-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.js
129 lines (110 loc) · 3.91 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
/* module.exports.js http://github.com/bgrins/javascript-module.exports
MIT License
Implements the module.exports search algorithm in javascript using a binary heap
**Requires graph.js**
Example Usage:
var graph = new Graph([
[0,0,0,0],
[1,0,0,1],
[1,1,0,0]
]);
var start = graph.nodes[0][0];
var end = graph.nodes[1][2];
module.exports.search(graph.nodes, start, end);
*/
var Graph = require('./graph');
var BinaryHeap = require('./binaryheap');
module.exports = {
init: function(grid) {
for(var x = 0, xl = grid.length; x < xl; x++) {
for(var y = 0, yl = grid[x].length; y < yl; y++) {
var node = grid[x][y];
node.f = 0;
node.g = 0;
node.h = 0;
node.visited = false;
node.closed = false;
node.debug = "";
node.parent = null;
}
}
},
search: function(grid, start, end, heuristic) {
module.exports.init(grid);
heuristic = heuristic || module.exports.manhattan;
var openHeap = new BinaryHeap(function(node){return node.f;});
openHeap.push(start);
while(openHeap.size() > 0) {
// Grab the lowest f(x) to process next. Heap keeps this sorted for us.
var currentNode = openHeap.pop();
// End case -- result has been found, return the traced path
if(currentNode === end) {
var curr = currentNode;
var ret = [];
while(curr.parent) {
ret.push(curr);
curr = curr.parent;
}
return ret.reverse();
}
// Normal case -- move currentNode from open to closed, process each of its neighbors
currentNode.closed = true;
var neighbors = module.exports.neighbors(grid, currentNode);
for(var i=0, il = neighbors.length; i < il; i++) {
var neighbor = neighbors[i];
if(neighbor.closed || neighbor.isWall()) {
// not a valid node to process, skip to next neighbor
continue;
}
// g score is the shortest distance from start to current node, we need to check if
// the path we have arrived at this neighbor is the shortest one we have seen yet
// 1 is the distance from a node to it's neighbor. This could be variable for weighted paths.
var gScore = currentNode.g + 1;
var beenVisited = neighbor.visited;
if(!beenVisited || gScore < neighbor.g) {
// Found an optimal (so far) path to this node. Take score for node to see how good it is.
neighbor.visited = true;
neighbor.parent = currentNode;
neighbor.h = neighbor.h || heuristic(neighbor.pos, end.pos);
neighbor.g = gScore;
neighbor.f = neighbor.g + neighbor.h;
neighbor.debug = "F: " + neighbor.f + "<br />G: " + neighbor.g + "<br />H: " + neighbor.h;
if (!beenVisited) {
// Pushing to heap will put it in proper place based on the 'f' value.
openHeap.push(neighbor);
}
else {
// Already seen the node, but since it has been rescored we need to reorder it in the heap
openHeap.rescoreElement(neighbor);
}
}
}
}
// No result was found -- empty array signifies failure to find path
return [];
},
manhattan: function(pos0, pos1) {
// See list of heuristics: http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
var d1 = Math.abs (pos1.x - pos0.x);
var d2 = Math.abs (pos1.y - pos0.y);
return d1 + d2;
},
neighbors: function(grid, node) {
var ret = [];
var x = node.x;
var y = node.y;
if(grid[x-1] && grid[x-1][y]) {
ret.push(grid[x-1][y]);
}
if(grid[x+1] && grid[x+1][y]) {
ret.push(grid[x+1][y]);
}
if(grid[x] && grid[x][y-1]) {
ret.push(grid[x][y-1]);
}
if(grid[x] && grid[x][y+1]) {
ret.push(grid[x][y+1]);
}
return ret;
}
};