.map((x) => x * scalar) } +/** Dot product */ function dot(a: number[], b: number[]): number { return a.map((x, i) => x * b[i]).reduce((acc, x) => acc + x, 0) } -function extractRotation(affine: number[][]): number[][] { - // This function is an extract of the Python function transforms3d.affines.decompose44 - // (https://github.com/matthew-brett/transforms3d/blob/6a43a98/transforms3d/affines.py#L10-L153) - // - // To explain the conventions of the s{xyz}* parameters: - // - // The upper left 3x3 of the affine is a matrix we will call RZS which can be decomposed - // - // RZS = R * Z * S - // - // where R is a 3x3 rotation matrix, Z is a diagonal matrix of scalings - // - // Z = diag([sx, xy, sz]) - // - // and S is a shear matrix with the form - // - // S = [[1, sxy, sxz], - // [0, 1, syz], - // [0, 0, 1]] - // - // Note that this function does not return scales, shears or translations, and - // does not guarantee a right-handed rotation matrix, as that is not necessary for our use. - - // Operate on columns, which are the cosines that project input coordinates onto output axes - const [cosX, cosY, cosZ] = [0, 1, 2].map((j) => [0, 1, 2].map((i) => affine[i][j])) - - const sx = Math.sqrt(dot(cosX, cosX)) - const normX = cosX.map((x) => x / sx) // Unit vector - - // Orthogonalize cosY with respect to normX - const sx_sxy = dot(normX, cosY) - const orthY = sub(cosY, scale(normX, sx_sxy)) - const sy = Math.sqrt(dot(orthY, orthY)) - const normY = orthY.map((y) => y / sy) - - // Orthogonalize cosZ with respect to normX and normY - const sx_sxz = dot(normX, cosZ) - const sy_syz = dot(normY, cosZ) - const orthZ = sub(cosZ, add(scale(normX, sx_sxz), scale(normY, sy_syz))) - const sz = Math.sqrt(dot(orthZ, orthZ)) - const normZ = orthZ.map((z) => z / sz) - - // Transposed normalized cosines - return [normX, normY, normZ] -} - function argMax(arr: number[]): number { return arr.reduce((acc, x, i) => (x > arr[acc] ? i : acc), 0) } @@ -153,9 +111,25 @@ function argMax(arr: number[]): number { * @returns character codes describing the orientation of an image affine. */ export function axisCodes(affine: number[][]): string[] { - // Note that rotation is transposed - const rotations = extractRotation(affine) - const maxIndices = rotations.map((row) => argMax(row.map(Math.abs))) + // This function is an extract of the Python function transforms3d.affines.decompose44 + // (https://github.com/matthew-brett/transforms3d/blob/6a43a98/transforms3d/affines.py#L10-L153) + // + // As an optimization, this only orthogonalizes the basis, + // and does not normalize to unit vectors. + + // Operate on columns, which are the cosines that project input coordinates onto output axes + const [cosX, cosY, cosZ] = [0, 1, 2].map((j) => [0, 1, 2].map((i) => affine[i][j])) + + // Orthogonalize cosY with respect to cosX + const orthY = sub(cosY, scale(cosX, dot(cosX, cosY))) + + // Orthogonalize cosZ with respect to cosX and orthY + const orthZ = sub( + cosZ, add(scale(cosX, dot(cosX, cosZ)), scale(orthY, dot(orthY, cosZ))) + ) + + const basis = [cosX, orthY, orthZ] + const maxIndices = basis.map((row) => argMax(row.map(Math.abs))) // Check that indices are 0, 1 and 2 in some order if (maxIndices.toSorted().some((idx, i) => idx !== i)) { @@ -164,5 +138,5 @@ export function axisCodes(affine: number[][]): string[] { // Positive/negative codes for each world axis const codes = ['RL', 'AP', 'SI'] - return maxIndices.map((idx, i) => codes[idx][rotations[i][idx] > 0 ? 0 : 1]) + return maxIndices.map((idx, i) => codes[idx][basis[i][idx] > 0 ? 0 : 1]) }