The Transformer class is responsible for connecting a source to a sink where records are read from the source and written to a sink.
The Transformer supports two modes:
- No streaming
- Streaming
No streaming
In this mode, the Transformer reads records from a source and writes to an intermediate graph. One can then use this intermediate graph as a substrate for various graph operations.
from kgx.transformer import Transformer
input_args = {'filename': ['graph_nodes.tsv', 'graph_edges.tsv'], 'format': 'tsv'}
output_args = {'filename': 'graph.json', 'format': 'json'}
t = Transformer(stream=False)
# read from TSV
t.transform(input_args=input_args)
# The intermediate graph store can be accessed via t.store.graph
# write to JSON
t.save(output_args=output_args)
Streaming
In this mode, records are read from a source and written to sink, on-the-fly.
from kgx.transformer import Transformer
input_args = {'filename': ['graph_nodes.tsv', 'graph_edges.tsv'], 'format': 'tsv'}
output_args = {'filename': 'graph.json', 'format': 'json'}
t = Transformer(stream=True)
# read from TSV and write to JSON
t.transform(input_args=input_args, output_args=output_args)
Note that transform
operation accepts an optional inspect Callable argument which injects node/edge data stream inspection into the Transform.process
operation of Transform.transform
operations. See the unit test module in the KGX project tests/integration/test_transform.py for an example of usage of this callable argument.
This feature, when coupled with the --stream
and a 'null' Transformer Sink (i.e. output_args = {'format': 'null'}'
), allows "just-in-time" processing of the nodes and edges of huge graphs without incurring a large in-memory footprint.
Biolink Model 2.0 specified new properties for edge provenance to replace the (now deprecated) provided_by
provenance property (the provided_by
property may still be used for node annotation).
One or more of these provenance properties may optionally be inserted as dictionary entries into the input arguments to specify default global values for these properties. Such values will be used when an edge lacks an explicit provenance property. If one does not specify such a global property, then the algorithm heuristically infers and sets a default knowledge_source
value.
from kgx.transformer import Transformer
input_args = {
filename': [
'graph_nodes.tsv',
'graph_edges.tsv'],
'format': 'tsv',
'provided_by': "My Test Source",
'aggregator_knowledge_source': "My Test Source"
}
t = Transformer()
# read from TSV
t.transform(input_args=input_args)
# use the transformed graph
t.store.graph.nodes()
t.store.graph.edges()
The provided_by
and/or knowledge_source
et al. field values of KGX node and edge records generally contain a name
of a knowledge source for the node or edge. In some cases, (e.g. Monarch) such values in source knowledge sources
could be quite verbose. To normalize such names to a concise standard, Biolink Model uses
Information Resource ("InfoRes") CURIE identifiers.
To help generate and document such InfoRes identifiers, the provenance property values may optionally trigger a rewrite of their knowledge source names to a candidate InfoRes, as follows:
-
Setting the provenance property to a boolean *True or (case-insensitive) string "True" triggers a simple reformatting of knowledge source names into lower case alphanumeric strings removing non-alphanumeric characters and replacing space delimiting words, with hyphens.
-
Setting the provenance property to a boolean *False or (case-insensitive) string "False" suppresses the given provenance annotation on the output graph.
-
Providing a tuple with a single string argument not equal to True, then the string is assumed to be a standard regular expression to match against knowledge source names. If you do not provide any other string argument (see below), then a matching substring in the name triggers deletion of the matched pattern. The simple reformatting (as in 1 above) is then applied to the resulting string.
-
Similar to 2 above, except providing a second string in the tuple which is substituted for the regular expression matched string, followed by simple reformatting.
-
Providing a third string in the tuple to add a prefix string to the name (as a separate word) of all the generated InfoRes identifiers. Note that if one sets the first and second elements of the tuple to empty strings, the result is the simple addition of a prefix to the provenance property value. Again, the algorithm then applies the simple reformatting rules, but no other internal changes.
The unit tests provide examples of these various rewrites, in the KGX project tests/integration/test_transform.py.
The catalog of inferred InfoRes mappings onto knowledge source names is available programmatically, after completion
of transform call by using the get_infores_catalog()
method of the Transformer class.
.. automodule:: kgx.transformer
:members:
:inherited-members:
:show-inheritance: