-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmap_rank.py
39 lines (25 loc) · 1 KB
/
map_rank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import numpy as np
from scipy.sparse import csr_matrix
def map_rank(traingnd=None,testgnd=None,IX=None,*args,**kwargs):
varargin = map_rank.varargin
nargin = map_rank.nargin
## Label Matrix
if type(traingnd) is list:
traingnd=csr_matrix(np.arange(1,len(traingnd)), np.double(traingnd),1)
if type(testgnd) is list:
testgnd=csr_matrix(np.arange(1,len(testgnd)),np.double(testgnd),1)
numtrain,numtest=np.shape(IX)
apall=np.zeros(numtrain,numtest)
aa=np.arange(1,numtrain)
for i in np.arange(1,numtest).reshape(-1):
y=IX(np.arange(),i)
new_label=np.zeros(1,numtrain)
new_label[np.dot(traingnd,np.transpose(testgnd(i,np.arange()))) > 0]=1
xx=np.cumsum(new_label(y))
x=np.dot(xx,new_label(y))
p=x / aa
p=np.cumsum(p)
id=np.where(p != 0)
p[id]=p(id) / xx(id)
apall[np.arange(),i]=np.transpose(p)
ap=np.mean(apall,2)