From 3cdecab04d58def931988b3c712db0e634511027 Mon Sep 17 00:00:00 2001 From: viktorht Date: Mon, 27 May 2024 13:42:06 +0200 Subject: [PATCH] Dockerfile produce functioning container for both Julia and CmdStan The Dockerfile now produces a separate conda environment were all packages are installed. Furthermore, the compiled stan model is deleted, thus they need to be recompiled inside the container. This was required for the model to work. The Python dependencies are installed to match the exact versions of the environment used to produce the results from the article. These depencies are decribed in the article/requirements.txt. The error propagation notebook now starts with a block that detects if it is run inside the docker container, if so it set the cmdstan path. The Julia setup has been shrink significantly, now it no longer updates the packages, but uses the versions specified in the project.toml file. Unfortunately, the Julia packages is not installed during image build, but this is instead done in the julia_run_all.jl file. --- Dockerfile | 61 +- article/README.md | 12 +- .../marginal_dist_of_fitted_parameters.png | Bin 117443 -> 117693 bytes article/julia-env/Manifest.toml | 1152 +++++---- article/julia-env/Project.toml | 1 - .../article_error_propagation_analysis.ipynb | 2158 +++++++++-------- article/requirements.txt | 113 + article/simulation_scripts/julia_run_all.jl | 1 + 8 files changed, 1931 insertions(+), 1567 deletions(-) create mode 100644 article/requirements.txt diff --git a/Dockerfile b/Dockerfile index fb47005..d7f16c3 100644 --- a/Dockerfile +++ b/Dockerfile @@ -1,22 +1,65 @@ -# Start from a core stack version +# This Dockerfile is used to build the image in which the results +# of the paper can be reproduced. The image is based on the +# Jupyter Data Science Notebook image from Jupyter Docker Stack and +# extends the image with CmdStan, and the Julia environment. +# Furthermore the image uses the exact versions of the libraries, +# that were used to produce the results in the paper. +# We want to thank the Jupyter Docker Stack Recepies as we got a +# lot inspiration from the following recipe: +# https://jupyter-docker-stacks.readthedocs.io/en/latest/using/recipes.html#add-a-custom-conda-environment-and-jupyter-kernel + +# Start from a core stack version, locked the version to ensure reproducibility FROM quay.io/jupyter/datascience-notebook:2024-05-20 -ENV CMDSTAN_VERSION=2.31.0 +# Set versions of core software +ENV CMDSTAN_VERSION=2.33.0 +ENV CMDSTANPY_VERSION=1.1.0 +# Name your environment and choose the Python version +ARG env_name=venv_pseudobatch +ARG py_ver=3.10.8 # Copy all files from directory to docker image COPY --chown=${NB_UID}:${NB_GID} . . -# Install in the default python3 environment -# Install cmdstanpy -RUN pip install --no-cache-dir "cmdstanpy==1.0.4" +# remove the precompile files for pseudobatch error_propagation +RUN rm -f \ + pseudobatch/error_propagation/stan/error_propagation \ + pseudobatch/error_propagation/stan/error_propagation.exe \ + pseudobatch/error_propagation/stan/error_propagation.hpp + +# You can add additional libraries required for notebooks here +RUN mamba create --yes -p "${CONDA_DIR}/envs/${env_name}" \ + python=${py_ver} \ + 'ipykernel' \ + 'jupyterlab' && \ + mamba clean --all -f -y -# Install cmdstan -RUN python -m cmdstanpy.install_cmdstan --version "${CMDSTAN_VERSION}" --cores 2 +# Install cmdstanpy and cmdstan inside the environment +RUN mamba run -p "${CONDA_DIR}/envs/${env_name}" mamba install --yes -c conda-forge cmdstanpy=="${CMDSTANPY_VERSION}" cmdstan=="${CMDSTAN_VERSION}" && \ + mamba clean --all -f -y && \ + fix-permissions "${CONDA_DIR}" && \ + fix-permissions "/home/${NB_USER}" -RUN pip install --no-cache-dir -e ".[error_propagation]" && \ +# Create Python kernel and link it to jupyter +RUN "${CONDA_DIR}/envs/${env_name}/bin/python" -m ipykernel install --user --name="${env_name}" && \ fix-permissions "${CONDA_DIR}" && \ fix-permissions "/home/${NB_USER}" -RUN julia --project=julia-env -e 'using Pkg; pkg"activate"; pkg"precompile"' && \ +# Installing the pseudobatch from local source using pip +RUN "${CONDA_DIR}/envs/${env_name}/bin/pip" install --no-cache-dir -e \ + '.[error_propagation]' + +# Install specific requirements to match versions used when producing the paper +RUN "${CONDA_DIR}/envs/${env_name}/bin/pip" install --no-cache-dir -r article/requirements.txt + +# This changes the custom Python kernel so that the custom environment will +# be activated for the respective Jupyter Notebook and Jupyter Console +# hadolint ignore=DL3059 +RUN /opt/setup-scripts/activate_notebook_custom_env.py "${env_name}" + +USER ${NB_UID} + +# Setup Julia environment for simulations +RUN julia --project=julia-env -e 'using Pkg; Pkg.activate(); Pkg.instantiate()' && \ chmod -R go+rx "${CONDA_DIR}/share/jupyter" && \ fix-permissions "${JULIA_PKGDIR}" "${CONDA_DIR}/share/jupyter" diff --git a/article/README.md b/article/README.md index 3d5827f..f33e4f6 100644 --- a/article/README.md +++ b/article/README.md @@ -7,6 +7,8 @@ This folder contains all information that is required to reproduce the results o - **notebooks** - jyputer notebooks that reproduces the results and plots described in the paper. - **simulation_scripts** - Julia scripts used to generate the simulated data. - **data** - contains the data both simulated and real world data used in the article +- **requirements.txt** - specifies the exact versions of all python packages required to reproduce the results of the paper. The main use is for building the Docker image. +- **run_all.sh** - Shell script to reproduce the simulated data. This script should be executed from within the Docker container. ## How to reproduce results @@ -19,11 +21,15 @@ See how to install Docker on your machine at the [Docker website](https://docs.d ### 2. Start the docker container - Ensure that the image is correctly loaded by running `docker image ls`. An image named *pseudobatch:1.0* should be found on that list. -- Run `docker run --rm -it -p 8888:8888 "pseudobatch:1.0"` +- Run `docker run --rm -it -p 8888:8888 "pseudobatch:1.2"` - Open the container using the instructions printed in the terminal ### 3. Rerun the simulations -The simulated data that is used to test and show case the pseudo-batch transformation can be recreated by running a series of Julia scripts. To simplify the process they can be all be run at once by opening a terminal and executing `./run_all.sh` (this should be done INSIDE the docker container). +The simulated data that is used to test and show case the pseudo-batch transformation can be recreated by running a series of Julia scripts. To simplify the process they can be all be run at once using the shell script `article/run_all.sh`. Please use the following commands + +1. Open a terminal inside the Docker container +2. Navigate into the `article` folder, using `cd article` +3. Run the shell script using the command `./run_all.sh` ### 4. Rerun analysis -To rerun the analysis simply open the notebooks and run them. +To rerun the analysis simply open the notebooks, CHANGE THE KERNEL to `venv_pseudobatch` (do this in the upper right corner), and run all cells. The error propagation analysis will take a while because it needs first has to compile the stan model. diff --git a/article/figures/marginal_dist_of_fitted_parameters.png b/article/figures/marginal_dist_of_fitted_parameters.png index 6cf4c103642e2254fc775f6d24279cd53c6a1467..1c1e7b3e4136b3f513ed3a8d6aab51b0933dfbb2 100644 GIT binary patch literal 117693 zcmeFaXH->Lw=KGjda@%9Oph39Tjws{k}|x0%j~L=21WGhts8oVxAe5telyiD zGS)UUIL5}!c7)|Oty{Nl81u5T>;HHGo1u{=d+pkP-NT!#x$(QaF@?gmkNmUDJV4Nt zvW!9zI(tgm+_SgdLa9PyYJPBhS0{k4<3f)3b0JDc;!8_8q<&dbepdRLYH|Nl+t-HlmBt&tQldIqzP6N@ z*!4}PMYbF-=TYfM6TKc=!-7j$@^wXSXMXaM@5vvZ(No+0{G;kUbTdEyB>D`;1TKHc z*Ohx(11pw%PoZRNC~2bl=_mHP{65h9^b^X7vv=r!{)y@R)q+3&q<7>0y`ZHl^50q^ zU!68($`y8lx3Urboe&o$>K}5 ztm)T&wr$}ZBrd%eou-ZKTt!~`i74hv$3%`Bx;uh>Qscv@W`y7Y$%fVSc z-nZra*ZE!LZv$G}WLzt7?bWLq%6?;SD8mO>Pb6Qc4tZ-Un7JkO$6YP_;s00XLpma5 z-9NW)|MohUhl_^?b8L-LLjdLEt7ES&8r`_@EbkgqKZ0qt&yoXwGQiE*`OS+Ln;94w z7#SGO@$m4pDQ}{@IC0^^g{0)z_a9c^qy|Xk9xX6l$Jz-OR?~kt` zwpEl~F??^(kP_m-Z7A%dQy%PVIoe&)NkuXJ^QT{vl$CWQ8(rhtwHIcL6p20i@!7|Y zNm1|Mdg1IWW#P7h@~l;&VaZlKsa=qpD{<=40;HC(}y%A$6iHigpNGoIdLNFYNmscsVQ4fC?zB9I1f)=MTJa5Lqq~Lbyg0V>s7ZwEKX8Cfjf#qj)1dBUy8z|TpRuvAble6k zR8;Cagc`hqDE4nJED5^y!VHFI9D{;_LSW6 zOH`ATOmo;mIr(8|F6C2xzEh1JTaXTgvT13MW_n&%S7)t`htwvqh9b>pVW;9=cpW$F z>+B{w4dv?ewjyD7u?RhTr<+Xj4wsd`-Xhb8?A3Q}I1booq9j8quB|$fR+6 z{8&auClsF}onWBMY1p7-R&U~_q@*OAVrFUie(%10qr=65JyWASSW4MDtEtPAj5SxS zUhUc(_N?gjiJ;7TG|XIFvaepf8X6mum5_LL`t<46?rw$9q#wI`?dipJYI4P6>`EPP zD05;ExivR4dAfrU-M)}+}a zyL0LWc9jKftEoFEgbV$WZkK+&*h_zOF4?SK_Qs9qx!HcZZC~)0jW*-2cUyMudAyTH z5-*hPpTGC$(R%*DtY0lBzTR7>-{r_WyRfxU*_-Y-F#j<6~bZXy4=v0Pln{TD3k4m$d?r!>U zhbxWg$9?x8%aCslJr59Z>rU$MI>u2t`mI*Z+h*()$zjGFMO~kL&rA(|q~C&fNK8B) zp^~a_hl<8EHr6<1S~cBPIn#k!N*4{*rn@E?cj)v~MmWUa<%|aooWFGG60hY*F!?RKC=8Fsl_w-5gpT)C@TOmX zjVSsNB7UqF*9oh!@VUXKc9+!-9z1A+g`OHI6R!vor%y^uY*lRO=m$%(>BO*sn!4fzqtx2hSX~=d`L|hz$p&HAzkjpGj|`Bp^*a#Mdu!4o zYco4qm?@hnyJaBe$ibE9KTlM#yQK}sm1G~NGR(2J=`@>un zE)Efj33ScT(TBq-P5K*@vCUj3hT00I+C2={zNV+84VjoQ7umUed$2+MdwCaTLs7+d zdNDe?{(ejQ_)r(Kg+OEPxQ~rZOx1euE`tF!szSVuOehboJl?EdC9`^VywR{i0hg|l zYT0#%Mj-l;eq);Qc!QPU?P0Ut>Z|vy#`~0eyKL;drZvgI6c%=@tFMnxScJOvf4n|n zCU%d8UKWq*=&@sM-@Zlo`22SF&p&f3D&kWLVvpNQ#o11LrOM99VM3}fFfa&JOo(*n zHjGT}doKd?!q9Mnkx^)Ryk8FQ5UG+H3M3PPJ=6W!_YNY2tYg%2%9Z}_@cZ&NL_Ikq zM}|He^N@~-t|0FhE-o4mRxDqB>*Fr7%c*H1Zfp*#)73vd*}}`+AN%at#<1au$;rIN zM%9v%5+{G8m)Cq2lDkfr##w$x>oeZ0itjo{t5mDT8|_q^jA>|S9@B9OAG`kP+0&=u zv~uIg{{H(BAFUMLUVBjFEvVYbr>UuF(p@g}RA4IjfS9M&=o}TzZfOL_w3#6h4Nc8$ z$2*En^p`(mPYeEK-}%e48ZwlV+2y95}?na#6Q3oY6?d$mnf@-MmeNYPt%}s-%{d7Ol)g^0(Rq z-A^x%OnpmebbRgc>Q%_>^mxywSI1;ICvg3`fBm@z=kjWdvAE}P-{<=-=oGqhB2Ki6|`)SM8t%0WBzAU7Yr-F0AJGc!Fv9gM8V^fkid-hKi z>%nt4tryu-N1VRiO8di8z~;+FZoTTyfpo(~={LUqQCe0uTqq(UB6acN#gO)V#S@D= z+0oU*gFuEh-9F=6x1>*=wEyx>KMXsA&MW)l$1uajG+y(8E3Ybe7Q_2tRb%h4u(0JT zR#b#Y9gN4>ID2qiduyxKXP;B6xW*?ZCqvHM+pu=+T3oR6*Ba!?iexjx0Du2#&tEAL zH*fs0P_Sj_Xcl{MW+5aYdQ_CWx$scg!__sgCRVd2_xZjrDHgE+WtW;#nB^k3HzNsF zORLwvH<5`@;4Ij30B}hd(ap@VsUl2HgUf?81|Nmzs-N#-R-6*=281rRnV#OT%spkk zcJU^qS0V*eR7NOLtGDDlE@O^L*()e0D3orO7K^|m>duijbhog)T$*|puk=AN&)h1? zFUmiYHpKRv#@ZrO+HQ5ihjaJC1Y8SY&@*-=+OsCHb6_Dsn ztxh8_;e$vVfR9qlLFA9Oo-|6G>JAeY7IxZ?jAuqCXqzG%sU%{vQ6qojg2r zCz}Rnem!t8nq&Oc#RJsa51*W!8kGX_c;V#a_vXS=9e~C6=7WA3qIlQ*VhN~iXLzVoLL{=ULWfdgDhKc?P$#lW<&i|ZHy0At=oEtk1s`fjMQ%wO0?XX zHEZyQU9ajPL%8#rgkJsh;lnB9nP^^E>~^b`-EBKRXuEPOWf;lVT62a-~my0|IeQ#MmtN+ zAWJy;%Y?~xz0&l$bZ^5hJqvA${n|g6Ef?abtkA`a9G>RDBX;wt`$MqRzr<=j6_{-O z_3;jFu@$S=e~!MI$)Q=a^R#&G#wI55NwVDB346y`3iuYE z`=M$@!&Hq4r|ZZeffrv%cFrI<>gG8yIK)g2cQEhS^YvZDL{<8nOjlQzt2qwgIj-?G z#8~ClVWeB8g9kruN&plaZZBju5=}P!#(_hSSskZc79P2VA`$Z)c0>zbE!2JT#iTiFjfbs%&D#KJqeZ;; z;%;v4?}!SD%^4XdO?oN|L*uVrz3MPwYQy%{d{FHSpL)(C$@=+`uCn*mlW!SJ5l`ml zW+N1OIy-}b{b+Nz0JK9#mr;7p#1FA8+`PmQb93{}#|2D#FNal9tzI1}7p3wg$v8+u z4>5aEAhFQnV84)6Wv-Qz%Bgra884@S(NUMED8rE6MMx!lfQLt(-e%-E!I!A5WaT22 zN=AFC^aVcHeftt`*&FlGK+0uH)stN(*5B-JNPWnk+FxuuuQ%RTkAmrWaA@0|y$0Z1umyG2RVj@v_u-XcuE``g%9)|fkY?pRw}4;2m%4j$ncMzOf% zviPOu=H~TBg8CLtt3-@);*C?|b;eIoR46kQ+5l@z3ebG$7kkaCaUZ{~ui$NF+c0ZT zf&8|9&|AFV1OW1Zi!Xf$FhM~Ys*?JCW_FgOht%1z+DU<9Ocxu9E9UAXv>u0tvz)OW zZWj$RUO{2nAhyU2UXIWxaD9KP%ZXuZWF$`8rePAvyO{f6|Gfr_C?-a+hDpQ;*RU|% zGz-8WB#`H9N{Lr4D<&A!Z|XosdK)6Uu;s1@5|~c4+x%pZxHs1$s+B9X2AV#Q8UyK< z)CUOkx`<}kDpj?iGR!=@ybVQfnf>G9;;g;HI7mk2A1W%IPOpu~uWi}}fQaHq)bscy zq=N$Pc^s|x$hLd;?j7k4i_$6e7g|e01L{J`muJYUTC>MZe4V>pcR6E4lxkz34Op_r zzb?|FvIWzHov6D!Dp5}FXhsC@@NiBL>cdm!YRjG0|K{i3mw$BI!YxFrUXPW3$~Sc1 zS125KlR$41RJMh$Psq&=3(mj6VbgBSeXfvZos>2^rieXU9F3!HgCK2E5S3~*?m8+` z5`5{+wWF^LrlYnn%f3j=36qP;*W*$o)rg1T`P|y9>$=8DH;cUZb?@)mxpOleox&Ak zRTXV*ZFhdFcL<|FAX83vpeCkk?(EbeQ9-#Sq0!dEuowT1wdAMxsD0;euEZmj)2b;7 z9{x0aN*AYcxKO(y)a9#3A+n5v)QX43O&QD1)VAi6vz3-s+r$enlaZJA%cc`N zJT=xX>lg2uhTeMMHZqp_gV&y(ar(7f-HS1I^Ze;%1a9ii@f^! z*>{!7mlzHnTv$$$5aTX1G}fkAH8>K6;jsns?Ps752B8DaLL_x>Wm5{)uYIQtu;G4G z!x44UdR@FH2R75`;gzdbw=2fl&RT})Toe%PV|D||SLF5L? z$)v8v^z@xOcfJ6#CB$ntmxBG~+Ryv^FKZ-4hvWSwDNfR$eeOCqbQiFv$34P|h=>bJ zUW=LbD7=2|?Ah%(yR8R4obI3j2rx{W3}kq6|NgTYy?5O!+E5M9HTTsg7i4C>sWwUE zoRc!E<`A?Lo3E8#L)OUW?eD_ErAScg)rUKZ6%d-kBf;ivcpD8IRj^Q`)kly1(X*ZFArmysLyxioi z;dkS2xYOR#69zg?t1->SHHH+`fXdmCg+)b`AL;G%wxh6CylqUiVW*bXfa3dGAu`mq zs&=#SC=CoB;P1i!D!1_p?%#h_KtSNV_>@X%T%>GJ)q18tw}=7zoLj;Nizt;%FG zR-+lORkF8Wn@&q}GY0^)4f6F}FG><#p6Mn#AI@P1AUt;a@2ZsW3uo>$)+HHps%71` zrVni&{Xj+EiF(wvx~xo!hHv2HZDV??-Xp0ar6MG8?f+JvET?KS>S8(4d8u;_;o$4n zuMRQT%mp7l_L!O0`e<)+%Yi7lJ6J3!R zoS05LvUk>3m{dbBGyi`51P+@Q*0F@zK!=!MQ=2%<7j%)Nc(oXP-9yr$Nk1O{nG_je%_ozUea>zkM*${O96~S48c^q^YK+G z1!mnXch_wjNl2d+1;t==^X4U-oboU^b`fLmk?CzRC>nJx%hgq+QS2S>{kc*#$ts&b3&-M+=f?x2F#=t&rMsaB$Ee5%fWVlAMNH!fiHA&WZtxr<`+% zlfKdXhIc(Y6w`7FvGY3nlKbCTK24u#V|SRSHB4u{6$z$KU~WR4f4Vnza%gK-UY-!y z8l(BlQLV{hFLCR^*57G}>Tql!l4h>5?A?2M7w;{JRLjxw81)OQsHh66s^p3V=TpAk z$@vnmt6LT*8Va`UISTeo-^}W4ndm*soo`{zZCvIu7Uj_R0-(9KW-t z4E#|Mr3vgzcle6^RlTo&-6debokQCXd5Y8>3q0AczpB4#X>Sh%*+1}sabX*7DF^wu zo)A)nR-XJ;l^eOWOIuxaLe~N+t$+LiB>a1$Hb+sbtn6%BHC5F{$&iTXSzs+DDykku z796sx_a9o>pi%%o<0XdDAM6t<<~EO(zP`wV-qw;JdMXjT_Y0vuo9teRo3Kw71%K&l!hKERgFUXoAkp zk~ga&EoKHk#_QD_^+?n2Z))-ZSkf8kEFrXm2H(Mh7eHaIiky6NDF&%mwqx-KjJ1KY za5#Sacy-_?