-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgc_baseline_ensemble.py
37 lines (27 loc) · 1.06 KB
/
gc_baseline_ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import pandas as pd
from granger_automated import (Granger_automated, a_test_causality)
from statsmodels.tsa.api import VAR
from statsmodels.tsa.vector_ar.var_model import VARResults
def test_gc(data, index, maxlag, header, alpha):
VARResults.test_causality = a_test_causality
# g = Digraph('G', filename='granger_all_new.gv', strict=True)
# edgegranger = []
model = VAR(data)
result = {}
lag_dic = {}
res_output = []
Granger_automated(maxlag, model, lag_dic, res_output, result, header, alpha, index)
print(result)
print(res_output)
if not len(res_output) == 0:
output_df = pd.DataFrame(res_output)
output_df.columns = ['Effect-Node', 'Cause-Node', 'Time-Lag', 'Strength', 'Method', 'Partition']
output_df = output_df.sort_values(by=['Strength'])
print(output_df.head(20))
# print(g)
# print(g.view())
# g
# output_df.to_csv("gc_baseline_out.csv", header=False, index=False)
# numpy_output = output_df.to_numpy
# print(numpy_output)
return res_output