%5KL;kK#xH*o`<9QZ6fbP~3~7PWVQ0oKA%>%2VbN1#WI`PMz}K!AV3v z%FfCn+?j0uUOJWE28kbXjylw0*R^PWjt{ua=vWXqCITfJdtFpiE(XY9R%21^kf?Kq3q5h(m3 zv4dUAZ6G7~e&}CB^=~SA#9#Be7^atQ-nmmR@h_fz`!WMZNlr?HR>f5Xy5-K^C~E=R znZ!MWb(E2tSx#Zv`n}>y*njBI??{zpNUk7!Lyl<{9YXBby?Zxd2XU8f{lc3RDZriNHpn{ zot@1Hs+6n_I22Cxob?{vA-@y8X`%eOaQ?gwP^)Z2DnP#9n>P!@PGJ!H)*u{XhY12J zf%=&(bgLq53OL*1)jw`HQ-}IovUnNg(2wnK7w~y%r0b1<%~ajHou~x5K?{RGwx~6l z@kP)JsO0$9!Ugv_L)!wU$~uTu0xQ89R;iL^Ee~2RCMz;B5}W4Mb6p~m^k9QMuhDY_ z`2*S`65yK9oe&^-joTlQvj#GvICvoJPXEI$JqHHJ)jaF|FXy~U-)WZ}AWRj|fLVh@keC-=2w^`# zsiRJO)0fn-`|MKp_dNFp`p?zlY8+EdFyfEePnhM8A3tuoaPFKo z;FN5HG62|~ckQib6(^^rLJ9jz5SwB=7X(RqyP24);V7^IWZd^_Bil}aB@ZadrB z(IFR#-2FGgS-kd>E(oAjXHo!y!Yavm50i~}n*|1^G+aJ*?dy5u2}TgBSR0+sKDSN# z>OwLyGER4JgVu!0K(<2i63_ADt-71mqoRUvXjJc}Y8zrRJtp6bjHA{0**D?MS^n9P zG6!?)-Td6#L#Fi*Dtrpu*cH{VXoU0)kgWosKMgx=I8cSv8be6261@oQ6cDQFw=~;3PEz1ph6W&=e9$674_#9IX0=li$|0q zk~NEWXU3;mV6$rj*E+;tt?9&;vwT7*)j0Z!B|V(yk|8t|o%;9j40FKMBVY~{Bfqic z`kuMRVKHMR|Fb@F3!@6?80YgNGnQ~}-Ng*XJ0(#-wfE>E@% zx{cbE?B-Ygna<-dmJAi+gBl~YDdiz&YhlMCh{d6r(xffMc952qzO6f_<=Imj zAo8mG_S+AIML5;vF|>rrNae5#^fuClDT5AJ3)v<< zGcz-yMH7VxRNt%0iBHFhgU$LI+?e8f!yT#~*ok;=bv^?f_TtqmMz9TlRg!o!#zB)fq}pZn_V%&xe($}u}7kTo$!8x!nHz%M-rz-L_!GptTBv3>5-y`Jc=vYd^@~^+X zS+u19&~9Z_Af&A=rcA_EY`I?o3f1;@e`-tj6` zy9z++0zdfvBu;&oZodCQf)F0?7CO36kV)N$SA;(EvS_C@>HK^OFarV&0Z=0~n%>$V za`EkGt@%D zY*U7DGx+5HsfY1zWd36XgY##C`l7XMM?B{eLN-_)Jn2vb ziP#J&I~YMBZ1|HWj}+({hDc*V(#EKrdr-B4(z|1+2TJ1QE6#%CKl0VDt69iVPPjaO zPKrgMr{!7z@mbE#j>m(Fghn9b>+72kA1UN~0NA>ydlDiWBFl3kUm|%6ksz9P?fv5| z%PFDD?|oNYzOR$CC~_N$tjlTb0${aPtz1di&rtcYYONjrIBhiKL-!LC8B)01$0xfg z0O8;cJFfbxD(rDkEC>;FG>RnYg%FV#u~%&NfROvp6dOaLm3;gG!cJcP+{EHHtvLue2ba93x?`=0H4+5H0G*H@5 zQp30w0z4ij>cOQ0)eE9dL9(<5a9kJsMugNaEiEOlf$G=;VB>u6-USQDxLf~s#8h!S z_k@5nalu(>BnP%JcV$CELsB3SITuMW0Q76akRGBn9goqqw7?8M;spaA&8%HRu@`n& zWQZ0PQ+f?C96${w;gH-6$jWm?QP?7+O2Nu89XgcT&4-YPYd`&Cv?NWD!66wLWW2hif{omQwa9^MRp>*gDBg~3miE`%o(^o4O$P#i$umD zRivd2Heif)T0%m?9C%d(S6P%jPW~tpx-xFB0GQMbsiL9;(}f%U@{gOFDH@x#OK^Vj zDL9ZzddA-SA$aMO_?^=!3w(UN$WvRpGMXDT41t0WZ`Q(qW-Azfg9zXNAEPA~=v|a= zQzYz{_)nFa-L+B_cHBK(^E{3wm$;lDx zAIvJ!(_`N%5^uIx7czjwfnrky{xClz-;b12*sz?BAj)&6Q`SvGoi%+)}PaB*_l zYi2es8P+fB59LaYojq!ZaV159@w-Aw?#-U*E7SuSl%5aue;XVdtAuVzm=+@U5?3Q@ zF*r)Xw6yE4WqAZph^=NKVzTW3+_t2wdPFP$;3{&*>0l-g0q9uxO{l93v$hd!k7$p@ z8MWotO43VQBJLbMJ|(7i-9@E~Jdp4|D6Jr_S?d=Wa5#gV;Yux)D zSS)G8HIbOVoQ`-D@*1_?zsl0@f`?T7w=;p*#&#LgfR`Qggw zt7kmMa!(M^KS8M~f_Ou6p3)mWfMz&?2U}aN#3p1nKi$~Y))oMZmC3g+GDI}SiUi`H zZtTcQkSCg3T11kqDfX{n>Zedb55sY#=T5JjrFn-_LCnRVLG2WI2G~ctpr}4*Q&1Fw z@T0>cJDiO3kXi8okdt^VWpp$D`in?1A}P>2QYYIz0#x=%Jbzhuov?fk2V%eyYXgb9 zAHMpBr>E!oVR*$tNX3BC6h)C6ON-6aND1~k>&*rejjOnE4WrR9s4yTkgEvLsRiU4* z$1<22897BoMTuIKL&V*vid#M#U)>Bc;t0oq>lzxwfysNb`OkL-^`VGi3SRL0>Vh31 z^?RYkTuQMwU_lSaG*Uz~SPzS)4*a#w{fPQ%QGbd=-cpP6<~{uU^&71$EL_C**u7Q1 zH&~F2G6SxKWEtJ$TU~x2C=??t`QQO0O{!8jGln)a2;t zgY3cn4ca@tBGd^v2C24?7(-|FdQ8uKUKA=7n&FSP87|}wP*K-#PN0oS?8#o|H162? zR%;+O=h>b!98fYmJf`7(h3lF_w~~bjs2~`HMMY&$*`q95(1t+-P1;78_BTX)+--Fc zbX~wCNCVS9zw7M_+v)VuBR1*Y5`J^ETLxarZsho(kr8RUbA`{T6&~W@Q<=Ez^*3>R zM0?jVOJMdSROSy-j}#RFuUgHU&k@wS~J%JP+vD(#5>s4!ZH zpEofzeP=-f1Iigs7=oHDh0Aa_JRXoVoPIjQ5@06dzVugw}_vS1n@1tGL!ALPr+^tKbe z0VOw}{t{XedP@Le+2*7u)}UxEtX>dao#zsr&UWDn}Jec+39=l7Ccw5F1RSD0GmK46oz$H8hgaQ z(QXW!rW6hTh(t)+vVXi?Z7>5F<{S9$a5(lt;yeIs_xY=?-^24PP zlbeL6k)M}$QhiD+*F7YnwD1gZ)+Cke|+o&*Rj@2jF9p}cIyJnW3ooECfYll)mlE%4c`8^bCC(oJuJCs!WQV{0`l~!bk-Prp$6c%XR6onO78Mn7 zrLrxY@$pa*pU~q_4fa5vf2VB&-yd2{7IY3?Fqlm7F69UkCdd`FUO@oU1mrxZe4msQ z0)>cFAQ~)aHh}Xk-twuSY7CnYfB{2jo2fZ5_HW&K04H>@^>z4ooA7RUm*JdL)p_iLUqtX8To%iT%Kf`_zP8=Sk6YmTg1x$LYFTwOE38$uG zof%XF*{T8b&V;F?T9O0GAcqbbVs=GE7L~!d>UE{tt5@1(jJCA2wAp>~l90|5y2ejV z&93B#bUABr97dQuW8>oq+Ox$kvhN~Dx}UKyG)M7Zi8Mx zXz&HP9K0Ue=xRY2o6dN;xX6S~qu5?Sifte1Z>Gjl+-ctyI}+^I<`x!;QqyrrkcJ=N zaAIE|TNO;!ej#pyy3c50^#ApsSZ+ZJFB-Ow*wbe0S#~2vBRTZ zUP;N5q%W+5a*FvS)b7zCUXK1K%BPwiva{R-k9hvcPVI^>KiQ+E)Z}AFi(NU{RMYhC z_h13Kp}e%Q&!1Ry`!2*qoyF6tk+}Q_6gX5gtfNY}lNS)>8PafBu!+?!@4!x@Z5NhA zZ6i84RK#AmTF_^2o>l57O8*EIE6}7MAaXV(zkg4Z<8zUdGV`%Va00*oJZT}W&D6O+ z+HXO27pprX(*|w%{`~QnGCI@_m*CK6*nLFpPjIfvoijMi+VCf%OeMu6$qDEoQNmNc zg!E}r%s)=3K_ZG1eIAUFhw9Uj>Ec7NHP*Fu_4#0ep_}ccr>7U$iLei+pkll!u)jmK zyYsIFrPzY&3mp-<2%r?^{D`UrJzn&*Ii!K*Kj~pU|H8hBM#N@FTRgK8-4;V$De$hV zcGiLV-QN82<#rFFw%7EVH(x8W^mz-zRO%j_zId4)R~C6c1PJ+Ntg<$go4ZBx=rtgz z5>+uLvgir3KIto0uJ{gnARdRx-LBn7MRm_w^bhb4*I+AV57q#O zOGTo!VoMUegbeme=0^BdcpKw`EJy?P4xN3(Cl_d#wMK|9V?UP0_xc#DrbLIx|jvFXZHump_GdDkYv`6le`5clGf z2a;zrZ4^Yjawj@Fs@?3P?eHCIdfUAF3~Rur64bhyCQpDZiED6D?8r`TgPnGf6d$Lh zBy9AhhU+P%&l0qwgRlDn-O@Fqun!x)2EYzJ@mwF3^cG@yUfqBK8r-q4GxQv|ePOrufTkqV33yL|jGczMI!^MrRUx*$Gb8QF?FY%8MspLvaJYY8D zw{T=&Ww?1sC&<^y*kXY&fSGOX9i*KH;k!IQWLqk1{iG^^y%&8T7cZ6rwN}7WgR@;c z5DrGh5={*v6T-_VW061csnxLn>cB{ahY1@aS%~Jd=l%Y{DRN_T@;I;5Br2ihs}%+a zy~q_*8=zQLY=Y{cgm+GeQS&i^3g*yW^g0X#X2E4pZ8=YNg%P?EjcnL4q%j9LK5Z1G z65EiDiVz8PFTA|igut1accs}2Ux8Hz){}BLE?L#rZDT7(8yv_Qby&`%(4WVxbb(n2 zI{z262k58gLt4#r4b&onK$NN~@&M`J#HW%*UZQIxnu2sa=k@!9Cho)ax;_#!IWKUB zkzj~~u^F^5v4{2$frU8vKnt6$QQbqyX!xl%yNZB;FyfkshZ0~*-3*J}dQmgP!ETh2 zzQaHf!O8t;ia>-e`{6;=g@y=T@>WdJkV?;S2o#%SsiilF^N+q@Q%MPim#<=AeiV(l zuaDpK%iv5)OCv1qZuEAkjn4!7v(8(C@u|1`;PMFN2bV!zFuZ=cAO>9ru@%pqJGUi~ zbO#aF-E+Z%hWAJ#7MQwf3-H?R$26ZH!5+kkG4_JR7%tMtY73|*WhiY)b~1)*HT$P( z;XY77;maeLhq`l zL-p&17%z<)N~4!ld#E*K;+MN9yRj+9+0EN3!<+)T=`*l{%gdLCAUhIA2BN_^mDkEI z1tU9L{KLb;OIeai|5u)!fZPM^eh?wbLcJsGz!U{2yweK-@MPxZmeVZqEJ5|KWl@G? z0!aYwLjtj@t-n7C8!WG^tgQXL<#=BNSU?dcNhv9kLlLTosw^xfCX4t*6jU@Sf^a~C zm;(H6T=0`gD=kSKKBcv=#gL$Y!=sIMUjitR%5Y8&X7a_>groG-MT(eeoS#))@Yl{j zN+kT@x=%Q^zJ#wvFt|K)hiju7y*WWBSgzB~!>m8j8(T~lxps75;4_$3S-sspp-C-IPQbp~ zBw5>EEVu$CY4C;J7XIa9k>RlQg@RdhHKW}MED!ejF3#&s#bIe!^oU~-QP)71Y^pn(E-SmO%AQMD3jn40ab!Q z2nMhK(h+PS36Id- z4NKtV$o|<_l=Hek@T37=KYxYKwfAQIk*MH^r}^VkdO4iyQ6l+60UE+t#e3uA1r`fT zUj%2$IM#vIpJ0WhdQLzB+OCKN66wE`81Jw*_I7w&JV5r}zVnYhV@+j(#9pfzqcoEv zNS(A(?cy^h-Rg=lx-iLxLly2cw3}AEEjOu2N<(L@NR}~p!1A%=S!Gkh3 zqL;{lE5@G~zVJASc8{d1*pz~L2qz@=Q5ZU=#vT!}Lc+jLnV!8>NbObSqN&n8KMDbf zC``n+3%K^0$M`%9uQCw6$WRKf7BG&SAqfe-Rcu~OW9P>p4v6To=GOziJCR8iI3LU? z1yLW8IR>!op=*t757cZiS)w+px?ngXs|tD));=b@6y8BNWgW2F1Azpd=IrtDM5%Cr zL==1m5fgXuTT0^%U7!hdS4J?~+1V|$$)fnOaKl#UUB5)243w8+e-7;w{`zjxcTfzMW16vb?Ll`g`fPlM%es+JatH7vB9nG`Y~Ns-6@qP=rL(bdg81!X|T8n7Vo&S z*|28m_h`-he{nX_f0W6wL-XyrpA50>@pdZT%pWwbAG|VQ$HD(Jo9Q_5Y}CE2T=qCW zd8J3q)Z?vbg-c4yL%N>-jZsZmKh3?#Fd)3tf6>=IJw>6otXs0-P_5SympW#cyhq!> z^m1=2b8{k1fH-$RB+O5I|2Bjjbpr8F!%0U#!2+WsEc}+wur4tMhEkC@ZgeFrh5MAX zC6*dJLu|gK#|4JWE!_T>O1q0+8X#_`>im=&5nvu}V|P8D2VpkLcj;go3PnZ=c@WjF zYm`ON|9prA-VL6mPEbgJNf6L~TM}zwc1wB*oCXm=XFIqhPc=2Q%_uq13QT0xFTgvf zx39f&c6SfO?J^xX5+hmF@%8IXk)CCgEk8|Oq4<0P!J~yL(IEz@T^ELTB+J-GfOVbl zj>!VQLk?T$7C>R45)cxFq7V_lgY=XWJ2O;rm~?Ad(+NyGzl2oA$PHt|)KOQs?pTN| z{@?c4`kt;DZ@NR%jk2he6vXg|g2-toee+Zx6sWZE3)mOwwM)POWS*m#3KT|2lAOg# zPrCIziosAge_f9+3cSIeM>(}i&wlvu!RUt1T@2!(pEvzGjFA6oFdaQAiEahg-VGUKLBB$MLXbP^J2{BXFm38hA(6ZvvSl>Y z2IzN4MBdEydNSUTWcSW$+yG+v3k7|rS)z3F{yi1q`?XX*1m3=T@18E`RpE;lQ`%+; zLSHK*BY-zLmW7@R*{IRsVP`~oY)}R=sD;;J$e$oy4Prmp_0!q1_ec5D3C*koI7cKP zsW?0P9IC!Uck`LNe+)6G?0D^MmaeGLk4D?jzndo)FGtz}97q}ICn3~+4yHPg-lTZ6 zy`mx0@#)hl$hjmFK;7GtqzQL!YiFnViGs*ypax(}Q{PU;ZHZd7zV;rsOHjPJ@Cko= z&KEyH#vKLezNdU@T7QMgM!2_sdi4f5D;Fz!7+(43mV?>bNa+9-EAMCnhMfS$S8nQ1 zmfMOg7XXE#VT=!TMioj%;kYqm6jERj84L9g*EbkiZO&M?<-2UEkleWN1mkaYh9G&UM>lZy1Vwi4QGp^+s{i2eBS%c#_k{H=STDjXUba!O8~){jW`18U{U!c`IH zs`k^A^aKkuIE|^$Q+#xOva3mGpnlZG^IPa14?`KB9SP@X6ow(N-ULYxf31gPRLtAF z+TQl=Zk^%XC`!-uSuppe3Q$f~{IxUy+B4}AI|IlHhBVNpqaf1iL*r4tpwyI+mVTkp zOHK>m$K`Gl1zq$wS)#?>z{(2>tc$rm*wH1AUCzt{aZwN>bqvvf%a9Sf!$&Ha0(3RBXlHl5`Z! z+ObJ8>bdj)6E+4im)(_iXJzxkuW?NIwvlciQEh|0bda zI{}zdllF@LhwSmgf7oO6wM8f-8+VAEsY|sogPr!D(EA_uEUA>xJ-mtjgy}^z07dJ3 zgWG$(?uAF&eX$VRc0i{OGEO8Pg90XuMs_4Z+Crm5R=zAYKzGv;NeP?xf3xx7Ra8=cF`)VZ zRQX{#A;F{}P^bJ*CR#boV}e?3CfnQyqrngfMDMU+mqOb@uJ|d3hWe)jjgl!8nEk_U zR0z(Dxb`xuQNBIoyJ-j}$F;{!aH44icJ)8)3(BN@ffy(57Cpt|hYM=GI?)L*sV63B z3G2$897;p6|Ldm&8teq^OB#(dBA%FE2VFoL))Qe7k=RG*YbJue<-iB3QFJ>nW3a|h zZ-ARhDdtwlYdrz$1!3X56H(koyUIGaQk)#~K7PDF_|vO!RBDr{DPYO8XbTDpE8xz= zL+}H?QjiEIkC)xtr0}K2+bgIx|MJW8{whNAzI5~QQfW#d!!SVIw6brdTuJy3iTTAn z(ldfX2m&hh5ee+5oJh|Y95Ag&9$;tynpzbFErwe6Mzy>6qv_%_YA7dv)R%63>w;GT z?D!#GV4PF^(RXmz5mp=LSQcD~$=r-Zed5i`=pqP8#Ete%j@C`aW}!D9Cu#GEel#;l z!EU|InhTT`w%1>waKAYIJ+;u@>7{(^%Z>*cQVXuRCRe`Eaw#J0so0FlppGsuheSin zb4_%p`G5d^hmwFnH1i-gT5oP#PB$gv#Ve}FH%1?Esu{rvpaDoG`q>J#TE z*|I}G2|pG26rYVBFYIRT-z2e`w8vpKR=trztv5_hENChN`Ar@Mgh_*n2C)9`W{io{ z5zvsIgE}Ahtb)Kg?gsNSz&Fe{ykJ#XI<%#sEg=jP0cj}%Y(hepB!)jw z-Nfaq)&J_4rVj9jsiNwwTO+I$tAF-@QYcOH$v@bgVtfr1W6D%Hu#2RQm7FYeBI2Si zNPcv>hGe7syQ|ZUFs_oAhM{bd>3>iJpP?rV?qbsXyij@Xn!78627GMB5z?p(7YUqG zQXsOnpxbKVX+h}#Y;auwmt}ApVTR-zM4}$3u+q@OWFqM7mQ2c(Hh{~m5;zYIH%BGx z6^x2}yu1U(n<$VX&k_>M9(^0jZe%`zQ!1mu%Ke1O@jCt z3>f<{^k$Syr2rL;d61vR>#iN`Vz--o2p2EB{0hx{a9tAk1tlYd_ysd~V6(4moEzgN zQfOaa9|I=Y9a4>0LFZz&FmHh5(du}hMrIBUX@tQFGt7i)YV# zKznw9A1MQd$F~v<3}8o2oW7$zHgv_%6E)oZM&DBvK zef7@yr@JG7T~2qv%k`}xRS{XY44smk@L+&k^%$y4ym; zU~b6|{5}$hT(QI@V$&uQg>aU)Aczx@D8m8=m${^oY6Twl!`10WP0>)c++%v@u3c!m zwE=1t3>cvm0p>+NL$-GZK#Ll|X%^y{h#_fR)D9M}WU$RQQ> zy(gVq{mFBeg2Z-_h81$$@Z?P}0)XTr7!62!Cu+ITj1@Eh4X4_anLsHVL!-w@nRXcP z@N{%>E(!i1atNu9r%(ZsM})ds0pOD}oCg>LU|hrG36KDBm^!qlk&!I~z7cGK;3Aej zH${ls0Fa?s(PQxVlwhYv6phvy7t^{=BUzCKJ93nH$#}Y%!3%h2QEV(X7=<-dFhvkK zD-^QD&$k6Bk&`qiqCZp)Lio|6M==a@!Q+T7aMJTes?!DyP!A{0+)?Ej7$2`9BQ>F# z&0-tL!lg{cYGm$&l^qrdQ8F`PZmKGs&dUZo;}p(KL_X;@-!As42fm}RzWOk1+#T&; zu*jIjd^du#^NWhuxQdCQ2G>@`;W0S6ZqSKgAbm(RTUd%2syLGGlk5%i+ea}#3PT-;)m8TI1v?0N`V#b6# zT7h9H(Y!s3AzlqO!UjwEJPFCQ6fRx;?dxc0 znZds9B=*Y zwTNIcoIkDRNsSA4R9Aid_U*MH3mA^ilNi}k2@Zob28ji#VK`>KMWW(-vg@wu;LGtE z*q#k#b_;cb%-++08K@PyKhbMGN8fyi`s4n?hXvfSpo&j-02_YVXogXPn2Zq1s|r@# zu`ViDvyy9*uq5z!TXVD819r%BXh07`kH(U(lN#r6Wig~CLF`e7#d90)JQi@#z-vtm zy!|u?7!J4E9TG{?Sz7@aL}+*4 z(NPk09)qc|FBY!-D@4|LeM$Rq@vJqBo?73Jw6 zuC;Z^T#$=XdW4;r`@I-$q9@%WYO2s`)1D=FgSO&>bThqm2=}BNbw>`F>jED`NUjO- zhAvE)OR?zC)X-o=0E5OE;2z||X)(_7eYD(+>-dj_KAEj{^wrSgSB33H!7C|DUPMb( zUp1?=it=I?K7$C{Ugphf;IdT6fnPdgeztL*)l|RX01rHG9!AMYNm~*%Z&KU7YiB$p zr%f;|6W5|2m{63VD;F>Oi)VhslKH ztg)p?6lo2_O3hEF&xctIx6|ej4FFGEK3(W8y_W6Lz*~97m0)M7f>wAO-ad3{a+~=YlVb_9I7#H$dhRqWd^346C=nNWUiG% z48&dHrk3r0KCb%KLi`J}*r}k-EhFrGiiJ`Vk);zfD}hc?$TkcKkk!d=M7-t12s#}4yPwmMINx6u>0%7@Jbgo)X|qR)phL2?xO5gEmW62STNnKRIe$onMDqC1e9 z+7@UW)J@=}RTRf(aC7(f&+wyb5PcpQ^ofV+i}WyO73}H@Oip@4?BAq=Mf77syN$7A z^_p#W89S@%{}8K8uHai0@%1r!1u6D|y^ZOr__%_qx(;MZ!U3Ww23}YWK1E_?qM@USO>DsZ#N(9wm+ zm+$}`0r1w4p#YiYVCXP!6~p9I#ax!z&q6J2y|J4T{j2q^>@YaQ zL%;)x#A!AhNP-9EOC0eqp6eT@f));n+dnG_NC;GehRnjqM41aqr!Y&jb`c&!3gkP3 z7)(8Y1OxFQH#J)(5AeBQq2jZhwmR^P<`|!$iJO1oI3e~ZGa?7Cl-6?BC2R&Gk*Zs1$UxE z=M3~*Ei9F*InWFges>v@KD@<7&?I+cBUacu<}T=EXk=ci4ljbkaTbU1&^Nh}|g%$es^SBPPa0G*UIUsA0SKn38+E??UXy9L^O zw&%c=F0E%n9vD*sOyN-Ds}7r@^*}Mc^4d`-yecG0v#0}}v&Vff{J24Vg)Pd`h`Eii z&_f)|(GV`YFj6yF1`-s$G%#@wL-^{4(hBvs;4MkWb#7ed^A=N4@IQI*@r5s(LN}BD z0hps4Lm&&fES;oL*x;FoV01%(Yez_sSLuoV6m<)!x1cXb1qwSh%PmnHF4Xnv+nM|P zAHg%y<$G^;DXbX#XXmbK;V7U9fH9vc;mkz zRl#FYiUZ~1?ylgMih6A6+|7LEAI&)S5ywA7JtDLDVUj%Zh#v$e8JhM*$)-aPTk##6ShO!G~uSAv#`4L}c?)`CSuLXrQEHBv&BIuv5ivur(mWuII^hx+49mg}nI9Vz>zmX18 z5NVtZyiF%BfF5ev!=fNPn00b`7sd@QWGI^OS9fGi21=nX(@ldG5yB&wah1dg#ehts zYjC*^ed7-{LN>jB>gS3Vh}bCMRygPgHqi$T95B4)bE%2$b2I)4C?N|tI4%qwU4)*K zSjqph_m!W2#K0AN=^;79Ci+YT68D*`Quzpy(j*a@vx5pgbQk9We039FZjv0xaLgiR zheLYyCFu#@EHhdRM_+?&qb(P@=q$ddVp=DdjVg=X&Eq*}M2nqtTK~mh*MzY2?xxXe zlj>(lHnG`*5k~Z-biH3vG9BH_?0A>Wf5h_aJLi1Ky}h2Eo_^9~W5u7wPLugPeagDw zAtPkmh+*-T!UaNtz{-l7LCr5$prc(tg z+`t&>xUj=w#ftWuJhnnNim@`&uh}OR8B^oGnCilfv&K+T_w;B&6lFZ^`0VFLT6l>K zS?@j9`HHLhsn3|)pXn18aNvce6?ZyHTov|u0k0G#Zg0B@=P}RNwOV8&rjFBy!q&B( znv+GKFB2qUx`Hv2{%t4JuuTgeTaDhHg(r@Si;EarC>+MhGnR@WK*0xOOyT(Z3Od#z6h|VhL>UfAe@>g}Ugvyh zs^`_ua`>l-9gun+m_F#lKe3W zoj>V9lu8sfy(Y6??s3JfR!@5S=FOl)3jT`|a`wC{d%a-a#wk}ZIfJDAPm4en>)3*H zFf0Pl-9eF*md&3PTJNSl3F|8^PP2Y7L%{?IGd;R2ZSKOqp~DS_!nh5&k5A)xXBdm- z&k9CI4`9;&7+cX;v#6nH+bhGn`mg6L0*YyPt!_Axz<-)aob#ja(xK)OHUixY`SG&}^>WF% z&qlB;#J|m2QV&vr@R4@_hEX6}i^Z*2zrEko_YRsc?h7Tu}GXnaJu#Ow_km=i!u0KI}yIo)P>yexpWfU*Mf-Fjo&t5 zVbdFTShV3MdXMw6*eQH%kG&NqQ^wDX^Ta(ye2s=|BZ@Hxyks?4)7mxa)gk8u6#|A7 zjB8+dyLiO1g2-G<)_qA- z1ZupkH4s}qVB9&NvIOH%e_WI@mBR%zho_TJ9OTT6JZ^nI+-_x(_pe{C&^gkd8-Olq zonI5kL`_Xyy}>Hr0N3=6S0L$y(g6!KEgn zKXMtAwYz)%&*|aA8Vxs#wtU%5{Iq($V6I&br9sl#?z`{&SxxGw4#{T!jDTpqPfnu# zJjgu+(w0%Ln;HB<1b`s455kc-UKU|QWI6ha@ovy1FhV$s+()Ios993uwITrs+$>QcU;&6 zAmRndOu^Gx&3ST&noGPyk?wmw+$f7m@mk%;pa)MsI>rye@Q_3 zA~AhLaCPg`N1sgsERt97``3?+*(dvYN_W5y!n&skdjyI=BP~YPj6%ksVOWZMwO!r{(_)k2a;=r=Kt47SI@fc2Q3Y z^CpIn2MgB0a4~KE5Ho_TBa+CQ92WVdnQa<;=jBoquYcb;j*3$X8{bxGW*W7+oZ8iI z2XfMVxFmLJ)6$O*cz`u$0X7>93_x z-bIuk)c(O~C)*V4Izd+_Jq-QX`Ym@Dyn_84bfr9V6-Q+av{PiF<=Yz0%aALd*=ri? zUfqW~u3XG^bKk0-eF-Q6Zm`6D#K{Y?*te{!u8RqL?>%u@l+(P39Yr)(hRB+kBv@(G zdNMLA8D%8C&s{0L#6er75s?xHUz%$TwOF^m<>u2DOiWGXuE>xmBB*(6j<;p~){d(-eht8@=f{ii3aJv0vmFz_F1#IT=Q(Qm7OST7Z-3gO*(V9P|40K`VwF z6vaCAm4QtBSwMx!ti>37gMG{7g4LZG(u(}S|HhlQZyzu`83EtvM_t2@kEC-DH!(R2 z0^Op_oy)ioL;Qbag0x#AJ5MUS#sUCmTgR~f&H1EcnJN{EO1JvWFEZC5qZZtx{lENC zSL5>-IByufjKOAiC>+GpqD!(k!3n=ZgcBGO@JU5k`521u`J9FGbR|kR(Z-CFg7{w# z%sca|SpQ&FurPK*m^4i^gNb)dD!y#60n)9l6i(P;gN(#swb=fk1x_9#v3Xq*PlqIK zjXxgFoQKFl24fZiq%Nr;jykYr%*|#nI)W;}T%i}05h2RvPRWgiDQwt%VN4p_I#61d z5mPcKDA>vM$*AWft_on;DtnKwZx`x}&6(L~ zLpu}7`>(mf8tr__&vBtuES`)V#jw0a6zP^)Z;&hwXFO|XbKRvpzB~}=o$%SI+4KPI zVPuydi;z#A6@9jgtP{uSn%i~^C<1QrpGgvSr@&8Si0SAd-;oYhs$l9LLc0%LG0mB- zF~|;LEPuz)+v?%BiEjBcSf0y`$PVQvU?nPPx zf3HXOFw6&6PNW`M_~awxKob4xfzD_ldqCout@Lwur^K?3u;4PPziT)z*DZu|(o8d> z=%ZSMb{##k=A_KDJkt+-KuZ)}%1K9tPe)>cx<(3~Ne->YR6fbDzVz5IpE#XFvpnbN z7_sG>nDDLKC?%zq94eQO?dDWpndgaH6^|5Xe)!5+Rwj_>+E3g*^Drp_1v2R3N~_Z% z^j6g(8fs6IQ@HQgVZ7Hqnwvb+@$>5Xck@@0N|gTa`(ZY@aW(D#it0YiZ{#rRSmt;1 zSFBjEYZc*Ru(g~UlL1b%%c|h9arVNEcc@QpY`d}iF}E+$YQ(a2e|gIL`5%yRxTq&T zw=&GfhCT|11GQa~p2oO94_M~2)>VQRQEI65>(}r7q$l*N2Sz(NVg(YJx~jnRXax?98m-(2mIa3;y;)t3=L^dpeib>`^beX7Xr?=%9+8%A|Y#e~h zD^jT*4=_`kdGJGvYQ}IcOpg%R(D2(?Rgv@23bwCNSs`}OsKAsQdpEC7;!3Y}BPmms zlzi!O?_HA;nF{WTL}95MmSJq_OGq5f;cT12oNmPQDLJUDOik#81jX7YBp|hK5VI+X zVE9vtxrPj%uNoBkW1B(#cc8jna_p}-cg^u@!L^b?#Wo`3$b!2jcB@nZDaU7)54mx< zp$Aq!$3X)xw4eSqKJWY=t^2(jd;t`5Y8L?oVivKmA0+d+n&AeMtr~tcyJ_#fK&7$+ zL}=)+MWj<~Q~I;s_iXrUYll2$)n>HF#oewWG1QA;`Q#a{A0Ig1x#{G&2=+V7X(7<$ z+&leO4gdq3f2mR>&|tFZn%`U8!~5I3_~78B6I5AEfoVMTSN$88&i8SytF5WXjtgx`R?xXqt`B%Un<4MZz71{r3^FTNw}ShROJ!F~dtjWb~+?;}z_4R=@wV zJ4Te8DhD7NKS>b_do@l<7~5U_s*fJa*Q-PS`QI^~{K)(<4l;hjkFX@eUSc?`T^tsN ztmz&(**V>2RY+_Rt&`c=8VM;sG`)=&G@OQ*$;=MW_l%ssU#q7UZ-$S7=2|}rzmr~B z;g)UDRo`B3owHD=fVFC3LOPmDwgG`&k*+5Y(cYpiKs?k8i|;Q>rFQ7Yz;w>WyG@GuPX326FUn@4I7 z`nvSB*PdUnY37mCSb>~ZVGd#^$Jcbmp5=Qn9w^DAnmFkN!g(b2 z7&t}M{?EZJLT#CUsD9c*F;YV8W3+h36)9{lXq$8Vis>X|vKf}McS_YUvI z+_Jc02RofK@axQk?`*5XyLKtlQ1=h#{ry+}qhSM|f6!&rhBdJWosu#yV#f8HCp_)w zn9;-LvD%_wT3Tfr5q6`>ZuEOlIDr1{z>wurwm8wzly=1YVxbq2OC>Xx$;hr?%QL*V z-QB3G?6zoq;X>WW%)M6z*7~7Vp3?}I2ouP<{(Won1#QxXfaEA`z}r#eQncLFq9N2I|io5QV7_QFa0dd}Soy9`=9w)*w@cuz8JB9C|}ZNBlZUt@lj z5cNLI*t2@0!H9yr2ej?Xvl+GyibfbVoN8^5Jm>?6WhKXT zls&e8x@%(c&^x2r5{LU`eu=;D<)YAQH*R>aI(rP;Kdtvtn9RY@nVM-Oky$o_8E~$A zc+O?cSwa#;hVm7~T~d1Wj;eBd)Qgk8d6)t3plP{s_x*M~HT-2%FJ-TtiY0lE+q!kt zYTK$@&a=IfxWxAJOziZfPfTziTY51bIB=0`&HK}Y^DrwtXV)&dcuO4F^tJ6zv{?CC z@gJs3uDloTT4#=}GTTP0X+aD6y^f2dKvrd-dFQ#fj~Z}&%2a+{aL)ti?7ySg7v4r+ zDlNCqTB{p=cYcukog5Z2cy-444cxYT8aZzfCJ~wf&>7ezH2YGI3C<~hwVm*eqb7hk zRfx2n%p)X$C(H4Wv#>c_Nms49_Sz4DWd|t$o5~tD(a81>0sr*xzYqU%$L9dE-@2av<|E0k3Z@$s98=7gw zb*b-D?7NH~8XE-p+k)Q|yUESe&@nA&`Q!RPy4vSow%ETpEd38+*%_0xZTnx5axl{btWZryCnm!JZ_u8!GVO&MJS#>`!x#_Q9vpgEL+az* z;l5=Qf5|AzIv}fG5?3O)1WK}w=_dBmX@gvSt?F-Ry9shVZieq&>ndE0f32Egh2564 zdhJ+pw zXWfwjjHG7VyQyT?#BSRu+BRTt(PP)7c0soh?Br9y?NlH-ar7JaIN{_p=3JaSrz5^< zsZPwEZa1sW>o6EKg!Xg)Un2i9Vt44=N2r;X)WK|rIA#Fn*{*({q9>&ZXBQ=QuYI$P z$(@N|FS*`{@D7nd>C1*J2pBD8ClzjA9Fvcf9Fi-e3GR-A*>+%gTO+}o%Jw|prSkJ|Fo=2D89NQj+wY? z)noc$9wNNXHPpY=!e(wb+zv9*REZ2UlkgCGSNc5Vc6o|e@>0!mJdcRC$;r`o5EG> zk7|yrcJE>n^@FvX#n*)g39N^Cc4USVO-C}taaZBeZlPC8{Ho94@1z$M;ZWhTTfQAY zW}NJF!Q5wlfhPYkJ@sRA#p4AAdJZ_Y4t+joU_{a(#vppaGj@gS(g}EIZVW)8>X15X zFb2xuA7rbtlF;l}dUjtTGbU2IBI(cA6~ZD&da9`0S6^hwB`>h>^V#%kYF+i6I?>Zl zU6;nJK%Q)*2ZgYPap4K3i=vTEPzjA80dMb{wqU4sEgE^F}3b1$_n1 z0Uvajc36AxFd2gDsJ&+KD9-0d3a#KMy-@>VUR^MJF2eHdsgnr#~yZab;=V}!yb;NtqF}TJQVIAD5D7-i=|d= zO$PgMDFD2sJ%G37nwoESYUjCYQDiPJxV3+F3=U^3KFNed}6mJ_B_<|{~9nvpZ+n~L- zyV3X5iCfa>Qq$=L>!ce-X1H-Kse%<-U(+O*Gy@@G(1%K47c`@TbA^N7;;)mwjP3&(C6TUdL z63KtAT6V=!9`B57)|I6_6Jnn1+0~c2$@WtKUjB*Fys=TIY(7Z9kJknmnd-a<_5I7i zF}js-P>W7n*{)~q*=6vejRii<(?PUHT4#epkFzbQD$VTfJ7~!`GRx&jPQ2#@0rjr^ z`Dg#MBU5}dlJJXsPzY>lbjaFz4-q$!5OlP2pElbSuz!`@wUx}WTaCh>sv}~8@|Bz@ zkugD0>vBvlwi= za?JtfA5~$8z3lDnm*O+0pTnw{ttx;<<_4ITFks~&FMB^G5-$Y;39^IfJPvid_4Unb z*D~^U#oF}#Qpv3>XzcYcLJgGyEAnJB|r4)nPQ7ct-}fYqsBBo_ zVjoi+X&m;M$3~}{=L{w@m!?K_G*=L0rC#D^a?;CtMBxGRqorVI6ImKdu~jjSP3Jl# zcpSFBJ;LtpPhYBh_;bO<6@f0()G!Fw6PxBA9K8Cv-sUchLH8^t0PN_ZH9##cUbBRlq*;1AsO%!^CERZEZNb1ZH?UTh&!uQO9mT1Y-Ix^s zcVmrj=>+OU=nAzlqpz&mRBa*8rzP&V>`pLX3h1Gr=-zM3V=d=H|OCdGyHw1 z^HGPi1(J34S$V~3y%4suY6sY}?fXBwE;w~UV()WA9%1EzS?z=wH56U3<8oQ*4-9lP z3H199F;+9T8pTDwv=KabFSFXR{dUwdDN^krj`ASarI5+H$g@Xjk;3V~-a_A4-4U1) z3el4jxTID#d-6!JmrZ|B^lSQMQpRwC19=Dl&?4LU?XAE?fRmjq^J8Hd^mBai_l@pR zw0AbK@;FFrprh0ZqxPFRE{Fxdw6rH<%)p-h?4+ty56`F|U|Nfsz7P7{$PMvuJ+ols zDqqZS?JW7xWc_0Y1=h+%^-wd%=D{x0@>G)KO0ryT=f8iot(yuDTI6l*uxOH39rKM7 zcq&t`807qx&9!<)=puqse{zYqHL3TW7A|)Cj>cZ`Ss^vKx(+3GZXN+E9nvM|!|U!({_wir9j!evKB`JeQ@j=T zXzOLFOT%+j?_RV;MVULmp)6-%MSjW>l_aqDwkUw6c_BayKy_k#7PmW>o^7`Cos^Zs zgmH`AVD}1kRX=nX_W$8wT`H)>^PK1m9*lET7O;E=$f<2bW(U)CvtkiKmm;@1S%@X% zz2={}6nt2*_R{Xpl*YbzRAwN@vR=#IHu3EQy&a^SHrw@%)lp;lI3^>uh@AhH6?!V< z5x4R|GF7GK+@l-QFH!#Hc2Ot7wI?_Ye7I18K^k10zcZ<8o;fGS1$A$(uXh+M)eZ@K zhoZ<5>rxiaVC!mD`H33$7b%hNzj#+&9(9oWaihDUue#wC`$M#xn6pYI0WWP@wBR8X z-i=GFyNOU>_ph!)$FsA~kqv4ZbIyeS@lm__%^wf0{z`4{!Ja6DKKf?kM%zvUTWam$ z(mqIOgbP#{nrb}?Cc}K@)|$uvdE*X9z29&tidvcYR$L*fszl#L1kgiAM@JD>1?s<6 zMUpMcr^NLVVq|n4PDQUvIogAOUD&!fkQ>Apv0r#J!To7WBq?ncgM+EE#ao1Gy8B*l z2Fo05QrU)^>*yfoOcSe*&36*kFAAlZQU2)ij2>(UpU4#q$WG~!&J28Oomb~8u?z7z z)J4Z}bv0>1GknpIgFB!F0&mqQNS_*>c^9q6>x`^M(G0O1^f$drqsTil{Pn}&{Sz0! zOtpAN(~vySrPLGOpvkvtAZ@l&iVl-msotY&DksiRp7kWxTpA^T@hQg*?V+}|qcx!& zgA-j!e6_Tf+F)jFeds?O;PTVErMhvGkw-!g?}V%vSMk0$OH1=f1+&ua`aaR3wiCYC zDwY;hPmUcj$>nKD!0vB)`A0Q1;g{R?p61TZRaq#iw@F>3N80+Dm~>-5Wt2Vz#ZvsK zgQ9T;OGHc<06DPy{sWX~OQ|F*?UC%Nuc?7dJKFw@?~j&-yXsuTugIK%lOQx{UW$6~ z#t#Z~$=~F|`*W^-jz$vURX7?kd2U6|J=Z%zVrFJ{vN){VsZ)!(N51v6(llQxwfX#W zNE-2=Rt3Y3XXs5|#X&F+(s=-S~8uWZ6^`R-8F&#Q2+3Yg-WynJY>gg3eMT z`~BC*Gx8nYjYqf(<~$~%%Uvnh6grNv(f6T;Dk)Tt4quYNUF zA+5op6DKTMdnrx13k_{;5mFecE-jdOX zS}t6lPVC0{i<-8rbZM8(r5;*SGdM+ckE7GaU%zS_x#5+K3rN5y%6d!t`Vwri0(Mv{ z<`9;bW=rpl|6wdH_rTEDvK!$wOjIn#2=db1kz^ZhDT*!arL8i7l(yV* zRmv6VRRug@%cVMVck(fdU0UA_PLSLu8<~50vJlDRcW|0sJZqmN7P;HrN`wlJrtfhH zb`nirWbcF1l3_(!g}j%lp~jlyx;?ca%RKKvpq@Wozd&E}eYB2jdKm=cGvyY?()JP5 zMVMXHH3`jx1eOzhXsSnBI(hRivIRX&iWtnu%?q1LH@%+Y;73tWwEa?b%~&~K-az}W zUlsa>>2x*1ckTom+5c+101uFr!Fh;%cQOmEHf$bE;0ClW$BF%cb1hgHLN0|*EN)*& zVeQ^_#;CypeH>avi*uN4x%G8dmfNyr)fN5XIW+1=A)K10&p_Mh8GkVJ^2;+))~}5h zTFNN;O)mn-`TVYq8A}EuR+og{-z;v_uy_^iJ?3%V^7f&( zwR?znc4{@FJuRKX=TMyHQPg_zlTp_cWV)D=Zz#D^alddt^wZtIOO})`q4O=|d~vGn zJta;kXT71+hRTJG(}MCvsv5h#H1l!}lsM=HKV zhP312?UDUn!yKh%Tb}Z3Ph;!F+R%RZjA}4X)In1RME9gjIJgi;+h-l&7wyK3;fg;~ zK-)8Ix*}PTa#VKiDB`^|6wc|2n5Jku@%7qw+JGVcQKgA(OM}g7G(vG#sANX)t?4|j zS>90^wR>#4Hi~qTEF0iJ%*U6(-~&v|NdISSI+QFL#S+gKorb%+@S_yU#|iVL^a+R$1V@SR56}%bhtq%07a3UBsfx(Z@)#woU83?t z{!caR@v34Fp}_W?VFVmCrBeQykzQu4yNd}uRI*iY5w(jsx!;>ozK?-!%{#Tx`?PdP zlnRLpCVJmd<=9i39#3#!)N7H6U6KmR$V>5*995g?M*0#Vl2Pm~&57M87sxHyjuw3) zlBvfVNE^If%?z~rW5X=jyrFR)Uqr?iM3?F9nx*(BItA6y~m_qq#QOyJOB z0$mkIz$J5FG#19nbP&Bp>g<}d+Q?RFX5g^)PPq~enJG3EsPIFaXl(=zl65JEOk2OK zKi<(lc1q7S%N@sWps)zwtLnre9-evm^XeN3lq_9|;>NLnC4$ynusM}_)+~Muf{AwC zR1$O3nFvng{5loUO9;*+tx>T*=wHK2W9Nn>%7s{D(2Bt`yh*N|5qFs zg1%%md0srcz$=$H_pCB$po?+|t9|EcmBzR6AGZeY5F@UD;-c?+d(KHvl`j@n{tBgn z{vxNFnwJu%4!p8=IFasI(wupwDnNug-Al&1NfA{2*SD_jZ1f3wiNKx#u64B{L9$g= zYGjra`YfMg{Nn_KegOgkp@5kHnkQO=d&p`H&&}cfNCuc%lkG0{4@rU)3|}uv6jkc| zLWzODwl#2PjSUipT7X%1cTohw!*`?I$QmHnS^aCaUUQe_Pxi-GFRun1@|N{AVZukF z-9!b`38p^ToJX(9otfhGEyY<>b=l2UCb_^zQSA5!&9@24Yl4bPnvvqnevNNBR)5#5 z$~IGsY2^dRZXm!K0g@J(417?Cc}r(-p5Uq`WG$a~nuOfris`1N`*7M_!{zFZAu_={ z|H87#R@tmV>5O-kx26uVu7*w6XD+};{Y%An;=2pe5$5|1XNRvpcB!IfL$Noa!4^nN*OxJ&KSepOKCY>|E)ypmX7CvzjhUYV#B^GEe zBd>$_93K8U=Ze#=3baew1c-y3pMg!H^P3VhwDC>dJf7Znvr#b#jxwg?lT1HG!~6MTeP?!`KR_w)rv&dG zyJM&?oRR1#37xrf(~&Em@LHc`eQ8q9Hc4kB;h-Hfl#ED^=5u2~)9)|;;rQ7ui>uC% z2)M5d?47Atx%g=%_8R!&;Z@}y|a+71upheg=q=Yivn!mig5$+nof8x6CJnw66kAseifo?Q+XCcqM|BUFjm@5ho1!oYgt8Bh=I+ z2+GlfirOyDsqBk7#8RG*^S|A4_2=9DgIW!U^1nOr>u1A=#Mt6|xZQk@K zNNhV}hiIJSZl-1f@Ge}OAlA785PSq6=u%b2y#z(wAris=crX2(uXib|0(s5HZRvO(cxi20?@W;q14tl=iEb5bRD~ zS9zI*c3xIMZbXZNWX{Zt5GN#+BGPy@T0|P#3>x0^^y%y;DeVEXFh5A9_(p-f;KV{GxJ{W+ z^nj9N)f{mouYaAlZ~LalEn?+w!)+*5MDUyNUTSwb!BfeIf;@1b-FrHX1G(nCo6r=xZ$4iM-~x87T1Ye(&1Hi(q%KU0z~p6dP9|czWNe>2rs+eUtUoW)KVB zdA+0qkBDbdR1*vX3+0Bw$@N`V0uytjeC1=2BidYkak6>(ouj(Cw?`J84UhI5a9O>$ z_t?gFbTc(AkR113RFG8bmk!jydE8GH_LmmAz-aLbV>+gLe;*-#J&r zb<&Zwcx@WFdO4{P|)deTId-@$zYJaMYhe{bm z+1l=0Y}pj6*U()%`SMy)lF-0-kU69hdQi^Y)f5g#)M>ju**m>z`FXYD54jBT0n}+3 zn_i^QNZ}xmJlXwWw}qV&F`y6$8_KTtF?vgC^I(}3#GIm|FXiZmWa>_nv(RDT^|~l|W}UvOEN(8h5;#5M zFNX>a%+A2|#BqaZsFs!({;o#= zyV{Nio5C>9&CAkL*1s|aXv|J1`BL=0{X(PESYhqsKR!H{ceJkBV!@@RG@}%FX51Im zAcKG;um$4t{8Ga5p|(Wx(G%} zdz2(lmb4nAlj#0gO^?{EO)%P%b`uGq$8B@tq}&x1v^k{YE|kN{byptRqHHhaAtdn- z+6%mV*e;fd)|K_Ky>_16kSwcyQ zP}efv@+U~BkjO$;bD!KRZ8K~EPD;i^gadCkqv#Q z{iW;jQ(slqWc;vAwT<_vvPm*MQd{9#r-g#`uw$?pa3TXa3Z(`tlr<-iXb-sjJfM;t zd?U)f@c}AT<`{H(Q}q*^OWykUDpO}H085D}$s(3!gxDSJefxLDjD2JyX^~wkU0FU* zu{Q~OuS1p6tALgtTezETX?Vwk(B-FESJuqu-sJC|I$*nz!H8bP!{fWx>O0r{BUkz; zX%ScQTqWi%f5cI<4X>EaWf#d;X8*K?19w;>S7Nj)gzQr9b8nvjF!WzxBYxOG&T~Aa3y0yGz3L25fC_hTL za!(mM0pH7`blOh%NfO+Ve{ckr>7(Gw^-kD)tb&G8NEB{99oqB(=T~L+ZSDd#vq*@r zd)T>aQ^hF;i(iPt^NbO+S#=%sBaJ(jBq~@?E7tHI@c-^** zcS9*A5-sZ3$zon9KPeibJTBkUJwq)OnY1DVzK(vD?AGivL16XA#8Wd!e|*a3H9>!2 zUsoWohL`&Mt*t7>J#wdz_#!ouajJ!`N#I)upr#9&$8Jsa}7LWSJ z@P)_(nRw`(-7)NSx%=6~eI?)2IHpu6R`b|sBVw9NnsNHnM7@vJn<>}W2XZX2@O#o2 z0MXg{7U5B)HK%C@C^?>Jsq#j?qsHor@#oLUP*t{FN|H$EnL|o+4B|+et)CRD8OIdC zk2e?4g9YMvn6rP0N=~cyj}!(M;=y+R#m1-N77%Qb&zSpzxU*SqUC$6*spr};2DM$F zQJHQib_rHg-<(;N713lhqV)6>KZ^y#amu*mkDLDf{Aa2QUK~#?`f8Tu&a>}kIsfLc zNN?F*Q={{r%{g5+wZrSC>smZ-7Wbp^o-3UXZk#~iuiVz2=FP`&So2Cs`IosA!wUlJ zIqT-PkqRc4uV?tWUDNMIPA4!wCh18e1*!-msOTd!n6l15n0cCjpo={GBmeq4R8{`k zi#Tl0-JL#1m^JGM3*s5n&c_c_!U<;`j>~q;vJSkb*7#8~RmZR5m~6*1@515MJ5Ps) zuKu`X?TM?|PqYNtl94!Po((z!-5e}&4omAd+^?x#RtgNd`gt|On7cQbQm$eH^v7_& zbcT-E3KOiV1v7Z?sf(O>NMl-pt;n=WYw|a8Vq@g3XT92NUkPqxHHyB`dd#QgKV|CH zuPOmcPAp>KzYbhWVLHs{98+I&G%T7H_E^i)gPO&6-&RVUHA}++-_{}TM&MxIr~}m0^2kToC*NYDcVrV5fbSJbxEG@uZ@7~Bbd}yu zWUwMd)qWZY2y$rflB>VM(dtZDmnP5$#>?I$VtO4}t*6o2^EE;OE+l?gQl^rj@)I=!>|KunV_~yE}WO$!#VSc-Cj3yE9ilT`R^`OQ!Nv??qcy;m%?QjVca5y>12ZfeZI zbN;T%xw%i$VKW3v5~1Ht%CCI|DUIJl$*uXE=S4-gQQv46oxPaHqW5ORceF^$q%8wi zJDDaD5!mu`qR`5h5}T(zV8{@SWubrj5|g&J=1a^5!jy?e__C?DM9Rg&QX#Xgn<~M$ z{-t8L_1nsViRYV2IX92n7aNqR{KWrgE<#2e##%n2Iuu1{7)zW5n3R)?#Ig8p6Mm?) zciPr(DsgOA69@$6bD?0OVW5p|j`~dMDNI^mM%Tu#qqN$$Wv4eWg3HT9ln5pD_C8N; z0uq$e?`W7L2t?^A2}tGT)ShkFE5H6N#s|$l?Uwt;x4Npx&}{YeG!!{b`eshc?_jW+gvvOa@TrL4*j#`_(xMt%$Iwtb7kv zt0Sx*9{wRabpE!L=Pe1nQUxW!>AkFeJ;7;vWjDpT1cP99hybpsMUb5-GA`(NOKIk7 zDP5a{&Po}*RSLg|@80c}@1&k01zMgh64m`KSZTh6_s(Mozh4)714VO)(_{>FWt-YDX0}k+`Dh zHbf38JdunNFSzt+lLwwe8#Yr_D2A5~sOLnDE1k2V+WWcH0Cy1f2>^NYdcpIb^=`9W z2=qCb#h+sN_BpHoNFSy}PbBNc8uZ=+04ThSh<45W@IQa>x3FI3&vmp^^Z)dCZlAo` zqMCT|X(mBQDNC-xn!e@J^MNT*1LJFaB;5LcnSYwOb(7w}`hVQ}PvWL1jVPv*cxWP5 znMIQ>^n}znau=CJ4qRvtfmAAB2Evzo^sAoSOMMjQ0ca8K(Y+Xkyhr1kC@K?^nNhc9;%c|hnL2aav(FLCu z=+*j+4);db6h&NO$!O-x=-Ebr%0k4c!bbKA-NRj^C$oDnT`P$%_}0{jtt5|SDK0W{ zf^(a69)jc7jgugYPgVR!X>*QM)Ic?Jo?a<%_5_0QQj{Y?xcQuZ4K&!5O>MiQ^DvFv zHD-wwzsCYZ>B$fA{yaiYQw!1gq|Ta{1XR}YYoHRDs}}xGoGMXgcSs85!e7l-8S_L7 z6f&w{pK$;kr6}D`Q`AcA)R-5l3br#L&PlZHf*pX`BqJMkT+odQg`6LojhxZ$ zdawQMf^UOQKE05efK%MW}FDy zI8L>VjPOdXqvJ5A&or)C{s5l*H~`N*(6i?Ni*okImyT%Fc#U0f2E<1wdf|~31N(5+ zGMk(N2h@hX*;Djgm_Z(jw7}>bC(H!3^aCU8S4eLyxK?U5)65;@W(h`$81$D)w0lbd zSnOb7PZnR1FinygxHd#cU3js>oh_h)g#%*IdZ6)0!f&oK6VBdPJWN2ZX;=i<-UgXP zg=r_o0+*@`c|xCaC#l(&s^2N32i^6Rca`@$^>Z~NuRGjJTwCD6x_bi>qsXa88#YsS zksynq1g1UTDe!2SKp>T#3<;VYWccpYqoKk}QhFFKgK5g zO?fQps=3cUin>>DI1oq6%xc<9v*$S?JCG7B6>H3)0-p<+`PTI4q@HDaL zzjUk$9EOP9BVgsFNKJi(iQV4PLd~pblM zE%VusDnV&@z^JmhW_aa-G|WH0_@^yJG;Dt59dmIdn*dncDr65;G?>za%xsw3`6oog z-8GnoL>N=r5s&&J+U0$)SrSFx!o0U&5(morg-}!Mo8Vjj9bW0NGcG1c4PpG`qbz>L z4h-|*CIl++oZYV^lQh649-%* zBLW_g4?R5b`|WVQd1%fARDSXUZLH7)sae~0tdCgMY1^bybEpxQ_2OU8&?H36mc;px3}$c z(#x3hwafROjx8HA>t^k<_>zT_!Rsd5R1 zn-<2r*pPxkT}MCu+t?k;msM+dMiHM3N7%#u1*Owp_VpRsY_UaJ(44o}9?1JU9uNhb z;A-K~oGxSIa0ejtL2}ZSD21vz|L1PLzLyMgHunnhsrYj@=0bL1-79=6hL2NHdg3It z6&Z%+xA&efs732Bw$$)ags^5UpGj`r8+|OI<;J?Kt`ELcN*J)3?_oz9eezaUyat58 zws9~6xzCIO*iJg*yS@fSOLS|J^$kPz^LT95V{$QBJ8FO94w{ zP`I}cgI4S5NlF>KIKeI4x5ncoxyTz+mmVtZF_L$+jI5`q#GQYq|T zlM^)?ZST`*YtF5q1@EwFg=OmXb8{!#H2d>Tiw-8=acldf9pTiZL=Z_c4bEsoMt54T^F3K4?^*Fb;EZC^c-+9aP!NG&PpL@AyfHCFK270sc zX~Ge#DAKfv!^1g)DZez+>eh_UC6eqxjCv`S{lrzB7q>y;FU&m@vSmy0TQ} z5+z4kh0-7)z?z|l-++h1+#KH`)L`?@)}SDp(WS$>S^7C6H&*zZ*k>#<FASKLc}abg0@GG7!Oq;FcKlQo$dWKF^EXtY)ybZ%%1Zfq04_+xpoZ@GJx z+$RJr-(mKWG{zRp)S$~9Kb=eStKNoE>uruJV#2elPrtf~0p2V}DeWSsDy&y#N4c5l z>9GS9{#PO^mgGNsL&>%^W@@`K@}%U96Z~J{2tg_Op!Rt)x8ffJTD`nJE6E2d8FXvr#Yag~bMI9BM57Zxh2ATa6GA_VguWp#Laex~ zA-|?TcI6?e@~r!Cv~D|dj{`wajkL;p?YVxMIwl+sZ(%*9ILVi>Db9GJ`>1bI{J-X% zHHC;kNHFP^0}c|%pXA^sjnZgpBiGDITC1r}?`)Uku;W6GT#BfGE1dmwq(ZKRkZ2eK zSi6M58apD~$YjZSsj3+)^yz$#QdVUAGS0ztP|T~&67P75+0>r@SraP~0qc=5c&*(d z&P(~IrzePuFq7N5I?g}lM48o9fNLwFXCCM0Fk>b}kizF>6eEA|sr@`spJ7Y)AXzLe zJi`GaGQu?8edE&N5#Cz?P`Ot(*YC*_3!>I60ohd+0xH!6B}X1d3(xxz(adZsQ7c+k zi#*vf7sZ25dDN4maJJGoHBax3sm-kDGS`x~2XN18@BR4J444t-mej4q7_Fb7x9Be; zjJ{}q623pjak>*p&PJDt^!3EcBzb4oE`p*&jD#3nfi^$2lE}1!5`gRi(P>`!<}XWo zI@ZjWNBCnhdzy(XG|2TvY?RMnuzrI3snzSLSyDPp!|pm)sQ!|~=1S(UtU}4bibQD{wRZABI*Wzt}JGC}*Y=23raV1guI?Q*kD?3aymj@7QZg03;EAe+tH>#S!ZOv ziq}}ZM43^C67ZCHPz>4+N}V59BqIjm4@BMBt=AbNg!+P5p@;lTK@U@+wlq;F_hiHi z)Kq;Iv2t-r&`jX)y%WBN6tmfX{(Hq|C>6|D;L<0RwY>ouO`a$Yr2Q(Tcub;q5%QAJ zscxVXYuJ#>e2bRR3<`fJOp8dqO7R^`hG<<%l_&zb45IpRgs!tlB8HW-WdqIxjN_>d zbc~XcE6hB}L(&bF@Z5~@Ga+L`jF02q~fUh!H;0~TKnzFwG#~(@eBRP^2AK6Tb z@e<~PMu|$4{NO=xwb~Y*R-{&G}443yge^7%UES0sL&>!g^fI|N9s{ zh-eWgU|y&z2!#YhNvul+3?g{=IIQBD3UY+T7D*6YiH`KO+|K;D=`wa8&P`D=TR`mY zb>`rnJ#GKk_N_OllMaG?Cgn*WIs@XX%Y=O++O>JO-Ca10rO*LFGdSno`SVXnN+Uwa znIa6>UQ~ZCIW7bQuf1$QiA3)1>=hYUy&2VmPT7Nks&c$2^F;~Tq4R4`_evlyCeJG; z3MMF(4+l%ne?JC!h~PTeYySAA#Xqam)W|RGCG?Vh0+PsBp$IE%)z1Q*xd4B?n1vO_%H zcN&0bLJ+9?h4j@56|yMl2|t-ms9JZ*os(+F{9*kLR^Mql{E4`E39rXUs?i_Jb2i*E z_?KjbVj0m~XM~FG)O#u7t_W@;h|WY7pg>`Qr;5)-W)7Qh5C@4aSm_08Fo6hWjt(*? zTJn-$;{wTu{7~Yx^c%tf4H;5f^{f~M+~}-tCR)W8VirP0Tlq0ea%X~CR z|BJ?~vi>{*6#RjpcH7Hka9cLH1n@j+_vyDN$Y_5UJ($<-#c*LoJmkt*llzD7uh?}( zSHLE7Cg+3fNEHgZwY4FP&}dsj3U==hHN3AaQFJ0tRtilS> z4}Azy99~L>7LttGb)Rc(VTjLq+gVmM+E4b2KPxXc>xikN11eH}kK=>laYV?MX`mfD zOkcVRU8M7;Z1)Z(YkpFADpKRj+oB5)XuU8q3N>HS838(EhDuRc64$Z<=gPQ!{k3Gw zReAYEyn9{F)p^7)HF-9|HH%F`#-*XW{ckp$G9gOs)D47sN!OLMyZJ(lQgEKgxk-xP z-fD^Rz4;wuV3y1%LB?JO5z(Z=3LpB`Y29n-(SqhGblDr7>N^}hn%hW~XI?THjt|Ko znaN4QC}WLrT}Sc-GvxGBH94}>#$h@*6Txw$4YEzqQ%7DN4smO3vOE5-ve(z0R_H0* z3#mJ@W(TV~OtC7>OEUiayH+waqL`lNTK0a+C#F*;DIg>_b7*8UVXd~3dm_KSUQ=lo zqtE$ipUh(a!<0L3p<+bl#m+y7>EXjxYiY-@A2$q+ml+;z4*`>7)=PtVKHpX5@CLXM9m|42E zzTUu=go)X1>?%Q?+D8qy^@H0^qFnZz{fy7v3Fm(z84${oYD^`1M*Rv1I1Pg2g~5!P znuK#PHx}W$N$t@WUh@_F|lIgc!w0i zJg}~8iyP}pkblY?t48<)QD{gJA?eGZ=%Y+o3FIVPz6?wQYlvO1t@02-5%SZFZ8giD z(MuYcbEJkyJWdsgFmwYfK>#I&0E7oX4h2uLHe>u!ELLa^<~(f}9Y~tB#O95pHkogf zRtdrG$aT-pPk$z6_p+Rom6_P_#= z?l=>8rK<-=(ktwP#R@6Y8A3*QO$G9Pb+cG}k;Hln>w5N%9n+fDr5R6vkVF$8)RgC% zTt;2m%cMf}%X#q{bL%%kaN>aDj8ITG;U?1CFp661{YUoByhg# zBt^@yqPE-hq_wq)F4zb6FyXLk?FUp#9&_wv&rogmm!T4AgtioAMp}2_I?Q6J@Z~|7 zKg6_bc$}C`zwemyGZSCQwk~gdrOZ0cG^IlDz^a|8s#2(Yg}&0@$|9zSgARYlw|8+C z-ITGMI`jXE#W3H80v&2lG;;ygkf%@WMb=t!=nXR(aITHXCIjOE)wuuEzUKO zg3mV(WFcj^AIHJF3zmdbDg14H%gvYZA0@(1oG@hin(6Cq@^X;2wL7L_C1REijJ$Yi;oT>2yBe--mixG}T^9Gc|k zfTUTEQ^gA{lN#Sj=~Z*+zkzCbIH+$I27>QCyM!VlPiz##%uL2!glUj2T=E+bqx=WX ze>=$}h1e=O5JjHg*92_? zhf{Xe%US_acV&uHu@e8ZPH2;K0ya0jkNSm{4!^*pNIHd!7D_F!TNo-ewY(}Nv!CkJ z)T|%N+84#Wcz-P~U(ocs{@<$%5OF9mUAV+NLC}#d1#YcWQ&ag^^~2o`rMYj+Kq*m} z9C4R)A{ASEahtDyjXkE3+GEq(mk@^UN^*4t(gM&QCzg6Fo~{7MI|z-ZnNbpJGogae zUw8@850ZZ4vUTJ8D5=jzBw6Dx#Dz3qFcdc~e^M=~tEiMUT7>f}=P!z-o5u;G;KD|u zRybS3e{ql&1J%9%#2zLQ;6_w3VOZ1)w6&CUJQ#7wN^;(UOZ5f1e2t{J$3AnBA!$)k zi|p%JRV|(g`)m_z5j;t`e4F;Y?QhIkUJ~T z?9)9DYWdzhM{NDX4DE!?3lS=gLIETi{1YMlZfLrQDou{f;4_?QxkUhSdcnm)#}}W3 zb{@gVfY-A{akkg`z$r<+1zXa*x>^4r=X|9Wv3lj?1|L)$4KM#6XCLSyihOx2L0KO# zy^2o+JzkXemZqmGlN4eogiw$C8`~8$+jx;!Z)xXE$K1PzJMr~XRHkT!{x!i*F zzITvC+Pr)(Lm(gO8*=$^bxlIUC9Go<`gxgjCf{Zk4#g2<*CvE=FRjPGaW%X?3DoPf z4_wkjr0cUut!|JVTQ?FVx&LB}B>Od)cl%!ziR;mtR~Di_=hPLV zr#Vne*18;0s?j;pOKn|7RmJl&MLK5HuD!-iifZ@W=dJ$n)%{sv^GBUN+hS=;wS@!! z5%SBzkwy+{cJ3RQ((T;oh|U93VhjfU(joTFhTn}#$LSoO-FHg=`L+>1&;IqduhjIu zZ{6&wLtX8Gqg7d5cb{KB?Sj^u4QC%l6u!?Xsi=B?aeb)#>5(SA z8r&>irf|^5cVoe+snzDzRk>36?OgF#RAZ89hYS*`LX>t3*P1lmP5-TxRvoL(jP6Y! zlBvUaYBIX3_lZf)?O6TvC9X-)-6>f!=M~j;c*|mRv z2YQutB777%uCj9chg-IaK}@N&?I`mmB-Z^}S5{V*$IRspbPEH-6|kV7Kn{?2YRlCt zCY;J`>-OE!{j^y-hfi!#O~+K~Wveig1*>vrCG`Ablc+~o@x3dUnm|g>$MB{5q}RGq z&Ixoww2b_a+jzT_lwvMU+#FCbRi@nK%n5PIS+=HRs+r3st$_n=_rG_q`|6|LnyX(a z48P*|?vaoFZ2IlrwvQen5ufS7N_^+KNbhx9xeKIq`o+-{ISsGygZ#>RF_hJl7Nzdvxw;!=KQ{iW(%sAD2i$U(Z0p)yD0K*S zDrMAt>uTcb)|bV{(HUOQ{`9rOLq`LrfiKEX9ba7}m3hqNT`&Js zAKcZ*v~Y5ph7rtwMMQM*xrLm}agTX@xu1w-#n40yEQl zd#qda=+45W%bG50Phd_+Ud&7XJmUAr^GDae*@3&6T;MZ1 zm!)rsFXY*neW+K$%A2jUbYgDcW{0Y#cV288$qxgzMy!VVZ+uysv%fcE`**wi)26@M zdo5prx$9naMZ#NCZC%tBbhZAqY=%LL>e>Rc+FtBX#&-4^89cI1ICt`7ZXU?0~fh}7K$DhPl#&LiD?>VPT;ig0{96 z$gsa39PEeD;|!q`nei!G3Z*24fVB9XP%Ah&dzd~8xIhT@z%pErbz*wR9BZ6Ns^HiseFi{OS?{RJNYDF_M)H^m;p=L6Vat0pMVZD z17}i0>*UFkPF-McE=DOg1z^!$x9&s6#_!dVyLP|uTDOV@j*9@J8F-2DOP7qOzew~x z;@g%jd6z^yGRir$|FQ=_e|h1hwF@p>yy%DIPcT^$RNZD+uu1!Ut^&S7To=Ud(i|m>xRpSwZ|j!6QqGXxo`xl(r|Eaume-y8Sh@Y zVueze+V0(qzw#&F!Cdu$+SJdPCux&|E@S5E)vK9w50v6rj_o#%GvGdH@^CKZ&66>v zsJUFcTrWlR9INCfG91*{EKg}0yOaqWJp&lBO@a%5FMNwn~=qnBH{}gQ+I+6 zFglTY?yR2nC1?JOVlb?3w*0nl6VZ35c@a^Lo~{I9o1zalnc!cui$}@qtFBDuDd$C9zaHTy&o~?CrP5E2FgVi-}pQ4u6-`7`p7ho zs#Vj_C=NLqYY4)yU@L4Kujh7lb<+?lD=RCNy?d`mB;hRYg@hnJwHgdAm?E_g=qX~O z2CK)l`36GSnqXaoaFdFpM0JCsxri;QwQx5#uuOuLI#pm*j>>e?2wlQM7Es>}gk$IM ztE37>kzkM?+~?hDU>-)2FnqI|0WzTC1&Q2S$kO;tX;cqZaGt|?tOk)z-8Jp4Nr{SB zC-P;nN2{H(t3P~@RZ&qPSI*oGvo-1D2x#$wzC>46i#|RqLp+hA(Su$LeV1oi>BPs6H6G!y0f}5B~Xe>uxnQ57ikw zJbHFp&~x2c3oeU6=wPm&lC(5%xWlw*)85SeJ$y(1;zVQ*2ko9C9C#)?67Cjzj)OXY zlA70B9fjF;ueA?ly9O&?yWQ)iefHA_Sh6@EtUpg@eQmP8T7Py_{i`|Tu84~iou#R2}NG%PIw{Eh)s(Mjlx8RE5o)ofCK*lPHH5+wp+`tejyrurrPd#nFwd#fi-@l(x z(*rR600f!o>!qco5$PXiCZU{`r46_|%2boIE`B=1)Cx+B8@%D4rRgJx`y;Qdu6~0S z$!N$W{`~XL_ur#`VVs z;2sv13WgI$w4tBoZzYbUiJp#X0i+@oHGPzR2KaE`kjN8>02KsVQ9lp~$jE!-zML-& z!+MAEwR#ntt11nNlkWxH(BG<&Xq-T`1?s5724459GHLAEB@MOGk`0;6&?N8tE#J?gG%Kcfx7_*?Z z`DA8GzN3P^1-;lG=TVo=uUif5Px7kHD28Y9^_D68+z(Dk3bT(IU8IKjjMCI!%j^Qx z)K|6e_3Knz%UKEJ-my|I%|*^u%leIeGv=v11@&wCG zOYjKLy}Mq?WXu6Lw4|XT4|Qe?X84iVe0!KS*#xSq^D@$Cd;x41fzYBaJEIcryiVZl zxF^4dnylOu=qtUfo2Yw2^*p}71o05^r^#pMSZpQWdEEH%k0jAQaTzu&d3ooPpB>1F ztEeG~2sJTB-p}f3famH3Y;rNVk5DP=Qu0Cd&b{DZbW}(i4N#Eecq*!@Q?L)xk!`T9 z-@0xCDX*(s74rIQi8QrTMC3BAuVAb-z})B9YH5!oq$`z@1f+%^v=EGF8zK>DBpm+f zWw)E~D;)YWl4!snovEnc7v|Dq51S>tBR3>I*-r0vEP1M?rl#`xl4jzcCuz?-t|GYq zJpXO9hY)s3G6bSA2uN1aTRlBJkKw>(ORNIQbPO_)Rb6LudU|?}b$tqa4-1O(kcf%K zCLvGXi{*RD0Q4$eW}+`j)CLB0WwElzh?>Oa`;lT2d*`67*Yro=q|nqw3DiW2jltLh zb$e^oRsyGFD3pv0IQi6x1XkhhriourboMISnNBV$aF@HyM7o?e`B?{D+BN)Et0*hNDC} z^tT=LwKNZ-2N)<2POI@8wiB}5&d<-^ym8}3nx;xaAs}-yyP`vLmc6WtjR?FZ8b=5$ z1AscuqU4jbNTeJ?@DtAC?6bEPQ`|;MtJzZyMur4&j-9fZ{k$phyZrDyptwue52@s5 z`Jz+6G#9U4y^4ho>I8B8-jf(;#V{E-YS@hFXgGklNcO}uKV?r7$=IfkpUBysBHfYX z(hx~Tc}N5aG6JA!G{AuGrrNf`UWJTvrzfvjupdoV()r&FDT8Q{=&0_Gu_QV${&6;J zYb|>kD*8-Y=3lsf|31Ons2oCef5h&Tw4O2Z#`0|&ONIlm@|9v-7;|!zJ52#sse9h< zG)rtPAVMmWw1M`NklRaKJd*J(K70(7Womz?biV-B*_->1hO>TAQCS=Nq_r~cdC9RU zZHqeND+ab(+oV&I)-OeXk5Gs)SB|7efT~%wfEs#fnVH5drNljerf6FMF)?vtveg}#uj~j{fuHJQ`2f~C;l<*xH2Ui6Op1Z;m5O7Q&aP%stxcO zJYAx-g~-j8H1#YaA|j4k*cw5+KC@-$oJ|SVp%d)sPVTqup*}8-Hx(H%>8ThwYdCay z9R<-zS1k^rENh1MQ9JcBmNbRUdnUAe`HN#o$PAV=VHH@MnlV7{zcsR#K94HWapT5W zcZQO}8j+ajo$ujWe}thaVv~7>u*x2s06Gbo*O%Y0EPEyuJ5r1-K)te3~<5 zem`L2FbzGxvIc`Qb(#bDU+O_DoJ0;c2unaOw>_ynvE!^`$64zBx*GQb^D8h+3CFb; zwCbJFo2SyBn$(34;--W}=-WIH$;@eEmJt3N9z5@3_bcB%9_+Gahs}F`El1r6uvahN z93&6La^N>r2#3R1dbjQzw(v`y28id38@>C%8eT{lU?{wSL;nZtNI?2#h(N91l;Gp= z04kj6!mXJOW|z@n^8@7btZI7%>)67Ld*%5@Q{N^aEG*3Iur78qF#Y-ULs1m_>9n@b z1Kz<)t}w-CIII>N3>&$he?C~Y#+K&2GUb#i);?xZMFbxU&h!Z!T@{-esR6`|nq9U5 zX})`0LV`qt6rgUz#|wI8Fq0wPNHG}m>?p>ZolZ)95Aa?R(Wq|#{5iYKk!BL*Q(p~0 z+@5d@kXsip7n)WI-&xz}t%FaodK)Ew`QUl(vwJ_g!qBoGD7hcxF6k#g=OI?y!B)!n zx=tZ@naY!^GQA?G7NeG+e~2P7{Pb0wot=!`QV4>4L)*0Eirz*W(tZfkQSipb>XVy5 z5AfhqHT^S+zf>~+1&21H=7mkt7jFu#7NPgQlL&%d6WhQ zZ-O2CWrU$);G4J_lO}*n7)c0UgNKrcONR~}Qq4xamI^)5G;Hn4@iSPgmu=j>->qq( zKs3>aEvxbgw{I{eY5^X62LPG4sm%a$p2NOsDu6vb3wzXqG_7q^4k^@0pg~ZqTp~^~ z$^*3;=Qiv!{}sJ@qK#K>sOVIparZ{vur%IO37&;B*0Iyy_PWcKFLxsO8uKBrXYlJr z{V)fi!x;=R0wr!zb#JJtGZ2RN`BLV1$fg}%Oe#(qa)+3P*$WH{5OJ3PWzsq$V?n8Y zxdWWaxdiu9Ctz%pWufL|(;lceT2#%zb7Z_R8 z@d}c00yQm3KyCN3#f}Df4ZJMAofBNe&yAq?*R+k?y%j&WoB}q@eGluF=``h=-VKx4 zV#l5gJXQF&|M;VD``Bf(G(`DJ77l!5iWCj^;lBPWAH;nR|LAXLvrgj7?KE8YD&8h@ z07^jL8{!SH(95J#}e zk>~t;=l=a=c>c&wn^}|3)+9~d!e_OMXZrLg!yNEKpVEj7;%D?=%eUddQ;IQi^`A!p>HPCEc56Ofb0`oBOv_bHUg4dMAV$ZDG(`Sva+Q-&h6cUL3>UP`5ZTq-1V5rF@} zcCeP2$x?{EjL3FY=__<%J8~~O@BoFmh?uvAf(c$Jjm%67muo~+q3JnmW`dee84h{Y zU@K)%a*{^AH`eXecxLa5ZzXH3{rDi~Mtl+NHL!`aq_UgQumP))v&Y3_@MI`m0@CdX zSfkO7a{)&()iYp~%zMnDPx0}`Rv)#6ZLi@Fg=d(xF9*EYlcWB&CmtrvAfyTcmfDw5 zz&1owql4j$@GA>&O-_=OA{}6QBqJdwH~Ie7 zIIN3mswb3Q}JhyDGLV z)ZAW(+_%ww*luA8bn^&WV$UE;^3dw`aP0J;53ZzLP9u>vy}b~gMr7yYTqb!PG?2Z? zv?w7RjI%P9K=Xxcd8w_lZ~-O56|p=Gl`w2{phoij(`hlb^RI_xHL#Mw5lP9OOci+*^|D3>e_tIRXOS z(=7$qWDxB*m6oK8u~GKl6J;8|oTr*8Pj%0p>EuWXPQTc!#%^O;7C=m&qknfJ!U1=^ zsjZ$G1E?Ri7mOS^lCu5!DUIE#Sciw7oP zdTe{|Zt^*C#{#%~2@K}IGIQvc6w3?q%|DGAyKn*Z_z(@Z7f@dgos2+xP71is zX5ftJ8IqSo60~&bQslJo&DdExf72Pg{P4cMu6BDPWa5G%BM%k_BQVp*zJP&N!mV`! zA3)?udHcL=0;^*k2fGF;$z9!b73~2e_Qz4VSs^8XOgDJI#S^cBf*6w`iLNA@xCKGB1==H=_bcIjmJZ83> zDoi7l=yMQLDyS2;l!z3HKER_CgD}CuOQoW#I~sM0W|YZ!Xp^H1ea~d)CqIhimZ27$ z$o!zXg?RupN-0H!@VUtkn^G*2!)Th7@v!6(@O7*;-qsb%mK8U63+D#j))8iW7qEuT zai;K2(}Iy^b4f*?xPAjsMc}-CING4DwpO*4x}GNr9fQE0M&>PCj(1OlcLlu+SNPVT z7ja9rm(-5Lh|+JMN1W#Tgnnt&%_~9Rk?V~{Mp?2!^N#YSM9(kd_HDYW| zD-VE>D@?Of@k*P>WK)sX!BUZ+t;|1!E-#6I1MRn}@SfVJyTLN+1}D#s&9fS^>S~_0|QMRXz~~N#N_i zzSxgnTWCBNUN2pl#nvHD9cDt}GX%`GT$;m6=pS{~-*-;}SmGW>btSMAsw*cp&IWWs zW?Je%2iBqatr@_%%`!)s4fv&rW7jKR#vQ)6xVWmAP!M9`&_kXT_sC(Z830Ed5+Fgh zcKaZ*4#)Ce9bbt3YdW$xkwz+vr(p?8mOM`M3EYNKQ#1^q1$e9gQnER+_g6y3!y9NB> zYD^>wpyf}2HS}L?ltR6rs#8#co__I@c-)I;-~-+W`2zkBxCurSPiW$7WOYcg4NN_Z zd^t_8t!J4HidP*y7AL+9;sE+wjR~crf|RuC(?5}m@!foye5p~5nZq|)V&5*jEFp># zv81NYO=-O#b|2r6>TK`$Oaq(QuGs&Pgej@hBwLMD%=77TBUV=S&D>!ToU!MTc$8L< z%7JA27N(RykT6$XUS1<4hY~S{_u&B6&jD1;iatTW;fdU+Z;BYK=<^0rFQT2NuSY)z zO_=zSPTCehZ`fKu)dyf)v*>DO#jr%@GhtVQ#&1+~X4_N(hut1#)l@D?f_w7Q)Ql{I z`+XKctZuD%$Z7uC1w8cqW``Y-mokGzAe#~>Bz1p($L0Q*5*-vzSA6^Xd*3(Hj+zSo zKyFPRm0{HQjIeHft+r+3#wUY&*`40TXdF&TznyqHwhei8n(kJK;k}o!`RG{|lJ_Kd zM~aQHG^hZ&2;!k(Bmg1X0RaKcBK<8QgjiN3Q9ejA#;26BSoD!c7J!m^>uZSBPf_SI zEOLtm3R-mO;B4B|ub3SRr6Qx=C*vDz|5XecP4eclHcsG4bLXTfHxMUR7!x1I)2fik zL-LH%NW%eS@m#u_z!qGQa||DhoJYuWgpeFUhVbB~S0sNWIvqXUk=3yf5?5kk^Ld(I z!0F%6%yLHW;_B*3Fh8l6fsXIYCL=52HyBowOX~pO!Am$Nc?6D4CVM?5Y7zMhy?KU! z(OO$udk;9$=NIH10eyh6oIQxzJV*-qc?ohO52)BA;DsbwK4kzx2!k^uciv1+zc=vg z#|?muVjrOPcc7^bmvDA#I@8OL#?zn&V&{UQ=W)cBJX+|%VE_)y%~NcQr#2Pgw*Z$8 z4mf;rQdbtgaI5sGl4}D4oAwgjf=1RqMf{yZ&@>8WqJ0qQ4}qcmYB#m`qh#v%c|FYO2-c=-frj zd+erh;R^it!}0w`Mex4MqD-~G7H1xG=0pDr1vG=R#|8`(qMUcjdYl_p|7uRzyo{-D6JHdRq&JSd3bm>lLr+V z1}ibD8Z|uh0Z+kVqqK{C?QkCZH3f}-o{KS0u(&I zvzsQ&-?>vM)E)$u7b=Wna3Q7%Wp+Hi%Z zSph^ZLOZ`utrmM_hn=$REBpRp8n!-8h_+({ez2F}s zXy6MT8{-(!Xay&=RGLR0VU5lawWBDy)8rKz7C>}=a)7Jy!OoTnbbBsUK&$%Yk?ab0 zz%o}xC>Tq!#++iqyG5pccp{zJ)Jp9vgcK>5y?pTRTAH%o(&2~`NTy*C;ZRB)0U_@x ziQHf;Egz;!Za*Z%fvCr`{t;;@5uJAy(8M8fyT}-1#Zl9=4_y{<(3BS}AW(|tK?3G6 z&h|xQj2uS25_&yQCTat@TdVBcIh8z>OTkZUwgE$qAm!LDYZY?6(D2<<+T~>kAi!8%;77$(mUzi3aop{3yb172qFu~#i z_WjKc4t2endW1LU7Zfa^k07@nHv@p&q%GQ}Zi`+&wotJX2a%)^J{1t64GJvww?e&e zbhDm8rsNg^C&*vOpNlvpLl8WBdJ8yNf%y{gtk zcgSd@N62E7g4KF&Kt*!3U>)vl0~a5a8Bd7(f0G*bGKw2rZ;fP(#F5YFX=7E>7}w(J zEts#Ynhc{K=f=?f5}Ll(_zGYk(HaW~u|{GRK=rQS25!uFIsAvFtB58+^7X{bXKpKN zpZNo*3EaET>;aFex0jFtGyp-#-L4L^^P{`K$T1A>dV~?wcfZA{Y-ezzgyAqmm2E-b zWcucIf?%*2zgPQ}S1KE`Re<1CB|=2u5Sg!1$i>QAJ-VNzi39>ZKsA z^Y}1`rx(r6|2h42f27%ZyqO`Q;l$rCdVabB!neZ0Rs^hAx-_lh5^CkU`2g~=NhQzU zJ-Ewj$n<)U=+3j5Di)&_Vx?(OLxOzEnZqWw@AR9vq;1oO4xL<0R0|!AMEFq920I#P zwi$&1+audGP0mqvay_&o*#l*zr4*L0(A#KmA;3@MZM`q8sX(S}>}!KPJ>gq@!2{(Z zi29%$N~%{^S8svil=U0TkYf6j1%NRw5_XVp43Aa8$1~b-LTiTB=vqL~J8N;doU#im zqzMgKzPwa_pkaAS)|T%dJC)2KVuk5jI#8`r?h&eknA%2}lBtS<(TIeOoO2t#;KRP@0lq|Qi^#R= zw!kg()8r4)aV1p?XqZb{j(JZ-MkbI{+E?{M!5oba??8o_ z%&5oJZD4Rg@ad8qT7^UR)E~?PQtJS>z)nMaBk>a-Y49#0$>KUSEBQOzVm4m z`5b8DbRtBMiy59;2>VD`&lpjG6ukv7=jP43K%1rs7vyo5(Md2dBz?*Mw)IJ^)yb1l zXgOh0(R?z80g-ll=Y|!SZo$-J5!|*E+y2?l4xdlK#yi!lotloQnG4^V8+cnWmO{=x zWmE}&d~xH*UtA`I-j6id(8G>hR2a@pe#`2RgF9M?w!eultYEM5(%GNyA|}- z1cs5j6~I^nD$a%uIzLS{jk_KnWp_6sommN*p_U@#}gF z=c**zLOeeVHxDs`(P$uA%>kml5`&dUqj80v_yML39`!wYcJ1OJu?u$As1xDnf=2H( z`~|5s2i&9Rir@Oa;g=>bsH@;V%fqxeEuNL$xr6qY`iFm;o^w9#f3&ywcz{=;r`sI) zhPNR+rn72~Cx|vUE0N>>&DQLHavJ$ytV0z=+wG7}M{JM_0uGVvvT*_iwm(7Z$K65j zxj$5GQn?DjMC?R%L6@}wELGry(MlkU&V<_}_thnflO^6UkWUG|r5Sgr zfTBtc|HeHKw&d9vJ%*FXm!Fxpf%xa%isy0*1On8@$4B%D0W!GK(?DGvK$%3nL?RF# zx@Evm7c0zDloTqiA4G%L<#`5 zVk6>jbtR--7npgRvD^b=_{`ld@BTjf92^7?9ch3aO{!uNG#u}<6~mrTHxUDFrj8gj z;T*-tSO+rUpf(I@JHzHTLm#%Q^UYkgq$bGzJzyDaSHFpNmRorLKjh4srgGdju_dpt z=jo=STg&_S@#FM31SZHnN~&&9^9L;_)dE5Xkv4>iay$QMK5tFA99~8GoS;DXNEF0^ z!?GFIGNKP1xJoiByqGT#W2a$2z$*Bh3hK6K%xIX14;_v+ z+S@5UbwC=Okf<)MLmUQaZ$zGyGy(?o=OSq6n}&r1h`K5grq*)ZLS|C2SC`#C&|9D9MpxY9weM^{fTn#ns&P4qtYcP^MQVB=X-m$PA!Y2P17(wq*(Up976hn_8 z(ed&0Auq-KJvj~sOlt`hiruuCYEq5p^crUDlj&e zfQ-q*Ml~A*gbmnj%4>S@-GWx=fJko$c<}h=@Z$5ZT^_PCB;r zsWhaH3ib3>YT}bh4$g$dAGY_-=w|Y6Cr;k|(Gz2Mh}Fo@F`Z%DAGOty`@!sR3>)?b z@OTV|{vO4jGx{?y0YeL+626IMzjhR0e{+xPyXf%gUjKgG-VHZ{k#$iMXnO3xZjbF{ zw%r{M8uoCB+Rge6^iGCHh?HbiEoM4t2ouoGc|8c6`uV^NY=MeFXmRGfP3jV<0zRyt zZvdb--DCK|1ub8`5ND2eXwuSy=qY#)(dy)p$dtWJBLBUBu#k`!_mq2k3538YI5l#= zf>oqBw&NiwL^v$L!xb2X>8dJ%naX}rcs$HnQ15VFZ2KGRdGR#*QneN;r{pL0q^Fgi z`2flh(%oD8c7CZ2%t!sC;5ev@WhZ*!O^i=(ZI^F-uPRxDBC_Z=kcD9|;o!jT{X@u} z>XhK%I&L$=ykttch|R8V3Vyb8qcno)&RQ~t43#2)fGB3_?Z`pEE5Gu@pL>`r+cm?a zRkbYA7XwLf3mHFd95tm(Ec^d4wWfOUo7B2p`qJQs=(^r3Rw#p(k%-2DiH>+?k6^7g zwG6L7u$xCsrP-2&xVJHHPmV`!j;P!L#@cMjqcq?L#AH`1^5H>U`6p@+HZ<7c{2r_s&un<8i+#pi7d_U zNQ&pAz4rr0F#g{a8D4XM*adL42o*Vvd+21h<%IB@<#PD_DVY4sat*=}9**MSALH+w)38+_FdvS{&F|1lko zOC4;JNPTtC!0vA4M>oyiNw3eg-zod93Yql~iif}b*PW6ouYu;J61Uv_UmON4*p#G@ z@0$vjT22Bz8F*FkGx*_y=l?zt)rc&lsZE4!BNZdk5eP#INoGNXC_{-8p-<$uwL5N_ zvl@*My9WuPB?n}J87AVbH~%xpIF8^Y4+DFNivFMuiaL=DuKzP=0I1z*Zc#z)Z8F** z2YaFogKm;`FNb>RXzfyIw>maFDoUIgx&z7+<7)~))2WMd<@`xP#A0>dy}fuu1gsRY zz5+Q-#WWdF$2&4jF@cYATzh`wZ( zu74&7mwC?spoZ571xK3wo=koq?pse^gnqHf!)|koZg5u{t{^W@y%mB0kS(RRax-tB z;s-K1(UM&O=f~s{DUj#NKGZ9&DdQmqG-Z~t*L;2FQPbZK??=Yvlpr7p28Do<64~n7mRh%VugL!uNt7)3Se_IjGKXvYk zKkRQZy~A|@SkR=ujIgE|qgLWTXGwnL{uo-pAcj7s6!hGAc63Q$ci)L7T{2BDDUDef z`iOHtpBP3Ff8hTH@{JD~V0xtq{!lwGcqM(&jYAChU9=m)QO;2aQF@}lFhg7N$PNPc zBZVN*WYEVcWFZxEZyit_U2MBAy@5H>6g3XnLTQM+l}&jL=pplvC4e_ceJR{nKfo-4 z-DC=Zsw_PYoEpkDolby*)K{PN7~KOj__G-{lcs;W8r4WqTbQq4C!$cmpO|YJ08!Ra zxoQ+*cOZcP!{cR*_ry@_lpK{2c0*RjCDd+W#|hWIM8+Wq zexmCiK}tfCYcGD~WXS^(mUT$INyFpO1`W^R#4ejCeczA7y@KE-e&~=H*iA+$Xr3$4 zd*rHNE%<1-1I;-=yAKV6M~`<6>`nX}-sGH}{U746XE+Sh}?^VIaGTY11;(LxjOHrN+2E07Ug4aDCwC;OJFe|AClWy6fYAEan#FP(`ypVI9yYM?qr}X4^rf z>+BQz>F&+_s2tPdu++%;uQ93+;nSzZsEm@wBbma{fbD5wCg7U8A=+TB3W^NlEd9vS z9OVyNGUtCG`}uzee&hBGkdb)1|No}c_RnNs+B9|AYLKRD>r@7#)*~}gVCG5S!qZ4i z$jGY3JAO(-vxBziY>6)~+*?7uB{+x5155=jBvC+?xx-Y5XfoOwiB*L1QSRd0Scer#uF;hBBgfB<;bhP< zaUAld)9zinA~ECZ|B}*Kka@uCS5hbPpR1C^&i;qIr0;k?j8uf4Sv1|fr~!)#g~lFJgR0+;pxt|#vP7YNpUXI`uPxo|dGLVA3$Daba?*e>6<;=_i14U9i z#(;c~!Pk2Zg}k2bZ3j4$$0?ysv8*u zQ4N{C3fb$Ctks47^+aBHe`dDXR)=hyQW_tZ3dNRuNpurcWr(;#kCKuEIICVSOGrGGvPPD$ab6P@gN&+8&M; zA5o|f0sOFKvkL|ZS)nGt3ntP)JV|0mkDtE$oTgdq;uWz~t^|bN0T)QIJR0ehdmOki zyjj@kd<|hDM9uOA3%)Vp(YI7S@CdFp9P)u~EUHWbg6Upu)kJ={#F44ufmj!Hn}AkL z)0mHeKlPrttEiF0;-ZoBa`Ll8G+Ku8v#ix-ETFJXvNK-EqAtg!b&1s z-n)PQ0`Xu02a?YM<4%VH%er$p<$do-_kpM?cEYCjSDm9$p_;pPU zhw+OB!uK4&9WMm9T12}*m|}n=U{^FPw-SC_=iz#~76uMiEgaxSK%!2$rtsikg&-ht zqCV*5T@q|X7QZS9H{Vcus1a&{9=TCd1FUILuL_X41sMsu)zNdg9cvTNO=RYcE|E4< zxRSi*1$RHM$~$W{ZtiuM+%lF%vrrM6TZzc!(92~6c?dI9`C=F_l)f$R`aOYo z`uRdvwnl1D8Z_i);Ia^XlbfnA5Ac6t->RENzCibKAlGmc87a3JOjRONh{nF%X>}AU&R0{5h({WGi2W^2=dwaHL1AYB!-78n8$EJD&M3yL)m7Jl3mFP=V};8I644=$D5}o}rsdZSR@4AVA~@$q zl7!x`f;jIzT!Iq+=>HaiYd#w@=2o=y@8nbm?CF+RL(c)0c(?Tdu78f_Dj{>c9YLjb zU;~7|a0$JE(QkBI9!M{)_fZfYQ@{DUxC++%Rd=RerpM`MQ;$$*L z>k#Dk@_R_`|0f|_jf>o65E()78GB4biM@cgrK$vI|5R~CHj$g$zxT*lh-#h8Z)8e{ zouE3P?_d?3+70)(mUc2LF~pWy9}6p^O6snV2$86*+B(_6s{Tw|ly9gMhaq+07X%L+Kha@8LkX(O;| z2}@%e=wp?H@k8Mek#%A^^tC`r4j`p7Er3YSkPrP?=6*8&DY}YF?6MmSay?sy0D!+u z+r~X|{NQqm`(WS){?T0K0KNI8>Odo3n9>67>xVaRLplEWUjwwPbsQ=?5{Vhx87g)C zRQhZ~N79bwEn+@f*Bggwn*atBl8&NGy;&2^{lYcx)A0G%sc97_lveq3+xa+>J#<(P z3a4`4-?n+^lwD+ja-;9>;x|O&#Q{7J8Yay>#~(@7gjBN=WkIH(L)${OgohJj8k@y^ z2CgZ)pz1pg2sZ`7B^Bs&o%JC6%XirFzxXB@rOq~XAHKrkBrXN_^#eO%=tKt8_iU}* z4E%D-hjZy}sodyGo;_`iZ>hZ7z-QQw=f-pV#SgcMbNOVlfvtE!7ez0AYUAL6%{_!d)l?*kjKW8ZQ8sOLrR zDR_L1rr>dyYay(0a_9uu-0WC`9x(2!il3vRpr6^(cd4vh2ho7-*zYbru&4*hOMS#Q z47wb!WaK!{ApeLPeP`2_foib3$y|x44)^7}09z=DGqkf+3DL8{qat5l$WgH?FW2Ece>`Brc;%v z`~0a~a?nbKzHRgX%}7Iq^U%<*6>a*Sdqh`rpUBlu#v8v|tXc2Adz8Lg@BcJbeGb6F zckbJx)qZTY5>u(W*yCL?N;BalA+=ZMM#D<_dT?CTsmiiF?S-tJKi6^QWW(`;St9=V z-$*5x^>J$*Cmz}j1dvv2HNVVT9{!?jW~A%0z9y}2WjU-*-?x*PN1iP%4m(IRw&;~I zSLR=~tC;WOU%-@3lJ$-LI zy0gk1jv6=GCuhf2>xplO&oTRGcF@|ufH~lS|GfR9hFeSz{0)2b{tG&sKi^^pcYKt; zSs=aPcA(n=rgluR@tVk6)A$RkgC&Qx`RyxZ#7e})6r*DY0^SCx2|jD+mgbq!R50_K z-}%hr^bg;5=hV<6$NcKtbCZTPDCTdD-IB54WNHJS_11VeL(h^B&7)=*6CUm&DiKyi!ICUJCBt{`{0@ptNF*^S@vo7HQP`XzGdef=m== z2dCS>)Wj#!!}Ga7qR@ElbA4{ zyyGz5!1)fTKRi&y;+6du|56sqpxI`KBgFZQlwSrfgw&ZUi#dPEKKaKahr{<#(r2Pc zSOtLB^~McBj6GI`j=-oa?(ylI6R#UQg$4*%bt znX~=SgKRu4I*;e^*u9uC%6#)^>9sG=shKd#8J3q$Ko<67ToV>rU^CkT-{b*)xq9XM zCY>Fx^78zFomg~y{#{VReKO+*A2S-q*Y@D+t=r7%`{`p$tla&vpT2V}ImXwj^IBU!$%v}0caVBFWc-_fbFM=__) z8p+GK1h$B1b1Fe~yaM?DQyxk~5Ad9CY9(vMT8LsyCZr-4&E5ddTSk83n`LF!t=>~~ zX-$sgsi0hbiQjp~oO!yUh;xsZtUMiMAlmNTe%g3SOO9qA#1d=ikvqM0hs(>m!}d+I ziL#$L9}md&O*fydG)W9h>HVo=T+(coR=S(7_VC8P#yC9CR8qPG)MLvd6DZ0ntE&yf zb)hf{0L~Qm70q-#z)?!)nXGU7ZAA*sxA^^-{~uc;_xV&Aoiu!Ba|2+2x*S+eI_lwbqPP zwLK7uzV`HrahdUEI&e;L&(GgAcKrCGd+nIdm^5@PQ;vS99y!wB{m3!TSGE5(L*(e2 zGcz_0%h9WiPhXvFh3Fj5xAw4%8w3WAUmwTu2;tti1GK+zZtKB=cjri+*oDT~$CNRN zHwDBe?7Oj0C@}1Pjq2?)@%h0#e%+lrv=U}7{9|>@o?Evf9xJ6f?`Wcx@OHdJ^ITVf zf}oj;U!KUnJuGJf^Jbxw$ykec7&i`(BBEEtEb|dAjTfMO*f2!&h|f zOVbQrrD(2HHF@$eSj2*7QRfXaH(ondianj`qQ#5PtIB&!8aK`rjL_mpXS4&2^3I<> zZ~gr0_3KM99BPO8QwXKS=AyoUX5RfxNuDD=t5ooqP94 zNRM5=-5oQp+f~0s{4QCu_0XlXt0q@|b1)k-&gWpjgkQV67p8ywax-{msNmN#ZxXau zNv-U*wf)k)Ec@n>FewrJvkna}8)A*;MMbQ>yE@$Z!SQ)feHAvcd~tR8isGTZzVF*M zciumhd$)O3q|uzrso|zc8Jd05eLCtzq^mQgUjEzddVKV|p!Q_NRFf4tzAQXD`FR5)4_a;h$Lg$m@~Zauz#dsyYz z=Sp}e4PV802-tZXp5ZvY?nv0296P?kRdvyK4@3o;j$M194JY9vsj8!$Dp|NzxkLA3 zZJSeaX4_BU{uOEC$Bun?eD>|zw+}`$Lho!&q~e4}!21qZlGf%QC-s^W}Sm!!UUA}77tB#@&UG`Bo||KuU8xdg%|D_xn-=ckc7&!-^XHiYtw4lE>an&gxkTgwq|w)Q@)9AR=rl z!uG)Y0@qe>DZfiZsUApt|sElb|PhMs2#&%c6ce3!d;`{YJeZ42m{p|jFr6Tt( zeW~w*k*2er`{9d^{P4y1T0UgAP1yPMuN7U+3E&8-$iInnMksnz!qoEyKZHW*^&L-E zES7iw1;*>z>xG0Arc9k`S}gb5Zzq>{`>u(j>&-7c^cd66<(DTpJWwz+y!Z6!Q^RYi z&!3k>PV8-k-q6TKi~fDzL?%42#))#mL_39vyA>}tocMZAvGXz-h}P&FAZgnkX+;0$ z(c}ETNp7@sQ7C3(cz%VsM`*TfbEWJ$+qRGud^|jh5SFZW=+Uq5l$s_ZpnH8FqIbZJb+)&;Kd)TOn9;w{yRwuA%Q5uHBie0um;G>IWRV|iK0jr# z9`tmc`sRtP*GSTA@$RpYWf5LpbJU|uZbX`uX=M9I25XY}JMZd4?!kXC>Ew_10@?VS zgTU+HcrKC^0fYL8`K|)|f2^m7J0z1v|S0Gw+u#cc@1iUf~hi^CERJZJ#Oq zKU~8=szaLIH8qKV)^iOwzdT$t1j<_K>rFsUcFL8&=SAqHPl0aIIry*TpYQnj>BDo! zQ*56|#jO6z-Zf@k^k_YP!fZbyf4GbraT#CZNz+4` z;OgSSkCEr9A$wN_?GC;cY4i$f{BjFIPm_xdbj`42_m zKj!pE{=Rz`OX8RR#~;K~gH6O{t$kNyJ=lxczS1JNQd4+&1);KV$6{C5y7gR1rK)^7 zQu8Xf9JpeiUa$bOGF@RkvK28aH76&>^x+4OHFMnr5mP+_uL-KfAprZjcu70zfP_3B5uV-_gt6xs-|iGK zmL{?<(B_>oYt}M4VDy(1Fsa*r$L-%5CrxH0$Q?R#A9GT+DEUYT!hqZ5 z#f$Bf-^2bz4%0uEtz3yha`H$oRe72Y0ds0sto#fl!i%v2DP>=MDBlH)O8I^K+T&R< zYRFK%)?3Njgvu)^UBd$<2x3zH{oM+fc)kc)jK)b*%|1SEzdP;iCWqcuwb$5`7cY>L zM%1bWMVqe05hE>J`$HJeaUV(ck^@4x5}p#rBQjpRh%_pJ7UkDiMPsRl4qO=y?y; zRf<~B@B9DVX7e^>*y}*$c^{gZ%)ie0>8GFWfw6H9x{Kn+^TKwQYln%7isobRU_LrN zp%^NEs7>Qtb#KXN7&cHwI`X zFH^a5`c2(YcoO1>^x@y8!~yicX1 z$h4x#R%I-$6`T;Sm4%{4R!;6?U0iO6`l?n;MlX((){WaE_#ys-ykPAfwxG{3ZMHdS z;&vTAd^joWHN+36^asDW5otXX~d= zpAKQ`5--$;Md^L?YCbf6R*`|>ye6h&6zzJZ5o!3Y@qr549yS_snbVMYUWk1n^THlm z-fJ`;?_vRz+K)LrOgDB-g9zIrGd=wZ#;l})uy9L#?k~UakL@}w)T7P3OB0U2GU`q=@=} zR-Pb;HgQP&-z-aL5O*SkUDisnQ-36}Xwl|nC^CT%c)(kJ8+P(ip82d}mm$MWg945p zZM4-L+7Md%Bm2q2JrCM(`{a`*W$*QiQO#aOYdwx%l}Aq`xhDetrMt*VMSU&;C>{Ve zFs`=ZN;*Z|VE3$r&tL*PJsKyC82JJOl0^an&-We2!}j#qGkGl90K8KbuA*5@M=dP$ zKo_F~dA7vS(>Bckwy*wZoWwdD1^a|_XsK6c(f~Bx4b~xH2UHNoKrGin`(OY3<;ycB zUqN2^2~YDJDZ3)0tA!95XX0e7KDoI3a^u(EPfnO8rPZ#yboJ`pa2=Tsa?BMFa4()q zgUOXX#>__SPaSu&y%TfRGvQtKdutae0ddm`zUNhwaP=D#+jT(UbJx%b-vWJ2BI(pIE2psRP@kq*8DyeY zy8t}8Tw$=1T%i|NCequ>Un8I14Bx%LUC2H^lzs9z9zel8A=f9&S-S&zA3^Z^-OimG zQ`Ur$uY@7A!2VPj+MPR^N#OYNN*sHzTs`6`-~16Ruvu3?U^urndc}yn2as>JAP610 z23I(3TC|_?gWPzQ?b`Y!9?FX}tXF*iVG;NYwKL;bI`0rP+)%CnJ8&KfN7C$#g0KVkbvOQ0wI0uxN#On^-E`hU?GI@9VGw8> z-wml}Ru|lY`n{%d@GH2F%--$-R_iTVv zxuojl8x;Nb4RU-uTd`WqUpq*2+E#8&(g_3WCIF*c^U-OhVZI?5tIW$KK2%qGgdcr7 zzHnK-u8TmI5rG0g9<2V8V&Y6JTE z`f7oa<+>}FhnfHN#Y^J2>Yt}i8`k>cjz+HUM=9eqlaF=G7sj zk2=BeG1%ep_``{b6%UVpIhZB+a)IoHdpHYqZ{PlgG_vfg$Ean6(bXOM&-L3gk z5LxzpJlKce00Lo0W@Q(G{C(&fN439J_FDVyq~W_mN!I3`lN>%Df+G6N#_G#R10Ed* zL>Zhub@JrfxIuH~YJ$44x|^Q&R0;5$E-g{UjTZiR+(|LYehR1Kpb`3gV@ne{Q&t}_Ber@X3e%#2#znCX@* zaH*>9!y!Byd#n}|w8J~nuuV5iYh7?l=Uwr2QM#y?PIaAKQ@G~caqJ!bf{xG$Ti9%6y?u=o)!?Pz z{Q2{r+)p6N+>$0ZD%DmQs=TCq{B?->PBppVBSySNm089&J)snLU5w8I1|T~X&q`0m zejkY^I0#kD%@#n!D5x`yGm0Rc_TrgenqJtb*ggJjfQ5yH*v^LY=bYwA>#VYjU5O*T zhVArI9t4c8aAa907KJp!=x*Sc@#EdV$|&1U^CCAvyI}bV`C=w0U2|q>Ivjt$l6O;V zhA#|mG5|V?Wtw>V6lxx~xG`lig|J=sc074k@_G%xRmBsadQIWuGZj|`A@2huJFDXP z?0tG9k1Wc#x)s(k0jLngt7l7|i2NwA7*!>x-ngeFF1Y2ZO!XEBT@K}ex?!+_@vyD!djq#d+893Xu5N2oG$8k4jS z$8OQvWi@%SQE_BY0<5RZE{z$v4Nq`tMMadEB4ppAJ~(x6D1SbqN%7T_pLL8O9R(0L zO*;<%&4YnRa0@c-U2X+U*Y!kt*QLPNNCZP!r+-1(GP88^QA-odb$qTj;lnaVY>12S z1jJe5G6jG#I;m{S#t+ylb|ZJ0u&e-cB_1vd?>m9~#}yBtTb*r7`_n5+)jHL%!360f z#vN2g`FrzD^Ky5g!j`Lb)5eL1jsGln-2C(Tb6SZfc0)>3$}`a}3pvXN1mjl$fr>Ym zAY*SFKSs(NzLcI{G1RM+XDqAZ5^@8hyr_g1GpA1V+g1^ChL|pB8;ojR?>8?? zsQZYqNpjm16|FQdZOrP?`fvx6?+P5UFL=340<+ygJouqBd)FZst#m|$5WHEx;m zik)G1=GkBuTqG`Da6f@CWf%c*7A!W%8(J0gh;ELJP}bA)Ut<5|qv9IbN_7CRAA|-f zE$6Rw!xrR^d^-!gW>L$U9qHNG)33xY48RtenWgf?1FOzZ=b16a9bzAP?mT%I+k7dq z-6h`bsmB$*7G~wtPyeg~60!@3mNj`WUvNPN9=~$Iv3S7cX|T?+`UEFd*;(QyHA(EZ zJC9|*@3m_#7vt-B`xqmQZ*9Y)Ra~2ZXY(p*klH*HMiwY$&OQxrcZIY~pyDCziEdKI zKHpjzFlP$$aNYPVHlmF34y-3n{p~s3juMZz$GS>Z%RGJ1Q)@2bA>gPy$Js*P_w?zX z6d`EKP`q+%ddAhdj=a`!BWD+mJhrg+1bd9tu$X6vZp%^dO_@v>VmcJZ?>?S;Ti4g~ zMOpjo&dFCWN-TEeEY@efE^l4z=?AQCI-u_Hv_x3tn>Iax?XYD`U-aK^FgAX7?6KxM z=g#fAziS&N0XCKYaHiit@m+Ow<|4^Zj|JW+7r<1ZeMOc>_a8VA02nyV5``)Ox#Fp} z++AUUo`(17AqrSP+#l=E8>d*3mO1rO`tGG_QQZjHt3P3z+lIuoq4=Pxs_Pu|7oZ

zfN+jD+L*o)g{BXv`) zhLsy4ihEj`n1uW^dUU+ttd0xd{AVCS+*81gqayFIqT$&&cKlAc>esh6jws8))9QgM zrh?3kpPGV5L4)=_ykpr=ynBhVk4fYsF;>cYprLuCBi5n=)dNlV^e@PK6<77%_x1Iq znRV#ojC70bZvf7A1-2!W^7?PRvS7;O$@2+DKn9Qr3}?dKOQV*n$6JR|U&wmc-xw94BtN$*~t4*djiUhYdxuJRV9!J#E7V zq<}QtU;gT{y!*R_j8KKR1nYqGL2H{#6Uwdg&7x{UP*9K_QrbrB;JDO+(GqFEI2TDuYGX+WAUIt`G|N{_>}8+7Ofhj(R0?RzWQT)(IbP)OSEB? zy>0t;cU*l1JYf281EVK0)~fCr^;R)7pbAUW1H@4sRP+nbz_Hp{wbW2`=T3cOpK)K2 zhWewGNIS%m4I4C(`~<2$>*Z^z3~s;s>FwxncXxOH<7?*u{#~p9h;BBNMX&s)PMyj( zKyMP|49gU7SZj zJK>m$RCoQVtcafNf{mty%O+=BU6&vFHaKQQ%IscvZA4J27SWSGlBJ0$<})G=JfAc< zw&bAC$^&PRn#ZnNCR0VthREdPWSD`M-&z>C5<652-l+gH$SUM3+2a5{6#z@q2R0jL zDKF1-kuhUuIXv@&;H&i;D&@r}O0K|;MIJ$%FwD4Cns9!~R_n7VNR=M2N;`Bd;O<@d zM+dX$x<_B{M@lVvD1Yg3+|N%bKVQVyZqxG@FHXG@|LP8)+CXf=Ngu)Uy@~)*lLtV` zTGIDSb@S_iTJQ|F=_Fn;XX5zrtKzeI@+vO%IfT3mDY6g@fJNbADokMBeKqyn_VItM zTsQnfhBd8Wf7{mD#mGyo%?n*Y3Q)koqF57bfpU1Ay<;bB$KS2|WsdHuq9#SZZc|b! z5Jo@N3+^d-M%~MoGS@osp5~L;N3_||vDOWq5^(qN)JG(9!*YoiT+ne6P}gxNg)Kip z)~kTb{1e3<v7`}GNm;7*DT})ZyqgAFoZOOQE*u7>hhts=@ z8T$;N9Qu1wR;prlQ7pI^K<@u)HD%V>bP9<)}zi`}5N9gD?|ofrhR&&rLx2 zT1|~1@+;k=U0;okgM+;~6Rxv2!aZu<#oD!&i!JPUBJ|0z6F9X=xg7d0Z%jXW#P1JA z&XUko8yo?AWE~88P`@ec*>i2tk|h~fSOmD!fhhWPbR46H7>LB1`Y6dxyA7@a^8y8) zS;KP;;Xzj{vt>hCZ&w_mg<|f%%-&WK%t$c_WgWyuIql>;~%(xxPQ3L<6P%B-}-(&@9}y)*K3(; zhwEg~MX3f@n%V)SecCyRhL_o;-H|Z&F85&Hbn{0I@a@~TZxCKHx?>!QZ?4(31DUM< zaD`nJhNJ55@W@D%Lzwnw0>%TY^kp}GgP`)|^75$JxAQt3Ia{A<;Y-_sP>N2FKeUVC zJKwbZ_@mwHIKM(NvF8ELpNumh@Sqpte+ijM28e=nhAk@`7L||eOBQ%1FLTeBZ4}gu z-AeZ$W}p^fS~V?^L3pH!@DT#|w0k%#tp?q&TNapVt$3*g2A(h&tS@=_b~rcAYPi1C zK%gqgx`P7!aX)wDjJ4PqX~bl)d(^;3M&K?8>e%QueE;C}gN!TA=&kPqSv-N;?EG$Z z?>*PqHwGX*_%HhZ)qZgUyCP?hB_v+}z&#xGmx9MeZth)}=Mr3%pnEF)n7}rIlGVS+ z=Z}((2pWRJ?bc?&fGlcCIr0PfBia%5?1yll9{~&4*oyFzHld~H`*X?h&;PxD!dnkX z&XLN-#>NktP2Dr3Sa@1W*s=-Uy_gAbpOiT%Q~2wBgrz?y4Gi2K^1t^oY$LT~z1Y$D zzcC+k&R`@#0C?cI8k#F%0@yByXACcmr?GDM|MjR%@bMxS+72}9{=>^luo5uElE~gm zLsSa*uXPY?6DktO23+jA85e5xP8SSNHHKNv`sSkCHWbu@4OU5=6$lg(tv~z6g@x*~ zzSoy>@$J${-5p%p+G>b2D505|*|8s=(Zk&y{_V+uOW6Lz*mOQduw?L^EuhP#9DDc) z1+Z>UL-$(@X;M3K_%gJUOAl9Qxk!J**0(Ys; zHh#Fxxdm9T2$u`ase{fs0Q8`d>gd*c^|MJoS6&|Q^2UdIFFq5Jb?niO(MgN_)0^jG z`(l$~9e}>jfdrTb5ClyCRaW}avakPpA+uNX^A;wF54-%(nf%nULe+a$E$OCq=)-Qd zJH!3pUcMs(*cPdEC`GnlIaTkptKQuN1BTxmJa`@hj)Oi*hrX_yvF^+8 zQU9;@f1@Wkiso26?2d%_rvvVjy^@}iP8$+7>Bq_QpBjB;y}(9(-#?PtFE2bjxV?w2 z3LJ1vE0?>zr@n=~8|VElghAYJ`ECC2gNes7uD>qC4T8V{qSpEBG?;D1b8j^zWWgP* zXEB4VPvb{*fUBUFMP>OmUf#d1dU{5n9<9jp@F1L?&FSQhKb9=M zJBp+(Uc6Y5peso?xHSrfYGX8wYM8?u`1Zt!L_$?vPNrX#{E~U)Y9E!1fMC_stv6n3 zoA*%MD&Si_f15dR%!VG*nt|xK$|4X;ijI3Xub7xdr53LDe+;p3;#(BZqKR3kGP@a9 zq8>`xgvRSM-GmzvNE65HgPsHf`5<*bzGzM0KQc1`jsnHEGA%)u^g#~|qA4IjpD)V2oit%3+ zMRVZZe`ORApw+c(wrt*f&{qhWk3;7wTR-BqW42sNIaeHqq9SM*o#|l#li`C$4({V~ zIhhzA=I4WKMT>w8%i&x-bV?-CsfVoEx*k_VIR2H;oi{6}lh*)+K^(gf(`r0zbi<{J zv9}NTPX*||yl@Z;j(4q)-ltu0AQABWYa)k?ldjq(tN^7l-$C#aSK^=i1rq1$HsQc~ z4lm=8^mtT1gP5Vb-rjuPhF$$f*WfVo!=0J6XZ@>GY{nwo9uA#o6f7f~)8sw;9>0An zfBhXB<6}jNnW_L7y~?q$){{Gu&|&EL@&H2o``R^~v}PQ*#W)&cxCDM-rN3Y{N7(iV+0A@9e)bVuqvuIEKEnAZi;2(vkcN{v~+RktyY$BIsau=#2bE#6W zuJ1bbXcO7sPhA4wi%$_FcMDfomHlVCo9d$*wk8H>s1dMnxH2Xch20B?P@rDB=q$6~ zv(C1^GHieE(i)J^TYKU}Z&QZ)#BgWW!^|)Mx`Tj4l>h^AZShPhaBCCd#dTQZdS{(8 z!UjEEsbdE0*1*X<-~p5-qOI|T8>TLTyuSuVUx-lHsMUcz0DVs5#zMY0R%Y!V02)_cx zn&K>tVnf9It6rXaNcqR+lIB_=I|K^|5j7n7br6Yo{LmnpnzC(d!)g5R*;)hT**`C# z-3uPv2=c6FbWl)2LTiYn31s5iYokIGD_eoq1};PAaOq6XqW9O1e=I5z$+X5=KZ0{a z0wlCbCc^$!tX}P(#H>G*w1BkrHm&1iTna_(i&X`_u0%&! z<9!|Za3Cm-AAn;L?-A75L2W%S+cXO<+*uXjBS)hC)BnXonqiZSm&v*N%oS79Yp@%f zS|g-aP_ktI+y8=;%CiX_z;bm%#&GQhaTLJawq!@{IJkrD80=W)1i1sVG8~+Bzn{Sm z#7S0!Pftx9bFA3G|Dk=6pWu+1ni};`K_-czp^|~_oZjBvj>;PXE?GXb-RAP~KVE0Y z#lrd`;V;&(P>09q0g?|^(Q-fAfQ!6NEe#cocez}3mOtHdU_6RAe=Qkh-w29S5wxvOJs^wpnZzjijJ zCw=oUMg0GRhxrS~zvNheZ>R;q5_k+SPoM#S7XFC%%P+@K`&m>Fxr-v_`gQqug_Ipp|8=A$06eKB!TB9-&;Lq{c(6I0)2Xy4L-*ojZ;?zDmQ|O0q4FRd%K$d zln&lDfh{UgQD7yh&xe4dBH`j{KdM@b4A6$$c`5Yd2~noBd4~?fszoRf2X?nlkG($? z%~bFaCSi#*Gi;;psqpJr$8~FYc&sl7 zSFES?jVw*Yz(m8mTo}0DooPH^fLHDdD$~+5iO};Y6th8`7u&d82U}9-XKOe*vPf02 zf}`0Cg@jfI6D2k95R1wU>l;z0h&Qscv!4QV`r?5wDm#oYu^8mpXZ!YPaz_^^Pg6P4 zJJgT-w|keFwiU%O=gRzGKz;n%lhG$O`v(Pe1!(UC-(yk;Y+G#71GBM)auP^6o{}&- z-S45*0jqL6Un@dq&pW!Q{tA6LzoTo`*u*3T`Vn&$=c-lVR8W2R{rvT-_6ce?ZB5WM z3@9uZ2g805DmKjsrPV6V)b~r_PRlyl!KoQ@7~Ow1-hp=Y6)i^4{e zn%Nd`kM)J+^AF?)`uIEpmm^+V23k!gL=KIqzp$Z!uLo@U$8WD&paOYYq$|wp?_*sd zFNmcEEE~MLy>04%DUrN>Q6LsxN^iaN5*6UOrt9&#>4}JBvvo4Ru+lJFvUF9>fDWnv zHg!+T$jo}?ClYJ}$Q@kG8ht4gZ4+bt{h#U}W)a3JuZ&PvQ^Pg2KlwpF5rDV7Yv>+Z zvO4oj{``7~T})BOO_zN8Ic#LRs>t60un2L}xbKZFx1fS71QwHU8eO}jfZogJ#YV~3 zwg(EFT90CnPnOvrmH~4?y$mjw!I4_S;AZdrP9Cay|JXW^%xDRZj5a1!Kh^z)I{?M- zJ!A)E?0Iq3iSGS+&&<`?tAS=`;-)8^cL#E*GEHy~(}ItI*oJG%Z&$8pRkua!GQP5|6dA?8efTvq1HN zhGD%wle|>ecFbM9Md|=By9ltR%kHu>ZUcMrg+D|I7pC=TbU`L~X2;g{y`hynIk9H` zM<-A|t9f`5JKZJ$js@$@qAMi6HE5(2fXl7P!mM1cXmrflB`KEGJ3Pz(hJ4J}b{Yp; zEM!cZC0_wZV7$z=*9$5z^-4>W@P?G?*5m zhf?VTk4FHY66`T zGf6=GYKgf+&>=nN1g@hG*?=a>=_Oqi&?)f^!Sej(iS+;g?9APk4F0;@@o!w7le|c7 z4t?i}<*R}7F31%k(7S)~DjWoZ`wU2Rgur&lAH;*r(5&y+wCRBFcl4+iPre<{g3rtf z>`XK!c3KsY;uFZ?qpU-o3kTBX;PBc>oYYI!A0qjR($S-z5`05K5=fHf`7{Ple;iID z>x&!5-4-=tZK~wrL>+-W!Xom!vZCTiLMZ=Oytq8R5y14V#xl1D`cO2Bo0hCgbDMPZ z_whOR+yK@a9rQH$tFC42nFhG7#eG-MyHNd?ZH5RuH6PA2#6jF5V%S);8ZSV;@3`V# zbiir$ooc1yrQMJebOBS)!WAvP7mUc%3;l~PZ$<^g3=i8QuWfzUV~{g?DLEj)AL@+( z&s#H=hW!Z@TT(sYYfGhMd!gxb`0?priot;cjM^PrTr>3UY?N!+#KLgIf_7Gk8<hmKq2RkByx| zL3yF_5LxN&egO{X19e93mI4}TpFmBd2d0MVQc})_^A~^ zyFoe;%@1E^HTo-i zS&oy`cGRaA$=-k}RNZ5tt{hI`)*p_Kaeg2 zX_m1%X_hgl>ce`Up+x-9{Q0*7|FJ{Ss)_nPthNOzQKG1z2@v(XUgaz|ntO%4KT>W; zv2Q!t3g}&rX(kyopQ+lyHW@7wrRTuL+ zo=#S=f0pzwX8=S3t-DS^MN#?4O`mbTBl_}{wAt$nGibhL^3lnk-F@|LhAI|B70BZ5 zzUT9vypnSL^*k1(MyW$B)JwsA?_Ntnb`_2I(aJM^26m6p7sucd$dI;6*9!r3Lmc8y`S){S4*832ABe2c4v zmfrOpa-%mPHu5fE&8YQ{C7y~=+eSaT1Leqlv}qY|5Do|-T<1Q*^NLY)#AiM}f!~P} zq72x!sy2^(|J;mUryb390N#NvIu>MwXL}t*NnwIuy%!GMT5PQA5w@kL!dVCgR)#o32y6|g^$bCN!glo0Si%IfpV zxLi7b_St?b;oJv)l^6oR*neNYt_-T5h-mo9Osn5m>h2wSAah4JK=4#1IO<1xFaGuA z>(^}p0*VklYz2MByJZWpKBQ1g3E}yJS9On{l6N3VY2wox|aX@KVh){e@}}4|Nln+Pgnh%fr9-jWapFU3Co*5Ke{gNoeVPk03TG02tN84a4<* z3v?Jk6O};Fnz>iBtxEMb7hH|Mo;dM4>~@SRMkM`R#v{W|MLvGeQItTmKG5NL$3XV7b$EGWNXs z8)G1g5z!T{tomSg{+;qw8z7+YLBCZ1oCHk$;TG2+6@oys-pprgGQ{0v0=bp#V7nsm zkRaHUP!FsUP?INR0*Xg9aQQ#S%;LEixt=VwnNM1O9fV(o!T*Y^5Y!70_6nB8YglLZLXOv#SUjnND6?(2dRg zMn*>5GmiD3n@HfD$uWf9O4=ELs2eibtyT%?X+uc0ML2uls+ZSoPEiH2T;p;Py1M|b zKf5NN%JD+hS!B33@%MfeX7^4!iC7EV7 zSf``tAHo5)SLC=jS=7XHa?da>i8m;XAJJXBU|!lf2LF{6D^?hPdUB8~@DIf-d^AHQ z<>eFgGI(*H`U72624QE6I^Xu|`=#I6x{YKm7F;y!Nc>#Z{FyA)Sa~?eQL4)z&S}jM zS!Z|vhYO%d_Cte9e@_GovTF}kW|WQ|HbVG%&7|4T5 zj4LepBMemb?D6vQfHJ?bv{CSF$7Q$nepbj<=!?5q+K3x^2kb8#Uy}fsapWZKa_n2l zL8=fWOP?geszv>ah$%!f3VBscX4u|TcN&T?I-Gw*w{Sl;&~i#6_~QYJS0w-%CZAvb zgSN?NU=mvI8+Y#blL8;tC9Z&mAG#JKw`AY{>j28ut%Ze!iHo?etfZZX(l1gu53`b2 ztTT7M_l@pjRLeWi?Oiav#MhDYv<7AAjXA)LmlrFT=1g{1;GNnkZa;#{zM4oyT%j+} zXF6S<|KtjJ%lZtCf>$G&(%QS=MK<#>3d{5lQ;<>qa7Pu9hL==&ryLf=dPraB3Vh){ zec7{h!NP^gsJaNhuRyU$;{L*u6SjsDYz!ND-9q4(aBJa>*GCbBN1qdDBJv9qgMyDhTzcZNwHF>hbvF3C?l7GZNMVcXCC8>5~K=`h7UXM*ErtNva7-umBzdeYjYjCbTQ1`fu=Lt&rhH7R7;i$)vCcND^s>F+%T* zQAf>*op7q2Pqlko(45XgoCvCETH-}GP)Gr(`SiC7K49jH(_7u+l;yzQlNT_Ug~oa_ z(g6I3&L(ahH-^K6{c5P8D;<agKNk^$M^jU{!`^1^W5=hB;qEB8;lf*lb=wvj9J$=gwA2Ak=#k zV2Ys!vu_w}N3k|;VQp~2Mfrq*0lC?xI?X_bPA8xHM?d5oXq~ON%Flke(6Af~9fOM(Z$t7xf8#2Oz&5a&Nr0s1X zgLV&GQ$l(#H$m#}PnuM~D#C!M#Dn{xBO@IiN%OG6m8lybVwuI%UA%N@nzWD&MEk<{ zH-V_CPbw+e+oz&|J3*#IcX#)`Wvb+sr=H_~=0iR)iy?R0%*%^6?F$1EAkquD zG(>(00lrjE0Z*^p1ycN8X=4W5rnp-V%{?DjO0h#SfXNZzXgU;v#s)*Kl43si@6y%6 z9ug$-XWue6>Z1TzjpL1X06)M5&Wl@!bp49(s5Un`1vW_yKqLW7Q_vOyX+mlJg!Faj zWCIjvR3s|h{PN-3GP>hK~`t`yF};k_##xJ$er(vwl_zz)@=p zC;Xx(=49bb2=sPj_5<@GYg)#I&sT|~g*s>p?h}U}KfaJE2DnOR1uNAJh}Sl-c0SY{ zp{iT8OGksWr_6@bLMN9ahB&@Wz(Miy4uUi(#GI3Gj8R)wk7;q<_wL<$q8P}3^4Wpf zm;{H(Q6|X}V1he_HxZMi+5#>mt54k&HXrDM+6O+ru?3Go?-L72QC|LUa+KjK!$Z4c znT*d=v8szOPHXQC`*=}YkrYu0uaSNqB|rYns3ll+TK3|qakDNWs?w)Y{d-U*6>ML? z7%+#sF&ErL6ezha(7!@=Huulq9X`W?$w{jk4vrBJrt6!vY;9j$MnttH zTv1C0+ucEGY5-HO!f(0rJqxOMl@^@7W#>XsrmXL=!*#i42qQO-q`TuZB#UIZopG@l zZgIBBJr21L)JMQY$>ZAyV&H0!sG0Y>ug^cgLn}5}(rk#@@iGus4SdNZU&yza??@02 z?xHH}usNG)XxNo2jB0?QVc(0?Tx;C18+KVsW0mKi^oRw4!r5B?9uki?T7g2Dt@OJCA#YeWp_D5RCBiBcO^$lh4qVe*=&ECIPw7U4 zhqnvnV#Qdn(upo+V)@&w<>InRHn1uJLmOS#2rE%aW0~&S`dqiHE?ia^EGiPckn;N# z#+>k;#Vsnf65rxG@)Clu>I^$G!b-Wy-s+Q;2?dZy{YQAhP7q9oK`iP@0tCs9PopNa zux(_;TiuSi>@QA)d#L+_g(h?eDI=XYI>q5N@O1QdHwD@(XgDGN7AXi{%Bo`E#vs$88Kok-@P57H0|FLM%?s~@{ z$Y_fS3r{KujDTCQbbqY-o?8H7fq$-D>l!VG&C%7S8`1*}lvpCpiMXiau+k%STSNQF zNhVG*GK)QB=-Y4}dum`qmjAlBO5hpwN1(Q1{Y07-(%-|*A?}QO!6Dcih=Cb)P4G7l zq}KbXj|DmzI`E4eJnyC>uL0(>nn(%sNTxp@?Hkk{ z*%vlr^JfFfoMTTDhCR#$^VO;EmC*xHKcru8ziRp#6AZ^?NTf<7jBh&(U@}M8yM>3G z<)Evxgl5vzsJNiulLomh%zs`2Z*1{AiPT-CU~0HEp}T3GAVrw7_xW+{#{7QN=#us3 zpJvIqiP}$BhJE~O{9mrH)oWr@xbM$(-EE|^at%qMuLl+`?rX}ZQOs|Rz_^aJXzv*X zj&_RDFha~4v(c1lq?Do5k~-h`v8OFC{Xcupykhuvb6Rb{;c|Mlut8I7-a*hHRVXo; z-Ztcu=%t=(d_RW1Wj~bVo+3lIN(=b5vYt`9ZeHMr8n~JGW@ouv+U$^irHN)Wxa%6C zk^Kq-m*1w--m)b-L$gr`0!JNar9L_y6J!$yjJjFkkF`Sa&V|KQd!Q-n!ucGFUR)x?7p+Yk?xWL9j_$=J_@Ww5|N1BX zW(USqp8&ZmzWgIL#MBm)`Qf&OZvvZ+OrpJ?z(=0dl~DG+u+ zlgqyCM@@h7d)edk?x)pgip6@Ha3R&(BOz*UBcAM%nT1k=Jkhz?lNTKp=HXBWS)>xz zH4ob9lbHCByhBL0Ypt^!j`uxv0V&eI>Kj^c6t)hoRs}T(e?nGCsHBl(r% zI>Qo-y-*7I=OLd@3!-wZUF8>u!*-cLy*GL z!1wW?F|61rOnO(a8%QV+0)AgLC4>Ms+%ntgH>mv5@WSL)-*?nbRBVK>gpUw9`Yp(` z_<1+@8h@M##i#@2<=;X#Nd^WoaO1A$T;i68yO~VArF%#%C|aGI+znLbIh`_M7FLn< z6KHNp%Kyx7#r>?_D_Ba(Sn%Oc6DdUHld>A4_l^V52|LXLcLRR9FB;bM396W%egv1r z7I>T1d_@ZyfRWfLC>$bA_d!)cdSU!I%dVSfbt}?s4EH(qJb1^H~6SN+%OgqozC#`m{GI7@8K)u^emC=mBzo60(Ui3?_yby<$jJ;;vZhhpc$>bM z33ke^^JoyCoO z18dN!R)C8nONjMp(naIORD%HsGQNs<55x*lht`3j#x&gp6)p922dAGw8lV=Yu+#zv z32g<+w|LHe3YAS+o#-{%BVhLEUr-PTaJm&99!w`Mvc^D0q1X$8Lw`mD=uy;^#p+SQpP)b@~*dcjY^?zf{u9FrJv{gLqii!&jP6FB0k<8zQY}` zl$%P!Ibn$jtX(LTgR-&aPoWML-`j`&H~4lxxPzMbEYP05-MBEDe{gZ*{brsGzB3LE zSFAe;ipQZzFjvv^KL`x1YFuFdaL5xK-6OHVwPgy$YvrAwlh}8}uX+yUfH}Yd6jaFt za~g+vA-*4c4JT}}35p*Zx-###C6SS(B_$djQ$MfgI|3{U17e7=>0wn^pSN?H{c-Z4 zwu#1U$kU$Xf5P3dHtZ(}5uL2F9J(V5Q=onD^|+3#rS;7%C~l+buffxG8NuXL*kDT) z6ptM}dV(^I@`vY_O=a@1;DuSn7`SY`f=y`^1ktV;l+i1O6EMg4U8uOrdP5el`vlVL} z0D%$A_OiN1B95x4XhI!Z(N3ZaIz*OseE|21Lq{_f zZg@5ic02VG^*W}Ys}tzjDpW@)N68qai@IW^|i?f5==6)>;bo;Nl3U2r3< z^%Q9asYZl+=}`{+I4yeARP?UkSPgj&nW-wrw%6js6(5I=1C6S0UnrQVgcF9QSSIXq9C!HWb#Km%-N(ah9v)aUT0z#4$Bk zlK|M|+-|8>T=Ug{;+I55#N$k-JZ(p>ezqf&Z4X9nw&t?@;A4l%iZeLBObctTF(;vZn1nU0E65h7=)(>!7mjWJSYUe1neCabjnyQGhO5>00~A# zdjcMd6nNXhk(88_r93kPNJBlbPTvDiT#y4C&MLl*GjKiIcjLV%SMtwbRj7RHh8n<{ z9EA^i27FsLe;5*R%tiZPkixxOU0q!hkcXHv*~o&&m^WesE-;&Gq0OW+Al_gW*kr{L z4+m&0~t96|CjbXWVfJ#*GdE z^t2j;VOj$+#$m#w+3~oUlg>!mQ3y{ zg^hlkVY9p%2B7APPd!XNf@)5Datg0>BnLFjx~ZG zSdI6eR4D1trQzG%sAD?3@efRpt^1*@oqP`$!M6K6h-^l*QA1^Xxb~ubR z`6G*In?RQc&52HC zYrmI~!{KQ;Idef;fyO+{ZI^f{=a)S|dbLR+1=$L$NI$n)rlignIN`6qUxPML5eIk6(?+Lj2plXO zD+}m!KHRtLMlP;8@-@|u@Ev~?J?=h(4<|^!GIuztOBx$ZWqcmv%0+VSQ1zA)4<#mn zRkxfyuU@4X*C2~i#|Uq9MN=4L0zfPPZsv!jW1wx!yIjag2IX3i-Ym9Z?J;&tF+WO^ zE=u~0Fkg#og(=-HE2+OyWJg*HCO_JFS|l9nL>QCk>!Nhz)#~_$?z4;39LI2?i1Ef{ zu+eV*N#<$_wbjqWE${;0;1;tRd%F<+J+VqzXi2{NgoH4ijsfndP31=4$>#J9HgxJQS zKSMT|rF{+%F0$L1)}s-pSS69HY4Rk3P8;Ml6l&NH5VRK0$WuZ-5&umg49}FUqXv%~ zQQ-D{O{WRxr&9CQmNZoyKE|jkO`~G)+WisntC`XRd|XUt`)z3QASnA$feTOK^u|4r zcnDfa-HTYMW46#%6!zHhxgkmevvpldQ^Emf*R6_5kV&3-jN{ZK)qhF3*8HYhh$wH% zAC~^r!MvnxL=**d)3+XHht$UJ!OMu_(jgF2V-(h|lT=>4bH!yY0wALF1&9($mcJm> zYUI37?r%(2MU!apyafx4O#7MkICI6>pA0(gFX~1i8bF}g1blbN>+-hbfR)pl?!`0N z0kcHrFhK7|oBdLOZb#Nlo^hkW3VkJjY=MJDWgJhfWZXQexl$ zCslog)FW>nO7CBS9LxK+Z!gi$1aK|UL1=3P8k{w?w{G9|Lr>CKfemOo_3L8rXoSc9 zkuphC{l_7}1>;(X8kk^zD$EOuiYnrVus*dNj4n}$jrS5answpxU!}L!qkp>(k>sb? z>i=t1}bv4TQ$=og6wL(RnDr4C31If}lNd zhpYvEt|`ESLfQ&|@{$ngQ-MN&rwPqpcEb#HbkM>CAUZE5@>KylBag$NJfbW_`un|w zwG-^(N4z(XL}JYl1*%Z>hUGeE`5&8io;lghti93H`_{5_ED0+@1SMARsDC%UVo<+N z2CEEhvUu$S3P%F?ex}-e*l@6z9jo%n)i&54eSya`eNi3*SV9!ocl;9x%;}N8rcj1QK%|v9jOzx)YWyB;;r^i|9LaH_-hy=%Eh$HkYa=e~uy2Ud z)61-8)~;OZ#ch_)#Z-UB7;?fHm!5-;v#0<)jJJhbj}p1o$YH&|u*gE28eQFO-H@v2 z%Ohg!Rqc$G63h9p2fzFv))F+FHb+P;N7CGUDHPhZ;wL~{hXbn)nzLX)yU*2L+5hW% z(MbX5c8E98O5lRkiF0HCO>)pO&5xfz6qA8Xee6E`0FU4*mS!4)fvIZxJvr_EdUSUv ziz*^ea`k=UQk-Can82x0*-TR1$qbxgL0l(m*1=&=-3?35313#)XDq8bvQ+@~bnqXp zfX=XV`|jN*(0b3cP!qkG4>Zwy zq_t+wM=@rHx{@r-@J~$gBFPH?TaUM5UhfoURcnVx=CM1RKdaif9nJO706(G-Cq{d% z9Nd++*anfwv)OAi&>Kn|Ma$Bhsp-q=m^nuALf!^v7c)094jlXmKCB4W3B}r^T;4=x zyaM8{!I%=&zx~Jq4@zq!6>_Y@^z`)7F8=qS|NOWslV)Dd>lv6Jb7NPptV>6N90lJ1 zvWMD3HGcLxu3S#$wn}rsd3~g17&t?!SxU|b<{g*A->absimNFtD7Z&1P%^-4spR<= zqX4Q@RFc2FUvK4}4VqmviBofD8Rz% z?(f{<$KQ^xK7QoUEv%wKqz27-&e5KdKj8NT3piyq)p+O%3J4VTxdlIK{gqy^CuNfRZV~;X{}z z`N-pj>ePU`*hTR%yB9T02oJBb@}%TW-#&DvDwEG0+)jN;`pxCs_P0}Ht~R~7Ss7@+ zY|BaYwNCYXz-S&+lPlh^>T(7BJZr zP#Dl}Lw;WvxVNKBt6lQWx(L7WV2+LQFqa4LB+1L7ubPf{+_ab$NarrBtEvt)M)`$A z)oA5LDcK}1X6pi%yoI6e`{yzEy~x1@>W6Ml3Px6`tfm!-oRWB*Qvwm3Iq675QA501 z@VT_erTCFiij7hs8ZGzJW&fG^t!yg0{mTvX?qZb}u$b%H3kHBh2BHtdw?|Uy8!4ku zl%MKlQ$QHbTO0kTwd-XXfn+;aX_5BEmrJDN9)5}cz9dw8wia>{u?D4YRG@hNuRzhyxm+DNg|-1kj$fd!H@EIt zEui+c%V8uct5kK1irn2~0ejS}9gouYTqKqoDP}?;jRj@?P8#0XTQ2`_8fXM)X!_%_ z?vdH&fxB!<)_v{yBYIcI<|IH^T0}%cA*z}?)?3nfojIL&`ptcA`;pcSMIo0P)H~b+ zF*I<8q0RC7A^qngE>BuFf2!#$pT`(DOv(%3HRk(q;{?*PqQemI57Cj7S#aKZZJpY8 zlrfR*?d?A*Shuf*6bDIo%^cdKJLdcN<)dBwzahap&sENNNFKuAR6Zh@!n!F*bm)^4 zM)WSbmA|ra-Dtqqsc*^u$TBxhe@$_e%F8~_?O=oxE$II4op%gECEp`$PJ8+<6Csx) z3!e7=#u#7&wuCr=mCg{OnLtKPnbXcVc9tr^ zg(ul4sn|wtq3SC_PbrAgb?$`32T2wteMW5bcnbx5~x zZ-Y_*UYcH+!=dH#80WPB+^I}Z0tM)Z;MSWL!a?T8)v72emWL0ikC&JErVmCXVGX>% zU7&v%k|DC4-7ILnY19{e0f1}(_M_!shZN92JtVnE?o4&RE;rqo=^BF9R*MBhqaLc8 zb}oY78EldgV$INZX#sbp3^}&SLEx{|eGd{o-%cML+;7ebbbs@Lx9Wq zAluj6!%6z%7EMs@T0yb=CDp=AHhJl@yp7Xb-K@ShE8As10=;OI+2*so8}~4B-404- ze#I>H2OU==9}o_rj6G6^ST*@5V4$$pkkk*K znH|ce1QW84QbOJf5E)@x)`dzt9XACCPijA^)PS7pJ8m@C>QS~1T_UpIC}Y|5G^FX_ z*wSiXhUjFcBM4H$NG9bbVisnu{vO>oID6lJ(h~8W>k$~WNPtJ7h5}p>ENoDlAy z3PDP`_UFG%K&n^R_jT8&M7bg?g>qd|#vkoF_jv#G`v!2hJKvk#n9;BqjRu^<=LW#z zI$+Nopc?<@k3j2J8Mr@x$AD+~`v1O!VK3#gpM zDR-CRWUrxOTR<6aVJxb>mKxC;Hp_V5^u|UVoiI~JuKz~|u%{O<-O=tkYzcVDyWcGp z!*N>h^$iBe`Ao>EE(`i_Nd@Ca2@bm>{7j7nrX}v>qJbzN!Ul!jAVf=rz{E)(kOt2a1X{o20Z8GB>= z=>Tl^tn;%0Kb!{9YG=F5PyVY#K^Jamnl){G`@Ph}()6npF^K4I%9+;#pO1@f>uKil zX~~X}A?r?rjOsc}9QyAL*y zh3Q{|TPM_ad4TxK%;(v8v3l;@4E{^EaQS~<+IQ}x&-1UW?S^@mF9&C0R;$znf7D3k zQr6rEX2hM%YqA=%vW zTGVmqYN%tr!*N;|HVX)`!j;WTO&i31&s9?rEy?uKb~QSdH`IbdS&VxG0F(Hhj-p0q zVMHAOT#a}bT3g4uQ|=+kXS4927pY%;6HkU+t9BllUUEbHbS5ZG!ZCA9`zcv~Wh^!yh9W;|cs{`vQ1x0XCr{G!`7 zZF&{!ii4kgHF0A`WyzP%O}B1nP|`{DF9}Qd{pCWa3tzoCeE4u7GNZ(b_y219Em*slWD;ZhOI=N!ZYmvfWOn@N%5x<^ zFoIHL4-L6&nPz*QwnfU+*w{Q$?fErXk6SpFC=g0$8rs->ZhIYcJKPw-j~>N$`h63C zy+2``Ywh35+!wO*RH+=^#9M)R-I6pVe(+7`zu8iAXfV_Z;n2CUb*BL;7?PO9oskgQ z1q7%(@}nIT(8xbYP$md9NFbwx@ZyA)GIU*0ie-=GTA#9Sm3f)~)?Kpn$8w6HBgl}) z;D#3v;{qs_JN%}*AAbe#UL-J?d>BWCcqe-I(;>A1{QXxf>-eZ7paYj}6qY0b~!T^11ss3CDs2~~4y9$V< z3O+NxLTOtk+&a}Gljw@-#kW@)&7!j~%9Z%iL&b-nguvFTb z`6ZA+{F^C+>Uzx(%9G=ji!aa%=Ga@Jk`nCncP`Z2RxMh|rZ3Go?&Eg0s(^x0t7B+2 z`jndR1UFApC=?}f#0Ac^wmw5v%piKj?h29#12YXC?LSW!H(w6Kf|7^N>9m}!#gH2_ zd!;3+VY6)UGtLkNhxP+QtCsNs+{a(8UT#( zblP3i0kMcuUJ>UJNNnjte_D1g1pmLUi%f;WP7uutnNU==4O``yD=!UEgP(VGp z4RvQAE238vvH_LL0HT8gnvanwLPgy&0eI8clX`$IBvaDNg(Aj6VQ~%&Xq1q*h@#IR8!qGPExSDZHJ4UD8*4+x!Vn z-SEhDb2V)J2$XP{_K<7Iz}{(#i^tdb-?YQhMh@Ean_rg}Hs0vR5gEjmlwsjG^sTc0 zl4+vR83UY5(A6d?C+VgiCkwWwf#Ii22P>5c${s_7`LJ{d@*j#^XSSTe=`Gd?nS7n! zY=~1!`LVmx*vrK@F_@Ka>Iei!qy41w$2Wdb)_wc-8ja6}Ty_`eaI6#}1r~*k-S9Hi z8Nl<@ZO&NBU|jMB9nN|C>V8;`ZiPL$3s2Ag$xI0*WuLR14m7x|I3!Yu9o-Jw&F-wb zSV)D?NtGlT9Ya?n2Eg%1Ft;o(f=giFIWv^10FJP7LnVF$c@9{ar4OA}*}F}Q3}Hhw ztO^dJu)0cCC|tka#wOVJZHR%yks?g>rJ(l1ve<@;BVDDDvar5=4weNe9^tHgKOle) z$41__v)6LbJQw3au&MQ0#6me&4i#)~gULw2QrHRaec*997MKg1e7L8+vc0MqHv)lY z2&KF2e}T76jhKiJj$xEI0YL zT??5E#!Dnc+@zQ{lD|;51$H8Cs0AtG)Txkc#dMrz9EjX?51Axf9FpJ%db3z7BIn*N z3RWl)=|HX;nPwmAo8i>_cNBmu3Lu53C}=32QWC3#Z14l1{@*rqt4==@ghF4m;5Eqj zxtgZ`1IOTgvjX702)``unV|7GI4kRA{>sSt&~;zg8cxOy(>(vyU5s)5}3=mP$bW9ELt8 z99fiN-839=1Zt;r132E!OG#ooYXQ0qlA&b~1kP*%0G8N)6({e38=0S2gFO6145N68 zo7DKZJN6=)6F;cJLNoEjG|kP;bIW|iGr!!`3?UuZ4)o_L zBe5sL6gVH<0^1OSowh!;)laPpXGRwdpuy0TJz3LG9&5s_Tk43?BpeBWiP-8EC(7(2 zvwLr6KgKqU!F^wsnt%q%oVCZgX>Uq*R76A!KG9r-QsI1*xjk?Bs&ghxfi!5-Eug|+p3 z{1-_Rmm5L=KsgJ@AGlS89i5mvJ*qqM>NoaiNVd1}7U9CVvu+P>D|0w|>^k%>NpMLs zy}1|+vx=ljGDcFj2$Aej?8AI>%0L!J28*ZEO|NKrRXsCUj2dX@#hmFNqE3ls0(1i$ zGmORUn>hkYnz2L3(b*Q0mP}26y45h5i+98HqN4I>Z~2p4EpURqW1cj3U>k2N>EFQ@ zYJf==8^8S(jg%!q^D|jWec#d5i#snN$)ag9y24lpdE+R#lYUgt<(%X^|D4_&>@2P+ zx5t;hEcP@yhA~Qz8>&&EF{Q$^C~k0xPmG?GUcub9>%aOm-+xVZaBgtg2NX{(Mn(`w zW;LvKb?kmk9GIUpLWkutxO+4xT)Q%vEoyetUFHAC1cmF9=b*MJNY%k(hXXmsa@%SWe!Kibj}E#>L$lwp#Ng&B)l zpKa+)yggdK!DXeWr{gE2A6N~jApXewgAS4xc4(ZyQkwhaP@Aih^t#qgYhfNrOpDPJ zfL91clY3BB_Ce#fUw9_93FK*%A63|>M z?Gnbx5sQTs3zCVw%n4eUmLGv&m^sK+KCDSH zw6T9o86TyMFGimFt2r57g>NFXd>wMGH1Ls{03tO23TXgny2BFY9{;2y5b^C}h?Tt@ z)|Vz7-{^ZJ&HI;dNtARlKk1=#+<`gC=^J$o-%}pk4lqvD9Z4{Oc40XM^{WDWD`zI5 z-tw)jQaYV@vC0ZIFY0AkaU{9L#lH7n=txIO9WKmtPMRF@}pF;H8tjV`0T6;h-fy4 zH~84@(EfExDGn6|&I`*iDlb3x8$3G%v& z2UelezA~R5z4Fp^yI*x3H-5h#SalcX0;!W~|7BkG_+VqcYD^Y)Yl--a5mL~1C8W0$ z)#lO{eVzkqU8h76CAp_7>>4S~vvg;cUrV3)uvYpPBtHj@OUDa$#btaitg-V&Q^wix zvFd}`*I#5wfN;C8)(LvDzm9kF2SDw~xu7HY15b)To+!i;y*sU}w(CbURpuwbRF^4( z4frKtCxcPKzX)j`nbK19RhhA^$aboWyni1r?itZ$)vQ~vFW|trmvsFPG_saZxoGv0 zY>QNfN-v69b<~FE~J0k@~jrOGmz+zgYYzf`CXcB>%iz4EG6VEoqyf~*~&$o{cdDzC#%)WSl(Qk}*s#x59`Nadq-n%M7ogtkzykB5 zQ3zy71}eE?)hgpkM;f0+o>R)9R|6z>%i{w$>P}$flqV}>kj;;P$bwT-;F|v~Ky#3w zER6U)3{Cv(=T`p(NDFCO=EN@qv(gu(AjLp;)FE$MAIFL?7z^|XvxTgVXvmb_NZ@)T zrNS3KjN;Nr-7Ogh&LC>BVjMaV0G<_U;U~I>prxbO^$+?p6A*(BDd8a;Wr83w_-fId zgiuI2MxaKx_8yTZh@4RThbt=s+Z-TPv*;g{J`Brt~v01*2!+0eN20rqamm zhw*=c5Ga64m^w&EaC!#Tl{j}s1llu`p=zU88kKSS1PVQ&={NwkBTxa*KueHin0>T` zU1s14Eg-^dFkQO56m+!f2NQ=2_;XrJ1eSJ9T*n1z%)Lq<#P8fi>m1Re*7o@ zB7r+zC#AbMql+YJoSGodUnTFNZQ#tze2j2?lM%OV42E6|9yLw)+J{-4BgYPb?1o4~EGeqq!p}o5gh(Qi|11_#WXF``}t@$bB&$w5{YnET7F(q%c(5{vGzp zIFpCAq6kFw7Ru5bd ziJRQiZu{%0On_E66i&mkEH7_Na|kia>ZNgOB)tOE#K7yNH=_%yHku8{zypw-ql~=B zEsI*1#+D$H88>SK3OQmyXnrbGWynF@h6CRh_=}EPN-epfy3=X$u)HovGmw5sDPC z1Eh)~A8_aHydW$p3ndWk5BF)4^8>127MSR)>+SNy_Bs4xZprXU4b8wJpg6!id zA0gT!e@5mo(CxtypEK?qvd9=~tPSX!rb7@s!V_g1tS|UH(;O|+o_CJ2`C0mMK&GK9KwPAF(Zus1fiZcVgAO-fiJ8O=rss@6lq4($IMWR3o%fdtvM8NDVM!7`a*C#Yoh?f_=ksmT)vU;|0 zx3@y!NEr=2F3LD8sw;roM)g=>hf^Yl{sd~D%Cs!o9LV=X+@~%fKKte|K&Qn;Ct)O_ zbP=3lhvg}zW-MhNc2`AOIbIGQs#8bHNBGJ7dy#dcm+C*m4necvH*R3f{B13lzAkMx zw?oDmWl3l53P9aI7irLWb+>Fk(U;v#GjWs3%|kqnUq# z1~lL+I&=bvlwulEq6J?w&OuKHiVtlrquN}#xExn-xbsmYbXeVThInZwaS&cptr|`E z%mYFVN(QJbQt zX_lh?1a51}uq7`(8o?q23*m=p1dbvm%q-OT{T+^cE!3n{Dyr$wFc1*+PKI^-+#Cvr zCj|dTgpwj8F5=y!n?daZr#prZM!MClYy}$Jfj+i+Cl_w>cdm2s`i3}zeZX}#rW)es zT@uFczLB}DL22OsXz%=9nhN7EUPg&R(Tzy3atg^Jr(GoMB9`dPc1*kI2jx~2X%{&{ zqL>N6j0B;eh;=t2kRcK6B8HH3kyjmC1xg`}<|fVyAtFk!CDT67Az`t9z>Chs*beOF z{CMB*ulM;r4?5#K)bAw<6=Zrm9!awimG!mTglcp|uPZHoxpzmec=83yKm!Q;m9&x& z%wV(+OQ;SQet)DsPttpoFgsPbGa$wXmAvZnaR>1W~;Bv;VMb(wyv2E zR}v^rHWf@a=2k$n4V9jDLu1*dXG20Xb|sG?F);*@->;1{#j+kEBY>keTOE5RbA!73 zK(nt5c-rR2_xBC_1(&CvSrP#|^uLM`!9=e@5na$2#a zb=)K$t7e_Wd&l=PW)qVq&A1Mi=wz%TG_wl^jH@ThX(EsTmlhQ~S9MIh7mL-~$}RA- zRLs;buAo$PZ0!Y55|Ubo{42CaQ9QPE{>HNxPo39h0_pBsCa&C4aXdx3$v~Yrb&%4>*`)2LJ#7 literal 117443 zcmeFacT|_>wk`ZqqsBrsDi%P91q)S?B1%ya6%mo%L8TYzNH4~S9TWtVj`S`9B3*-s z(mN{q`30GpAiHhbObUvJ`F~}l-VjeIm$nPKPrN;X9;Q5Z7xJrozTvrx zcc_J79$#4VgC{~^p?-86MM-pLMa@p0{DtdxI?C}d`}xkKc)_=s4=*hX81Jd-nTlyr z?6G!e`^>=?qp8jDi~gPbqjlM*l|OyUiR$U=bw7QFLVNN$!_VL0 zzO_Q|=kFM-r*ioDJGFn%%>4YFXU91wundd7E?(CeShncjDU??${@(*FUXcH6g-luc zmr|5W+VZJ;YZG$lYNF-D+1S|H8Y8Cji zSDu4hRCoTa;lw{blWChBT}$Qg$`QXq==usOrhX3cBzI$!QqC`1`5Q|=$3>wDZ*oDEX+=R^vBn~J0Nl+OXp?cRr!T73>%Jc;h}t^mN>2c?T>H#jX7sU{W#PyOSy@K68Q zhWuZ?L%g1rKQ7uag@SkQN)y!cHf`J(JTYO#xOXq}p+i#s{{B%4iD8P#dZFz_J_WB| z2W5yRE85v*ILr*5_Tx1>rK_tuG%_Mx5hhj@D!Rqm%IcA&HCc+7V~fH;)L&fs)jB=Z zu^*H5yo@R^3k(D%>l*IA1=)L(-wc|A?@b1AKZFOrIujm0lwbAKTLo7t3JoJ(nPNEeu& z8Gg>Z9>4fl!lD@C#8gmKB_rm;Ei*mVTNS5rluM`d*ww37oq3-;d2;90t{Sp}*yqs%WpQ`8nIsz6Pb~@qVw}IA{9Zm63|iHAEsSwe_DT zCVF70T3aUFu}o@#)hamX?-?3o3nmeWu37`}*A|l+>ShUN%-y!9wyO z9#3Ghbz_eAa7T%LO`J-ogn!j$Hsy%NkGGoDhlp$}dU7cImF39LP`MkUXzQ0R2J}i< zcBwdLvL8b|qw(*#xw&0$Zg0Hf>ROYmU!&8v%xONqxVResyorG!e&gQr``FlATpv;{ zsxMAUt4lMi&G0kD2d<8EmYGJq)p`Bra_0#TIn{^J(fUF9Cr+H;G^jmb=IiGd`|jO4 z$;gt;8d_T2g-;HhJ%669Uy>4d;>`K;)lUv-KYH>+p)r&~nY+7a2LjjMr{Usw()_iKT`QL`O>9J&Q`Niql}6^u?TF=moHy7Z+Uxvh;2EAX_J7% zQl~2>B=&#*Qu6foH@uaZnOPA2z{jBeW!ZYmzIp{L?dI6t`qV_6qOhKtcu_YO2EjP@ zz2Z?gMU1N2)>AF6f{#2rG`A)uCQ2piRY_;sSfr+=zJLAtb(Fr(lECK&o}9x{$to&( zySckt%uZQ6Ik#tcI3|W=b})}2N-f)gS9TTU!B5Mk!SN)?s7WA4zK_|qAm{b^RX`qni?991Hy575Wet-ZSss1CuW=PkY) zA}iO?SB^J1#$R8#uKUY}L}z!m7>kik2_d=-8!lH()eoEX%atLRRIRV8tBXE%tP@P?K3j8l3p>;9 z-MgDsq|tEcMc|0qd`ZaTv>Ld`d-$+?Mn3`=l}V<}D2u93(@g!ejCm@pBp*M2Tjx91 zQ%eF5xVX3=-d1`r%N452#jAS6#~V#jFQ)`9f@3ljw>R$HL`$pha_G<@i^(C)?E-f4 z*w31WyG|FD;E}l;=j;%i3Zm!`y_fsDcs+U)GTKw4j}xR<8S#+Z7Jz`fr}i5+Y*=e@ z?3j~`MOCa)&3d&AtFoxk8>v=#QZHlhmqSaTQifFqpVK&CY-Q8Wg@csKpI;JH~clM6w ziMqch2=vjR>8Ih}4?0Dr;=v9fPDH0@pJ}WjmwD#}R^^u$5PIY;Uw+Dg^%?D!+0Jhx zy=DuWG;Y^g5`nlb{r!vm*az(!eST_({1MM&MsdukQ?-RPIi3vN`%pKmE>if`-UI4Y)Jjm^l+EYin{{{8pg=AZw*v2;`WL%#KKzwbT{+9j(f; zx4rV=xv*uUwRX_-Z`(NDG}F-Abnd8%lse6CJI2|O<}jPq=rDa{wts%kC`*6nXe|4# zT{%%wGXP-{t^T=OT7_Gq=eD1b1n^oxMI(KgpdpIK@8Te4&c&4G(f zd&K=?b_h9letLb~Ed&doQyO^uh~31q&y|@<7BwoCBnM+V54hS-b%jrTy1s5Glc_8x zXIF{5jZK=2m`$qqmja`b=Aq$X_kaMk+r1>;OKUEAaY}12VBE*&ns;$}wCV36WXC8Z zp5?1S5N!SQ>7t9fn_H6O{G44!T59UH_Op_DdQmcyrX}p}zlK)E#YrxZl9iR^>^{0% zcd$8^(LXOQ@AQ?r7hLzY3p!-Hnnbwccw=H>BHM;f;d$fxk~~c9o<-G*(+R$jQXw3l zLwVTF3Pkd=d?iJDm!FkH?7wE_!=Ne%5k!X1L^t<6H(lNG4HB ztN}^AyEY-1Zu?{pd8CCegMgHj6kO$?H*Zc3*WOsOr84mN^$kTWNUOIH6V~|B($U3i zKYI0X%dXQd@*X{%Wx>{C_x(u-ZKI?bYIq==_U2LJ|eL-LxLpRX_H#aER3 z41%iT^=7Uz)<`m&Hf=H&P4+$)b~*O;y?d2NW)|2|yN=2j1*sDLabFw&7E8-Co-UbTfy`M{gh_|KUN0EJY8eGTcX#qJ&+p#T({(-z9ex>wYhnqMY60&1?L zG=zow+nfc0V@gUDpBm;#td3O*$KPS*o!Yc;|qw9fVSa)Anywbm`i*^ zMZKcL0|d^Bi0r>B8SClk88+RQF0S;#;NZQZM~_D9R)pz&c&_PRG4(V!xGMPcI$>d9 z56#H$kGQ$+rAhGT>R`a`$n$YC=XT(k=x2Yt@D383#lnb3g#@|Z9FBBXP*fy_4U|P`Vv)Dq5;rQe z)^_jSy*)P>94_D&u&Jc&K7IQ1@?U=GEI!&V4WN2(f@r1xi4JU*z-i3~cNSRy#D++;uQXEV}yNv83LMR$Z{e`AWY?Qv4# zxC+kI9vFMSH$Vq9j`KlnZSDJXypkwnUt6{^33m&~E=s!lJHsJU2lUCM z@os&xQBz|xmxzc64Y$GL^S*~K(VH0?m;SYCCXR507|Do+}UD1`&TN6%FT^ z!NI}ygE(L}Zro0JF#uljgs$gMq1L9muO}B{RSsU3fUodhXF$b=Up7 zcfWb6xFj$s7G*pZtOBUst=|j)lRPxGkl>7Ma^vBMAS6G;Z)TAXtOyt1a<~LV+4dvm zrMq1Do+1`2WX$8mBW~UL)qc7+B_Cgw#l0y_ab9W;3cF6-dpF*~PYE;)dL4gH_~gk5 zToF^0BRW~vuU~I3_KQ|?m=s28=5b}0fA*?-MRqx-MYpu3wzf~p@4HU5>h`58+}+GN z(wE-f-4!0d?TTN~d3&$_19x|+$ZEpZEqq1!V`cQKV-yIsbEcvV^XIpX6280H+JWs7 z#}o6J36ogWOvU+`4nbsT#+>0*8}~$L7I;p!6Xe`zH!N1<&#$yjU?PyzQ0aYXqH}X| z*6pW+g-KqR8pv5kAVW?fUN#c>K{(4DXjls;H;>-7kdND_kxvC^a(*IDaP3|`{D9cT zJ?BbMfoahX4-Ax|c2&^uk76?(dOO4xRDSEp!N3err~7I6Xe9k4yUC#w9ibs1oxqBf zIQ_|5MKl%&k@uKpD)1^JBNgI3Sl@l7hPZ_e6Q5W5@mZHYU6BoleIFGJgZ+raL$h@Z z0x_kf7g*J@lmqO?p5%(PQJn7FM#$p6=rkITbmZ`19YkrGBjyp-2H0yxg=*GRT;%FF z6@3@h+1TeOEp-uGj+nLI+uenj{xQuWdTO*sPBHYK62gheu)i_$W4dL0h#+licXceY zk&zMa(WA_~yb9VS{xYVfrdj$zLPA_-?S(tdLhwGQkE_B19GFB1n=mso)7sS)2{7X) z=%~7C)vC$3?Hn4n2>QF*q>bzHG1V+QXom*s-YH}|LI+hv$%twf`@XM;&@nQKfA{Xp z^5x4FeAiIU3ZZ%>n+*I)`*u4WopiQ?y|uM<*GN}|vsUL{fBk|#5LZeutZJ}qQrTls z{N&JS_RJBtb9>w`)uW`x-VTk9ayi~BnLU`Y@56@=G>44?v*xCH_)2DGXWRPwZF-=wO8-f#*G_M^o)|?4_U=I_*%MU ze;gieb82y8qde&X)kyJWFql~c>R=@=X)F8S+U2W-5ou0A?kBG{qJ87Uj< zEgK^rgd+V-x8)KiH*Q=Az9Rb)f$13h6!rG)u^{XA?cXngI3R;(E;5T#%Z>y7Xy;v? z%*g_XObCOZ)OZwaQzedb!N4S)Kv%=~WSV4}hsC#8y;3ET&n0etv|HBEXu7=`6t+U%q@ycojZ^>9Pn7=K*QIP2kdy~d2xJ?DKRe0}Ku`3E+muphM9vSkaGUgeq7 zE_4T7acUp^;9M@~ed+D3icvTO?lMMt7>EBfkjDNhy2(|){`%=J0SY(!-o2+EK78n$ zFfcH%Q=Fq06)cGZbK7i8O`ih`hIaVd#=X&3&UVPmn(jMl#)qUH?LEyh*yg21(~QLc za}xB!2h5rRCk zv$MNv;^RS&L?E)I&5qTzb##OW2L1sgaaM3{B3Q=u)aldA%*+LJ>7Zw7YHFhRNr80B zl|j(3%I2S|1&%ZKx$U?ipZ);`mTy?$NDKkFKflc$b7g;Muwl>_yw8a2n*{_Oe21Kg&qXQIb> zfs?M4pi)QzXTYkOA&*K^T0aKO>vc#(g@XF^7aT@NNVo9IDN^ANjegjr$r@kVt1grO#tDgH8^#&?`6(< z$H_J?o32o=vmx9Rr{2KVC2tuS8M~fn`yaeV5Eh`$zGPn%MN&T8S4MKTsF5AGQ7k4R za_~*=61{5I31^vj}1`OJ!sPz&vrj zL5_KD6^or+x@;Ns#*Mo~@V2k|1!b;RB zgnc7dRIm0~&?Pa{MJs-zi%`#Vp-!{x)8dnplZ)1KpUbFDdB*=8*HZ#nd_nzNHduHe zOseiIvWKFghv>FST6U6--==c?&A7LnewN(5)%^Zf0gCXtuOFpAZE%O4E$oq~J?SxnN@aX8@HgHfA(nekSk0 zSij@E68Nh`olHc~teGKEs;vk9DA~KBJfL9)m$lN*vN3XtnwWEs--VO30efQz8(sj?$9G_)<%zq&l&`W8;XamN%TkM!5^ zApKDVmH}HP>6AU?8!qwX4Ti`;#1JT2Je&?QR)DeZKxDn51K*KuHTYD9tDR>aC3%!m zN}LRikO3`~19vxGJshd)%2uDlCQor&wFc?2iZ-9Ftz_};L3J`PU_3c7p))fv*ghEG zIH!Qcs{-*dtl~BOChOk4wRd}_3y?5YHzXc@dv9AXcp3TRJ;9PnP|o ze29oNyrvon)vCb3d)(jC9p&YHUs6&M#c#@!pioCA_b4J_pO67y9Ij#)ppS5zn5bw4 z02@ILu`21Zs8dTURr`F#5I7z^co2w-q9EOZn?HPy5XqZkmoEhS4}r+Jm8BYcXD3B! z?`=DDmVX?}OfIEPp3C<31b}+#+D{#yKVQ0K7SO4EyFR_SNHP}jf^lD6MY6)Z%Fv;0dF`{jJ2 zPSwogZOiWX|3Y5>nZo<`?`@Dm*Qz619knYQ%p#SE zv9a+%=I<;Zh0;^#!&9{rn;8;OwV1$6$J!7Bj(L{kf#?ksPfUPUoMRIH4GOTA!!nJ*KwwWp*;a; zIuZr8H=p%$f_`zF$(cvVUzR;TYecH;@&KwZNXcn7qw_{;&2RZA5q4h+(kW+1$$-*Q zdxF)8`^v}8p7?CGXS=eKuwL7m3kwUEb^x2bJ8-r2-S2mY>tCAW4Aik~Sj0C|@=uwY zCjkd(xX^Oxg`m(^Og`OLS37hxlG)no2v)j(uFe@|R!gO;tQp`c|Y71`9$;@@YLiy&&7h)jT{YeD{42 z8s&gISQ=aWZTk+s0VZTOjstr_?w{D>13SbUXAbl7b}`IP+*Ea(9p$T8g&RfjSV!g1 z)``>B-H@KbrkbHczh?F7a!*#Jn6%~>A+ul=+LSrx;6|1=OC0paJ5;R zzt42ah9AK)FzHKuYQ=iXp6a4*{-;l$t~KeSEq&k>A0Hp|5FxT+z|2haOtvzx$~ zJ>w3@IG&lAZLFJt;t#zM&J4h_k^(H}<~n8;mU9c#%FFch9#B!0pj}7vnd8q$`sdhU z=THPq&=sURMRfy(BH(y6H#Zlm11?rUsE-Ce?WwL=4n#_|aG_EEptJzjzi=^@8zMuO zm6ZY1Tne&AvA>yJ72)}?@x{SA#GCT%ib403z zNU#PfNw~azLw!Br7vOt%%eR@9HX59-QpRb5B7ghsH#S+;<+`Z2iUS0VT=@CfWa z`rLkMqzs>3sE(9Fb_|rew2Q~=2j3Kf4;(qQ;Pp}Y;`}`T(@bprXg9YD3dLgQWJnwg($bMdg5c zN&?a?tEwYdNWN*0kOvRe=TH~(7}h`2vqw3$gYC-&zdwKZ<(Ex1ZNs1))|vniv8FX| zpUAoc9rwTnuwce5t$j?Kj9n;w3CSLmaq z!d?6!+3l=3b@Jp^mtCp|$lwhmKFvVj=mcI&zw`w)IM2+BA0U?U2#I#L5Ndagswq6a zkiq-=noV}Y_mPq#fC!Y4X-cv5$m}tNh39hf^7N4zr%07*KT>vDwo0-r$*|$$`X;*# zmnF!iA3paM`Lw%Y%iZ!9SCoWi@H+?y_Q(Jx&1myBC8Yk2K7`=g9T0v5&kr!G6Pj_X zw@!Pj?O^T}LPuU{NUMs<#JSqbzz|>;fDi474EHZbV2mS5+Uu1J(s=K-wl>YjUT_l3 zPLJ#3j1mtBP_DXz7DBe;Y>(RJ**(V*;}OYqivk3j_{Km)bOKU(AGq{qYBAo1kb@+> z#3`p<_OFYQVTOA{ad_&-@h}!ey$^osk_+;87?f)Hq%mAJMR+B6uUc4CMMwm%RvE^J ziLz%5{D~Weu*qpRVLaO3qy|obI40h^?=6qefNz=9?nD_!RGM5zL5I0XZJ~MydmCcej~-RR$>h$%eG{IW zT}F{U$2sAV0KnF<%@%O_PI3)UJJE)=9N7!i6@e_P(Q)2hL=tMO46X^zcMnzNz-~1)HNqyl;iF^mlF<-FgyU3R8VBuo z(b{@ae{ym%5_%A!ORWuhKPKBiN4=};10fB2`}YCa%962IBKG_7+g8(!V`mU=8NHWL zF4BTsx^o+HDXt!(zhKw9hr1@Z$B7n<>{7mlJ>z0kBN!!AP(DL;fBS%^B=tW6Z-G1e zfddyv0gOM3b=>yj#JpUNCph#5xF%7j;m_r3h_qowYSc^+6w8a}VIF}x7lvhp3Qn5P5Tq=wSzba z#N4v8#vaUFn(^m9dB(r~1#*L1_lLxA{NlQ)qYe4CI1PtZC3~h6O!+BY1F&a!L}#eGdm|`&+-YyJF-p_T@t`JRLM| z0h)KQv&S#3c>`V!z)84zmk7=Tc_U~*I`pJSrUtK7W&>^~$1g%NCZdUZ-+pl5HMB+< zK|GCCLVMgrV6Y(~ez8A)G^*Hr{QSgKH8eOV0ozGskkCqN8yn9vhPJi@F)4yAs3xZb z_o5StnD~2;%Pnw_qrnoO@?m;t_hVr$&_T`f=Dy+$q`g}N*{vIdCQ0}tpc)z)0tWN; z1E-CEWF_I$nV&2%|75HC^7b=gVpT(J1&ktCIvE6i(XJ~@^tb_;Q{B-vqg8T6>hT#v zcL>S-Q9u4kyl>I__hkT?kx*jxb8}bo)igD!f!mjitkT9&;x%h0`ciwqD7(V*lUQ%> zgX+$oe|d-Sp$Bh;_YsSz&sym?-!zTvf)JiU|IW!Fd~IjYO?t_jzilsc9G^4oEZu>v zKgVD7Qa&Mw6sZ%TgRmcUhUsE3VVuQ^B7?2H zZ|MfxtXQl<;@hW6X^-GUVPEHO2i-YLs z@|7!l;2@|#iJgRkgopveJ9hKtO$a5iVAP??Y0386lI(=+;}!zNgqX%~NI__O?U8PV;HKFX~`n`?R61q^YTCrh~z8Mq-`djPdPW6$O~MeHysvr2wC@@EiS(do|RnIQvY-j@LGx^}P$czk|k1W>s;5;uMpE7RC@?s>_7&c&* z&6-OnPOJaixVULxA0xlb$b}Tch7q`+dP;+Y^g!{dT76#LVBO(2G%#=hPOsnS`637t z`Y}QMCeD9Bx&{!i&|)VdC2$k&$0^AF{p_|$q|HvTsB_DxJnSaMeV|JH}H z&}Fgc!{zE9*N zq|+|IPcUdq=2>9Oo!2qMk(_z>aBVZ+=g*&sqw=aBf}CQ8l}SR)vIWBV#~WODU>rXb z7dZ55wqhgot5XdxO@t77Q3zNE4HIPsesjIHd=KIuLQyUoWkD=r$hVtIvTa7A2);rv z@2-+ltAdaOGl$$A>ZO#ZrPDuek+c{{A5>oQ{_O%QSFS{sj6|tFG{nLEanJ7E5k!Ut z^;_^8OdyOX)J@TNH9eRL{r6-cYY;mKd?9S4jPY2vcX1bylj%YIYL-~F?8XCQ zUlL2YQ44xOYY7qbp`ad%2cN^t%`NL@4$Cqe)zUZDF%(x&6pD!Nbl8 z0G#?mt?!)=0%!3fZ4$Q%G4{jCBO(d$hJdD9w{A&B_M`Zd1**QAp;ZGii)}RpC=`(HE4nzQ5^3Ah$pbsP@Io(I#V|M-&Fe#c$iv>{HZV(!waVqKF z#Ag_*m>eao$KrzhC%fdFfams<;=&yLXZYhENAHEWu_il_d{5DBY_JVQvq7aYai%jeeAZR>8EqBiqVs0Pr zs>o~ZF`gdjQooh5pb1uPi0+kz)=UeIvwvv+FO&=W4=?V9L6p4%aK3Nn&J(DwssQDT ztg`{QJdVkDlq@o-!yf_yCHKvnGj7Cv4xSPkM%FLPEc6gji178+RPDnWiWApQ3wNv> zeg;msVfl)*bK9DmpK29(d%RQiD1x|0WrDh0rbp<+i9#v|$6oCYyG}y6xJ4Y2Jd4Svato7XCitsS4n2Ns$GZq0?UYWNNx; zJ`QoT{N!qi2i?!h*^4^18V0|@g#S)1;#G+Kb^reT&M$E)Wdlq*`ubEm{X;Jiz6KoH zYCm<959Ix(M!M2kT#lZN^#ledlmk2rl>~sVTjwfSu$;0_ZLCe@M?9ub+8E)pBDK)h zdXsy6HWcxZ2)Mk(Uo{))W-eLoRG&d*6_wb=oT8%GQvQO1A5M5MFNno^NgyKTX%MR< z^5H%(gEJv$+uyqV3EzAi5ztRF*h{01W1OU+P-y>NoHw1A^kHHJjlz*fqN6|bth?18 z;q8a?i1WbhIy*PrPXx-d8Rta__!Z|HJQ>-ci>|wbnlN(tV2X?$H#RXj_y$^jZd~|o zL=EEel?0|r)+yUb`v2Z>jW^oH)7ySI$aUo-XHy4pY@t^QP%nPLp(!vG0UxiXLl&qe zqOF6DI&nL5CFRxC(#1`y5zi5cv~Pur`Dj&5`G^m=hk#&jG8IeNxqJ6XXnk#pLK3C{ zC%nLTjndovQ@35CvxCM1aFoWNMi)FuPt;R^|(X4^I(W z6HD!nT6AleP@(W5mN}cTFOk5(WqfnhN=ExZcH@F3_Mx$d+jUVp3WXvg`M+owH&K@D zc#)XM{O}{wA($|Qe5X$eiV~@2++XuGe68OM_QZwR8m7kOvsoT$ z#B~8@74vZy7gsV4kPujxWQYPpp5@yNumXVLaW-xxgI(!?Q)s=AKL0Pj+V7|(O*2GZ zh0N2S8+I60MwGEuNmEZuP0`ToC%q{!azu~8|b;$r#NT?eM zAXVoHxOzj~R#Glx(cSg`!MLFWHydgd`PQBTQVI5~IwCbkf|X#DR5IDlYkCqJ#5~G} zpmqVo(4FLJtQ?_25Pb{PQQH6+y~wo%l|s|}>C>mnRgw!05jSq!cp}cohXNO5PB2#V zk&eHQ`07VP{(DxzWARfYmlgp{$^8a|r)+E!Oynq03|xq?1lRk{8X!46_!K@qyL6qD z6r}M7B|csimEnDQyMg0WbcdhGhnExk1sdRPSM|hDZ`&3L5^S@rJ%WAE>wZKla>R0b zTV<46v!Kl2FwsR-yp~_ra|!KUO4nI8~a8(=EaI0o)4Ly zx2ni$llm@%=01A#NaL0n&pB#F4vuo-7=QMTi?H6Lrw<}0UkNOH)Yx3;WS#J_kiu7H zRC+g#ST)F!LgLk@h8SJ;5&d<{L|nj{E7(t6R!AJ{_hdxfdhwP%PI@yh;uP^lE(%&Gu@nOZ5H*MRg}XV^?{wmB^1K1x!KJ3F z^avs=Z8NI;cR4x1Z}ie-P%~P4pN>s+sFf6)8MwZq*j|$zzT;27d~HZ~Qd)o5I=D*z z@*YdJ8)p}uu$pwSo;`bqSHNl@5LZ{X>>~_X+p1l*9y|dk&SE@=G|LHT2o6xIVM>X3FJHuH2Pw_c8fra`j};(4$GWG>qh`$ zn#S?}=W_SYF@ zSHYD~WP)>w=BU#0eF^gA<>f=lv3B5A3L3LC>JH7#jc4}&BDAA#O92J}<}y0iy?z2? zfoJpW6(PYfq1oMjXs6MB1P40uTrq-U|;Sz!Y_Ae-UWK5hTxUSmfIeqE0}K9`uUq zkXB(S%=iW-E-*r8j+Bd9pFe1a2ChllYV$ooc4k{F7-JN)v!25~!t z5GQL1-|#))$fA<}4LSK)jA_p|a?&|LPSsji{q4On0@Kt{$S9^5BI0z10L%}+M4_Py zvxa2k6_DNp=A+(=_>idG10V(y7K{=a9Hc-av?&f*7_J(Pzxd+=#|i6vpoFK%E*R-W z3emJ0u{MxMr}!$#AWSB(5s44P7-R*4ZCB>tTiRSZDT-69*-ssxlzr>|TRsvQt}xL7 z*6E$=|$b;l)!wO?#OV6 zwY=o@G18)a5Vk)MScjXq5N*AAjQnBX4ca+A4@IHSv9CO|Aa;xL``WrXeH?p)(?Jf!JpsclpFalyrgy<|*AmWA`&TzWW*X=Ib!ZdPfP33cqB05m~ZK(P@GtU zf94+XGOS1?qD16IY`6IIY6(#qNq03+5saA@=xox3&fliO1gF@+pP=1^e7f!1$qBo^ z_2APCQK%l&x9qLAEK2p{AOD5>z<2)7&4_VXsE8tVpSK&Hcl571W18JH{_EfIp7#8U z9zxpKcX0`TKl#5tx9022jldaL@gDbE-P7N;Wf7#M4E+O8zQ4r3BR7A#r1;5a$G@%y zEPj_o#l>rY(1x7+*ACp-Q5t$gx0hxAO~ zE2)i1*H5-%HoE(ZN@zKC0v|tqtW@j{izbZC#NHhl897-DM%)kPBMYG00Z&t$=>M{# zEMfRj+tKfu*`{v_PQ))L=t5ETiIbKWq|~$gO(6S7OB{}9WT~~_{7fRLboK_=Nut6^ zfKwqh->l^=6`;HByYQR-(Qa+`j6n?qy$PxfS43C z%j?G>!9>7BWKHuKrW4G_pk2OVMLsm60fVmcP#OWdm+&p*S|iM0n8PzP)WC;;Q5}-R z8VpZ{l_!>hL{+GrN$)McZ|$=cU$5(h_r&E;t4bPdp?o~@^wgr)M+zl8F1#qSu-78d zB;l45`{Y*WOX;N7A>l9)5|bQeZE|WM<3uAo3ZFhrx`t4Emm})Sz?3xXi-K0avor`M zyQref?+r9gTrZz4+)Sp2kdPJ_Qve3=NW^&31J`Xgv6O!i1jfzTf9?43<5M7XTl@Qs z9&cH{J`lE>NW2hf0JWY$KQI{1V5o&sI{yDdBJ)=t>u-xM-wy79^p1gcc!b=5U=4i= z4jwYcfwh0gAWHzn-HERWUV7;|z5yrFD~g{fXl%5Sp9XO%y8AR*UgpLf=W7m(0akYC z{+0fLIX>el*pn{O?z=Gd1?|9w{_UCdjn*C80X%$K07P^lt)hJvED^zdh?YKi0I9)f z%83FA$31xd>-pbTkDSN}zJYAXq`){j_fUy(p&M~>YRc2ZLQ_iZf4vo-r#0ZhIxz3X zObOKc1^}3@K|1rWaRDEB4qQ)4Iw)V?vQdMISwLcX%9q~S?9HG5%y1Do|yLo}_uF6h#&=9g|{{O{TM{oQp? z7fJJ2?}x-Z;|lnI-89rjHZ8n183IAu{Os9*yVaweWkNU$?Gw-=VJZn&?VJ6tog!`d zDiv6z)qZNS{R?(tiqj0}NF5Yu*4`bk$ik`?f|HFdqk;hzFpVf3Dp1ME;~7vY6UU-A zK*uD>%uaXM>Z3n7Lbu&PR*6}6-jsBNB~>GU8C%5d2IvfWHA#x4H_!zWCNwet0Jb(m zsb=Ql;%Z9Oocy+N@0xH^hGsUj|3~*kFEp+sC#S^|BNdngzJ*ocDKI`BPoC(yKp8i$ zyON@ikp&Lec>-vCd2!Kf3=Zn%j=}M9xr-MAd5gbxX$<)(dH%Bq8AM-S+(UK-lvVpb zG(SPQpKS#p26^+_UJZ?m#}!mrhFf_pzA|KRa3mT3z!jn2~3JtU) z_)A3SmVo`=uou%SJeGd{EJ26*^%xFT5;dCI5r94qc>k>1(cAz!_{B-Hwz$l|!E&2# zm$?;lID%oG%aI41TWG_>-()9Fa5}VF6C!{*Eelrw4aO(O#*&PI3YzDSE}XVI=AeIs z=+>{lST%(hR)7kbuA{ZJb=s!@#sRnY8XS2T-$D>IlN?@%%B1h(8XET4Z&CG_Drq@G z6yP<)*+{eOH!S;zlS{^irEQ4$BK|^^ffCql%whvw6^Stl8R6g?*j!{|0g&BcpZI*% zz23H+2lzO7rz7)`l=|d0uf5rLv+(AZXu|kR`_A*$ojXhqNo&M08DRS$5KC}Vo`ST6 z`b8G=XiyH25e#r73W&T1^oWt%rbrX<8A$-d-WnVF+YCt+(QX%9A+aKe$bokM1Yu?hxA2He#B zO}zL^6(|h}T@&s2zDtY1RGbA+$Nv3hDEYu6oioas3$fuE3n< zav7@A)$7)Iz1Mio)C5;kB{Y)-dm8t+NI6tMGK?h>TzanF9+Z*ZXa>N^QpG@t5$)^m zL2nTMUJrU%Q;w{=K>eThKrt!BucKVB_=f!h&!mc{VA|R<8&^cMO=;Q+?f*Qt7qm_E z#D6gce0g2?S);kK=eh;%I~DsIe8<=>ohIP;kP)H{eIT1BfA= zgj>{1F;i2Q(ZE9**QwNDcO-ZaXP(RliU6@IgTGmUjI`i@^u_*wVKE2v@4_cI52B}# z6m!6Ep3to~Y}k-wKYbN#$IsuXjp>8OzpXN=@+4#-H2ka-DP8Kp9EhmRB&bFd{++qn z`f5+Mwfs(|6ZbJr(#i_G6yZ$@JI8r4%=#5Pt@Dp~CI4$z64OKcU8sKT5ZS;_FSI(s zPC>nC({5YamQXnYqCl67wEGw_v9T5NWkE0?b9bN_GI5@UpyRxD+hv`oXo+BFlH$o= z3HYvH$vcTg%W420gsxp8L{;W8X+AkS95A2MX-_o1@Kht1YshpWVmhLqMl2s~zRTVX z_oMr62-sxo2p0Hrn(8q}|Gy@&u(aOKNI?W@0A2XiGud_7e>ppMqtincfY}1G8iuXl zXG=z_qM5I)io#Z2(-2P<1<7t}c$v9OTi;!d%{1?F3wrnw4+z3SwpSv>P({cNB>3ej zH-?47ll%>i@009%n+$d%y4nY0SGXorvK>@l>BGiu?#Ng138iuf9X+4>xuZjSl;=Ky z)|-0&(T`_na{l-FaiamY6v*(wrEFB{?Wu7Ih}E2Y#x7as5CM!$l3rn8jKj6S;=RU z8}G0&GUl$AiYqR3mY!})`XIip#-0%z zriQ145A0kHk0^A8*tyT~lu;$ca)`w4cYQGj40zz5`&3s|3C9S?aN^sx;q!*gt{W&p~U};ksIxW%u_7JR) zwE;>HP<-+aQ=Rfz{zIj%Atu#xh8+e;(oSZONg~}ht<7mCYWu?Vd2in;l8#E$J+0IC zC3tvvs^Znu@Yx4r&@y*5!3_Ag<7j+L<0>r5v0T!X0=HMOUANzE(u|KEDYBeHrXds3 z%;>gmm2dUPawDS^K~4C?|D~L1lZ>GQ%nRmH7EIq*pFNb%EbO3yJO30tjIcLqy3J)o z@o;cR64Lhhslex?>*?P&RDne+QqP{BOQ*N`bZtX?g(RltadJ|5d7_bdlkFAa|IbPt ztd%5#I1i7Dtx5U28okcatb}B6lH79GS{+Tpo!8;?+F|Kl4?QGCk@OLq7%!Op(!L`5 zTS8#;k7jB5_PU@xg|0V&X%AhgB+Sv-G0@>K?$zKFT(6KSaT4T

K2+H09K+mE_w{@U3a5 zF3q-9{0evjn~^9N<|oDAj7=8LLLP^6bGg|U_!^LY6n&%rSM+RRZY~XrElcroX)RdE z|9uNoe+?Sv8=Cv)XBZdsN243DnD`l?_)UP5Z-s}I^9|;-Ef#-eOdq{i7k0~ zaerl`JFL}3_^71GJ5f(t;|Q5`qZs|Gq%6N+0#)$)6hLe5mN`=>GeR(Zt7DFdk}vc4 zs#Z{#@Jv15=apPz((WH%D;OA63#a{#;@JWxf(<#|px-_%)H`Y^B8|{4B;GL6TUA95 zgy>vbQWAes&)p!KT;*o@MnG(QF*y@CJw9tHYBI$Y7sM9oYiy~$K3D|+v9;>hI=4*w z*V#s-kpt(x8*j!%=G;VpPros@Viq|_et0+71)+B5!?9_;}IH z#1Gtr*%(E>ycK+7WNr=kmI-v<8_GK!*XaT}YB_95n<$VsZ{9-<)x~`lXi4 z`_O|qYO)xpqXzv6SGEEv`F`I0YRF;XjbC&?0CHY&53Vmla{=X5j#94pAFj5ILtEt-da+wXQU~mrUc19IZJRro2 z6(Yi!aQps(g$r`gmdv0b{Yj;~q)irW^JL%9ydPYe>Nx9GuEwG}^q!T>J2;ES_J$r} zwBL)-`VQ$wvOX`c(m)2?J3G*a@m$Xy6CZZaV|^a#XHB-#lCAWsJ!4fKi$OY z5CFp?+`M6*p3D9SQL9Q3|r%%&B#S zO>~GNa}D5tbP)_9F|*7GXCZXy04lWCVh#}jt>#79bEE8;1AnhUNG0=KV63moc60;< z$%L4MIA4h}Y!vKsE^F@0eJ|j(cJ&kOU$i0hwmhH(gr#vq@>i4VxTkFmF6uT_uHT#jNXdI z+$PLL(zocV|FGv<)=m5|>5_Sf=0moFZYMhk8`%ysV(FRmtMorAZept7wlZQhN@c1+ zC>gA(M|I103z>bn_4_WgBor;}fQ#f5BDM$QS28FJ7iJ&sjga$N(m%K`B@*KL6y#)5 zQlplB-#z{?1cnwg$9hZ&rkL`_@5XmUFuSq+@R1{mpq5f}dQl`%C4lo&ELZ>*+ZWV} z=%lq#YK@F25091j^OIn~k4c6^A-gtA41}cU#<=B@;hbHfFVoV9wn|){IFBly_|Srl zL9VArUn9;(Z1FCSh6U#O*>=)n7NpRI_;Um%b#8;&KtPF{{g!ZXN#hlgK_@RAFR;JU zSQP%JLN|8sMxR3I=dHF+CfyBEQ%>$aA4u7q^pUL z5JE%6)oa7^6D{k&aqma0CMKf{>qO$1{WODkE^l}AIBB5@2p2hkN^y^SWT^$LL9ti+ z>UCY96q6Pz+0+GA;44fy#`ycjjZ$HgqyqrAuRC+Rv4SWENP{Y=rou!BLX;#@H6GdP zOdK{(A7#-U%sc|WLA=TsDuJsMjk3BMMv>by2co{hF{fS=GczfSL|nRbDH$0l=Fg{q z{X7`ZX@RkKq*0alYf}dIjE~-(^h=U^RKK^Y%`#NoK^;t!ti6hci2tIQpO47=HZWpY z9C?s6rR3!wlX;Y%ywUJaCQ3OckVYTu;qo}5a)L46BQgbkMFveyN--Ixk2!VSi1SNe zl?hZ3(te1(b>IFO)C2rze0ENN6MEbEkIZMlSs(=$4&qEmwcfVVRDe#m{F`ClSQJA5 zD?w}_??zXe5nI|hnlJf7ek7;Y#$kc<@oc1>3_VrMT_x@JVU23Dm6Yq-lS*nevvyT? zwHDH}16uSE8dl}Ci*(gITbD%riL*j1f0**;7J}{;q9c>?6tT=u;C%(=l;fz{fOQ~= zCx@QIaeup^_e;$}!ou_rJlsO?#-yJjbcCDQ6}^eXu|OK8+7~YXJ}eHhT-e$vKMrIkN_J0-x+_$NM~7H< zN#_h`2H<7zi?X+G-?pwsu1hG5wq}I2U95d0KTeD4bM_0X&Y?+&KorjN4xpcie-op= z{s2|tCt$CLXnrt;Ot6BKes-3r<#|*;DnerQy5l>J6hV5yCI!~OUy2TF)_efT!#~Nk zuRMtf8(C~&dTT+-s$guP^F+IpFN+Cy%ADjZ+z4Vo$}%(JlIxpENV?jq2>g@yZq^Z#*M|evq)(+pJ^!yltpB1Ao0?Cc?#yAL z**;3!T9cQb{*_{<1lB^BBAu*4*Gqr}FxYijPDZ_$De370x`PzPns2rMWl<9G9%-L% z$pHFT_zylX@S47PO1Hf2>FfB5H&3kduw1oo8OFDHlkt@Tu|*mjZAaPv)snyy@InE< zdP8K&a}#v^-l1k5dAG~86M98C0>ZE#Os#R4H7MqHB>9{;eKM(oJif8k3x~zY0|t(v zdkt6Xu8oKn*62`Y~Xsh9M=B5#mc;8oL&b{yJTT3RBW%3W*0SCMHwa2ygxFYY;}w7x?h z6)0Lc=qPR7-HI`pUt6OL6G!3Qu9v*>FTE9k>v1@VvGpFA_1~0=uH;gj=AuDT9vKeQ z!85zV0gU=;-=m0c3qu|-@gl#WA@dy{0(d!elp+(HimD`Csk?f=MEyzn@$gV=3A4CW zMUHbgnxo*2ylNXgWZFRo{?n}X7cjQwSoncuW*YD=B5up|r%#>Q zY*p1!1Q4kC(zFJw5qxv(#tx)^6L8eb7Zft;L+U4|-GY`#kcmz@Wk)EvsE`7k+7E*Q2OBQjzG~e% z9?qp`tda*ud?RiZnHvTp)&b?^-T^TClb(?FTD1NV2>e`tl3N4k3+beAgUxJ5vSEWF zNt|Sc<#seplT<}iDe~V10Au_JTsp5DF*>aJ%3&`Yric+T%??zsLh>G%+6g#aJQj7e zGK%`A3&Uj>ENf8gmd8z^^cW=!kLk&iCpRfHp$n6!rDk@`Z&ods$2Kk_4emrrhRvrv zfuJGSfrZ*&3U0;RzOR*TOcGukm+O$9?#55zd45xNqSt#&qHfP?~B^n3U)aWaJ$4jQT! z(w$`+TE)H!8oxpPA#xT3dkNG5XtbFm z^P?~a1$^u&Xc-ldafdm#UF|GA{{K<;CSW<{efxN3#w^U32}P1d_Na)8l*~*EWld!% zWlB;i5-mzKX3Uf}hHN29R1}f+6k3Rwh|+4hZIhBL6>b0XyzYv5p67jk&-*)`G*0UEl9#InVQRe!5cvlw^c%V!YeP$G+j z5$M_{RSj|jfybajotXpOThPQQY#FP-wrypp+L{j}h zCJMQyoG(Ddg1hTvI^eHccUmd#yZCF$w@5%eW|chlp-zjRTsY!`L8qg)*J1jTN-vB) za5x7&g9$zmT{_mT8W4&&WMByFjKN)&Cp)cMJZjZq&ezk&hsT)wGjoNdbQk65K#w0{ zDOD2QIX}ZZgye6qVfHN<1N)PQogN3;L>RKI|KI=`iKE6%uU}8gMTHDIxd|s7__lNB zE(QhxA$PU-sXJ zo)-NM2KV8kM}T2QzuJ$63?fye%QzIh*D(eSt;@NTC-VkNnBq=_pi~l{)bdbkT+7_w zF;|FRE)W@W5{(d#rUqdvPQ;>tHS8l38Huu4INtzyJj@+75-uN{ z4&`Tf6$9R!^niR#I2#3DeouC`&dHWOe!+rBDlTq=N?z(-_a0~YMO!)@Ub=4DRDuNw zOPH0_WBT|NLH)NA7lu*{$GAwyei)wp3}J-60G;^Wh=>RZ2{E)XVaymkSgAc)IZR^D zOjv^hHNA>SOpw@7iC;_nU5cfsjXe!F5#E^JVOK$uK^!i0Gpx_-`)HhZXJu)BwN+wK zpATXZbgGH?6QnlJeF8JHgOhNDb3U9*?O93qr_@jXyOO%UDg5yH|LP2@?jxi6eqbxt zbH#oeVF23mAL4)hs}1_^e9DLGp6~SkT($TA_<{r%tedM+DEJOvbv2($zO56*hMZEM@NHlfD1YbDilpdZfgR1uuh07N+h zUH*6&+Pv$P;_dM%_+ zRE_MvQL^o7JcN8u2g9{Hu&scDgJr$I+w)_E*P`VvFoE*weEVcG6gYp;0ttOxKd0xr zX%9h3A;7_TNHCBhpTBWFr|^Ub$3bm3G15Oea!E5gR%I0Q~&La%K-)Ey=PY!Q%L zwNAbPI!$vQpeyGT|E{Aoaf8FrC^S5Tp8(*MfUw&P5)V$%R@t5JPElT9kr<7*^T&-R_4TKLty3iTvbkA3RDSw~ z+0fHmcq+g%y%%^?@u>LNfv1o*zyky#AoE?XU>QFRZW*+S__e8Tf9b(#&A20+h%G{} zJ`b8+0cY@dKjDIgVag)ZIyY?CY_DFudRH23n;oYAv>pg0S;e1TnJ2A1hA&h)Sz1!^ z7)Co3{^16h&i>g-hG&dWvbutYN(i<-@IEwoNVhhbgvaz2y9+0k?@Nh6azZ>Y^57RL z7%WRIEJez~z`ou+4bYo7f-Yw`^;u}2l{U)teoy|3NnaL1lVJF<^oK(@4hYiFQz%-| z4uN<7$^{^rUK+~$69B9ao@uUv91lZ4<9vO)yr00@v3Nu9dVrji3@g0ilmt|tzplwa z^G0oq^j&hUy)P3z7FbzhSzyI{5*<9KUGZ~xmuc~IDy0pb5Y<4@ZyQooRYlK(z>SZN zkY04Lxgj8tM~7x z<-Em?Q_DrSXZGm2woZ$W@3k8@rX3o*)=63H3Vt;bQK_O>HO9wtU+?>1nMY%p_f3S{ z^->&bUfQ9W=%z39hc~ae|0x28)N(<0OU;s=h>>q+#*dGs;_Gy>*YLOeed2@4U z*O9(^quot3$A3P4t>eS*qGNI`Bm0aR*=NkX!LpJ0F-Pa-J}(`8aC~#Mk*=P}*&n}| z*)MWW-|zN>Omdp=s_lyWAiMjv?t8aaZ7+S6-n`}Up&3sqTXefNM0hs7&4lZH6ZA1B zih#PVJ@57SRz!rlGejQxY8bpYqOM$*nAZ2%;L4>3SM z*9X+yFMlyEx6fz8&)(P{0m}}NF`Q(0 z$>6Kr6HWGv>yzEj5kjLWt8)DIPqka%fRMSx1$>osM#`!=$|!xK$}y8Q{`HO8k9-c? zn{e7}`6uld`bi!-%ez%NqW6s!S!zY5e3bDtGO#v!pQT}V8@g~gPD!~nqDH-wkC85! zyUIf!2Kq0%;9z>76mRt7=H4ggHti!HsS-d}!!)WkEh(===Ou!1o^o;LHjTgFpl)a4 zi(r#?WV!U_ey2tG8jbN-xxHaRpq~{oMigLCbMFB? zZ#LVr$-lbaYDm0_p{H2}D9s@OSZ5PpI^8fuQ&r7Vt5TgX$tu$jffE?ZQ&BFAiCeP4 z%HH9N$Guj_B!1-22-gsVd|6Vt(C6iD4@m5z0Mtioo?kV` z8G#K~q-tBZ=2k@v7F6Q1gp9rE6m(fb2sS28%$MUG&yJFOG0_g9+hAxMb3t?)yK zu5#pqr3uI`QoqT$ErWZTj#??S3PY!^nK#Y;_Ugc!uxYa?FWQ3PnDH(zoIwONK{I*Zae#8YvV);N0j9mfEgkn@( z34OWcST!8fnVQrD>p#=Ttxy&%D;I5R!4&3NgtuMKLN)7RcsCrhKrzf8kzu}nwWSk7XA9Q$W&-QtjdCp!f|2aoJJaCb&S(jA3ebB^c3!FTOE zP$TEP;N&0&_-IbJtd_@%H7z`ja>4XJe<_)MU|v2#{f>r4e8~_p9jOTQE@eOdCY8}U zH@wQ=+XpGZu#MCTnO^JP3Ls~RD+-=aOg@gmq@&4+3(b|Tx1PdH#o)ZJ% zVp-ZoTU}lLFaU1Jl*)}puj}qkyzm_U5<&18n?{@Cqz>E=e|pDO7@>R+rDS(FRk{?& z#il`Vn7e1fl3IMxg>TYOQ+wcf*78Gvbey<{|Dgt0b(v#t-u08)?pLF(&gb?xA+>gg z@nIaKQI@pR@<(9bDXCcAkzfL`*+(hV!U{V82)6->3F5R;sMq+}vQSgGK3MDV@~##+?}6$SQCW*7R~+;!N~>SvXrAVp)d>LhQbGn0E8_pdh+B+ z0lJ3%Rfsp?9w@`3fGx@p;}pNjs%^vEKX#Nod1#{{2W^Xy2a9HHOhH1Of;*6k>T%Sr zIjb#B;;OkOamwRNYj_J+)Tiro{Izfj#xN*u&3_-9lih)<=l7fSsk=F1>PjA^=K|WR z09!*2GmfT{u<|e*!Q15mQ7C|hq!!~lLEt0vK*mM^XH3Ka z9QrT@Qc&u{^d|<8>d$pVapSDZ0&fzNx;p=V!|vYl%l^ zgfFf5Z6CDj-LDwGPuhF_UE=6R1K%I|>DMpD!BYcqE4ti5RZ*m!HY%jLUr!}E`@YKu zgR3U9KYHIWFY5Efd&i>LeMe(*ZO@#2$?@t3WS2(i&)C#+?`MAcZ(hcnoZihV@o!)I z|F3_^&-kzVaeAI9JrAZr?SJi79gTZbg~~AY%TxQd90=dtX%>F>>-C~F-B)t7KJA0) z%m2i~h}-MlT@{^;AG7<~)uN(cg#SF`8*5;zH1gzOn>^d2xyH8($4g9TR5xlszZDAB zZTN?3LYC)o6`(3qfj78sXdCRP<|`f&!-BWHC17$f%7_I~3oe zL%l9(6RfR=K}+U=h?aVFgOzSB1}kb+eBT;vLQLlQ-A-jAfhiB`*;|e+IQZ@xz>MKH zmc|;7!Pzg8%ohA<6pbm@4q_}u2hIE-)V39ocY|<=iUTlw!D^t~8wfG^DrgSQU31zB zs>L6Hy8ty^vh686@Lzi(grA%t1ou%0@h)iK3ZP9KPFYG;3Z$bRsB~+0Oib`ksopYC ztqTQ99(=oN!Ajjot-j^cd_ENwZQ=2j%N83h^=-l*N9Uv2b-8c5FAvAw$fMeX5g0&B z5AYEprl2uKdv$el(PT%WADaRT(HP_CLbGSs@8h+5mb}~NpsE6Ny58PmaK_l4{;_p& zCb0vtG*P=hVIH`IhSfQ@sx@|DK% zqOasl6z?iR#m!-d_E&99-F>yTA{L#%PM;g@on)0~_k6t=y8PkK2{6xV{nBi2P> zmp{^wR7N9)JAyfCnGYUj2V`-Z*Ck=aJC5wRW#cd7u^m#k#OXk%G2?J3eJ=X!7@?%D zgoK6!bYk1NbLZ4OM>k@=%=}&h$}!v7J#lsicHGbNAA=({8*tbWzq#066wy&{H>SD* zHCj>==DHV+83%9Ae+>4`1iw-T>Suv0&R5CG^+M5I6N4_vfm4@!)P-@N z42}kUjwF#+cRSg1S7Y$0#Wu2TLSCqV#ZXq5I-M3)+u7}_I}N8IO^~HS*Jr&k^G5zQ z9~@(j^U>yot1CGrK#)78ngYo(=&SBLJ~8iraUBwoUwo91xrCr4#RKyWtIw*7iBg>< zf^skb<#HZy33bmi5UdpAeoPkyO|9+fZ0s`hevFYIYkYXD3qU8H11a-{z}9{(&y5aR z*au);4fO5s#^(F{$oSwjxE4aTARstXot$ywWFnR^wVBp2lUsn1V6II_)d?>+d8Oucyc>;tD?BqVaa?n%f;{rmG%1DJo`)*Zg&$!Tl%&P);gcm-EMjuIE2*?kb--?9>tOPRwwC}cVuAw)QJ$sg=C7a=N`2JDcP?)NNELts6-OhAo-2Ac{o&3ZZeRWdg27N!oKoq@55Drm#wy~wI9Gj) zk=BAyJaxXz8ajdibYbJM&jv!m8-Nm)hl8_^Peg*t#mX}qt6_<2QD&yXnVrjVME!UM z>x}wyM)gq2P?oUg(zv$~Q0nF5zhx1@47VNu5SIJhXL1kC@ZHNo=E1L4=q?Q^p`_8~ zLPrx-eIkofZhTl+e+!C~mYw|;lN)K*%F)Bat|V<@#z03hbkhV}N&=u1-}^P=MtiCtS*0Z)uCbQ52?P?Jb(Z z%VIr&XFXSNT!6Kf95&v>eMgXehQQ9zFubBN*xRcy%e~wK2X>7~pda_~4&{{V${8NI zD!^~Wox$pQtp6Z5SgT_@?^L(KQ)k;Wd_ztj;w8=-cUJ>#9s+rrH$%mkxT%P>T$t8~ zQTDHZ&xPPS=|hF8kyd4m#OU&Hm%#~b%TuE}aXxK6TD=JMeRD=fBDioR>OzWir<%~y zA!rP__g0(WPLB6wzPvJE<|N{W2iE~#K)4?pWl*{I0%KFG!E=3Gx@o%s98)NjcfB#i zUNprfe^08}r3+ZNjsY!r5EbG*CFA+>+Bh4SH`=@M=A$ghL!zkVQ-^6uF2ORa??8xR z4N!VHIAI*_%i+@}H|!0%%ngF`g=C=xn^&X;^a60j#bxlU#l?=}nTq+~vSjzIbX&gK zwxe-rC2oxdh>8`pw_ZaKTA$!NpsI9WIe1|WO1LQ- z9^{~$R&oInebgJ+jmiKh1I4H%HhL5KZ#^WT>xt+6u?8nPwflCp_%6mB!Z+VsvUo87 zyAlt~k%VixrA$WXfp&J^8CL$zuH+k#jZPN=Uy%IBsWBG8b(pJj;eNz(JOC z@-gNf2LfCOKuy2b#!ly#SN%FIT>%0+x-I0m=)KXquMLIpIPt=BoNJk+W5U^{;cjI= z%4|X)a-1ks-g|f?TP?~Yqi_JZ6_EfR!mHe`j{GebgY|oHh$Ph+pA&QPqYk zU(xGBq2+aBjSfy-+c}Ib4Z2p2RVY&ItsHqcoHND;=8sUxWPekOk2cB(djY%t9X!dT zYz4~kx65HmJlrK$vI&Lr$;TL_m4{EJAw8OI)N#?Wo=7rikbZ)-A3A8E)|7i^tRfCp z*zQ|dd;0uMMYl$js&|~H`6AoYVmyAr#tsmaHaLIG-W74ev%GOSJ|%A?1I+9Is2s>JGNqSBdY}LHz&7+mkPeJ zf-l&v-Mi1<*XCwmG*q)h2@E7nJFgj^u_uCvEDE{(>h72N4#|ZGQ3NODqNjE+zSX;T z0Eq4(w{rVppfuCb`PcxQ-QH<=4n4>I$v=M2je|h6+ieYSl6Kti%6gHf2F2R#%_-UQ z!$CyNws6UlvbRH&Q0GFO{`Bb2Y#?LbG8RI}8W@jsxF<9&PX$T9Pks{AzD||cumc;N z5RA)P3#`UVy~gE62QNhBudu$PEfLVB8VvMg5KIF7vt+@9O&w@Y3DL|8 z2H_}&y*4p!h&7A}M{n5o5U^x;~Zh~h+0ccGej zJGXIDO;@J|H0Ty93eTfKtZUHRL zmeh`bn@Ua+M`bM@mTzkW9h;TA850oc*X+tH5b#zNY~T*XCg2@k44%`v)Xvs655GJJ zi80$6qQ&s`V&l1tJwP9Y4zfPE!a00p%SoM%3DB<%hU9O8Dc`HYrA8e$aLhgIkf-RH zgXDE)p{+l?d=TqP3oQNcsuWa+B{s3@ILctdv2`cs9r#_n+9{<w6eBiJ1#!>_I07+zwJmB?j`zn1E%9tc7RV}o7`IeQ4e z+I)O_u90GNXKOLW%It~x>MGUP!(m}kC|kD>LL?-~Rbm6^J`wweg>^lGMKQz%94|Of zf{l%h{hx4|L%ZPT?`vw)ib6WwqAOLT_$Iaj+Kh(^BQ$dm;l-2@&kG% z$IpZY=jv4ye1mzse64$S+e$=Y-W*oVomlSqh%Q5s6}@ovqkz^3qz=H6=?L$K%4^Vu zdY}T>p@mlJt-XlH3Rl|j%JC@e?WCn&n4evBN%}61knk)|UDX(kvxC~_Z<%-#ce4=Z z;qtY}MOb({6A{^Gvc78-$#)IqS(aj~9kFWJ!y_my^GL6O1Om!`TA>u~NYTNt0||5S zWxF+1!5R;Z_gM+YR%=GP03y%Bs=NLWCTVybeX00PRto=87Q`-)oh;F6MbkJ(Hz%k) ztPzm~%o#wD`d8QBm9VJFe z8h=VnLy)jf98N?Pdq?e>7Fk3s~mmFL%CRU8JEm|?680l@cK7lC$ z-&$~sh$W4lkEy%1>5uo@M1t{KjLTb=x

LT>ypU;zr4$4q$=>dmX|K5y{8u>D#{R zi?8Ec)YJmN?~ctkA|J!+WNLaI=9vsdhg@$4U{S0|vcryZLF(NzcdPJ~j#_`i4&~cX zkh8k2NNx1{cz{1pZe`Y9Nt@X(4DVib`9S;Rp_15GcP~@cIdvos1sM*gr*7;M;23D4 z%I16JP4L)ld1-3kL30Q+^haj>4$%lwi9Vvu`zP^I0O|}KQPa4<>ohtaw=5XF)sMS3 zSbax6hM8qvI9b_#TaP4_e$RY)1C&tKt`#{2aLWToo0@2o(RrL?%``3g7V zs4fa~hDUo>akFRMWhOg!hZq8C8&6OY?*svWE$d&0m{;Vb)eP8IAx*`*T-V+zta5d zJroN@7GQw8vB%lV#p_QOLGS!Ei^Z4HBIl!=8u|6VC+~KErZlt=L3}+| z76H6kFF~ob8Y&ed3(kcR5e!QeQ(?1D2vK1CE2hw$PVy zKrI8-4YtTgEBJiK>8W5rm!X~ysKaN?Ox*aWup|{NJ=4g*7O{+D(V-g&D4oi_yO6fp zME{wq!SI#s3Vw!TpCeIH1hNKJyNDH73uQ^D zu0rDdSBNqr)@L^9J6HfpoeltLhXt)+Tdytj83=VZG-2!$Q4x>8a&$r!Olk?%sP;!y?|%M?(MTCs-`8(pL zz>;ka2H%?IjypUU{Z>W&k!^kQaKK6~wzfuw9g<{InN6qwu1*0wZrvu{*jIlMy8SWg zP$wicVP8oTufUuAc)kt0K^n6a3&Ym|18A@5>aaS7iP|$G*kzPgf~>R#k*#-6KxWay z%?mz-t{vQFjiZ&MBy&p=#x~SCac@Lq68rb-EQ7pAKKpIadUlU$rNCxsvz&NA*c=k7 z-KC`*1|y0w?39!S?sO{4DNO2=k4<@tvGwuJnN9g+m%ZuDJEJ{>*5d$#kXr`tiW}ED!7hXZaB39P|=@wTn$&`>Gfx? zL?ZZ;4It!990M)+;-~XH7%|#whh&#I9wvc++FSB7xlM~$Q7ZU+{t7d=lYLq;YJ@0_ z5V`~JnGZ?No#qk9*F=H$v`#&|v2a2Y;zk}OMUNcxLfgl-dk6BWKC-Gcb{Rppq^(5H z5qfpesTx@zX5)4Ac%@LZ>oZV#0EmcWNtp@ubO>92V2&!7Z@xG;6@Zw-6zg1na+pRY zw54l$_w0-TX0bJ5UjeeuMIVqhH?{HXl>vd|Op$d|-&qI=nNK*}XzcDONG_NN|62Wv z7AP#Ij_`cA%lhXX;s+c(M!1Z8KrnoyE3`UWMFdl?7M8c4*@smd$i&JziXGhOfdKLn5>f9&Te>)J}bIBRtqZV#L>o9NDQdE^uK(VL5on)wvkM|8oM_BCun+SmC zU;zsl2n>{VBkb@MK8m*_N1FFqacGJf&?uz=nop0i8A*0H?C*~{CH0t?%pAW|NW$V@ zl#trlgVW)E{GZs=?%(;}{G~;A1r)g~J;}+mTFFt$Nm&N}?7onkHUC$npqO3meh)`q z%fl~MmbccPD#(po@#gwTnHcdp@BZ`u_zj{mOya1*TGwkaK`jqMrf-?pOH9A`SmPfF z?0@%`n>$(r4|`N4P#O3gNB15qAOG!{ATZ+rLvu{%WYf_fvmEup4341^7e&1v(=MOplf4YqBACrjj6R6p< zqplVGW%ba@$xJ8nt6qy!Ma}=~Th#sjVqrkfhyBMN?>|Wp{>PtWav@VzLc(Wf_?_(D zXCk5a&A*kvJ{k@XM;PuT0nZCaSI2)^J3q55(8@e_9_s-=O=! zELzSw=e6f*gSTS>YpE+TJ+zEKmMDA@jqD9?=Sk_ z{3StuP;rK>FA#wtFpUl1)C+L;O|Sw^cW)d4CHSMNUPd%#!#zLUC(@u#40aSd?FQZLdpZaG#y1gnE}!_FP$gaG-ke9P>Iw$ z<;Tmvw4!h?%s8xy=JX&r1_8KV$!slTTJRx(Xl+!X>`DyQ{A88EF08k!E#;?uJh~ZC z+`;I5rqy5V$%oUM=(dqcFsg)n6`!U+52zBZXG8~48AgtzL9sFg{P1*~L8|dZizy@m zn2eLfU2x~bzZi)H6exo+#plV6Y)XaKQR5gBjaH{Ub4DvbKZi<1gt{t#s!67HR$@yQ zYO6tQu((=j?+WmNJh=77E&R(meo2{z`;eR)Wj3R@2xSB3^c(=>4v5pVK(0tj>ii-> z0&F^NiZ$k#Apk@1&RkBpRrn|GwW)5a!xSI1z#oJ3mI$)g9gyW2073Bghjx%KH@;jR z$qtGp4!PvZxZIdhplfE9mv#Is28a{!z4Gy#&h$DN-YNMv)DMd+=8$o4pj{Oc);{;nXxHD@%M)zL+*Tys=+LS6+3#PuZg~t zMu(XoF~w0qZ}(#$kRUkhHRRA9D|EV_szE6ud;=KUJSk?&fX?zzzu!#SUK%_28Hto%pRjNefv1v2BK&4c!QpY z=T~^bxNo~UHRUXfK~@9})!wq{(5BmS7o%zM_fInKph%|F!gW63t)}x49g}FhK(NI# zd4!}S`6nI^|9y?}GGi#${qeBIIl+tc$5`J1dNaT?v4UO@441+YFurRw`%BXA_A~JI z??cbb(}od~pJ6Cl3)(#vOR3M(pGBfQvrl=a*Z$4-UO<^@!M5=XwF00ilu$gn-|S`s z$|!NwrEMjt7)jyQMe~d;Qr?QgRh6#X?D>uoiYbQjFDhcd#!p#&b?1InTfP2qA&JQ)!&8Qh8-+2LCSZ95*lX7_I^wN?XEmWa%SFE=!)hNqj#IHGjwP8Z z3rKkebr zSeNREBlRZW1BYPnxAI{Ydifb_+gPuU3Yi|6YnK3~9izO5)l0FmgWf5o5)_naKB8Ud3>ZM44b z@q1aoo7uAxMvX$;e)PsA`2dM;v=h>RV64z?xSwD5>gCJZ`B-C>56yCGK~1kaFP3uH zKt?Xpa6sJ&SZhz!B{9B#g=x-u3b3Ii&qai@!ATL4lChI(@*gb6@2_(dCFX_mJMP9Tw&6DbYR%qAW%v2+ z2MQU%6*tKj;gEn-BGflQvyqSOqfqOc^2X`Qzkpflvg2mdhi*s8(+sZ1wOFM=09p#D zYocxd+XuvoNp$~KdW=!wPfGt`79ynq^=7zmVN-N=H2M~BZ}FD|vDj0bUh)pXNY1@~T~`;5yymI1ee zsTec+^J?L{n(TpC!NF8!>ph<^v|S8+2LE(9@@9|TR-$aNX}WAXfdpaoq1z6ENadvV zHg}QJRy4IPx95(_BYXil+J@M5a-076P6#&&h0luFRM)c;JGoDaoJ+*u)su*bC2NfQl)pJL3_Qsj?$)@KWI(-?*UDEZ~ z_0Vlc0o+CQw95sL5D9F<+~N!}YwWO@J0R?utn{D-HtG4K<7Yy8KXzUJUz=b(c3{i2 zjdPv6k8fOTx0mC76n)rk?3K0KPSiN*d+Zgvgy5M!?TANG!Yw@5FVyMFW>YZgA;=ul zU)`800(D!ZxOwVV@uq7)2m}C@%7^-CRPArKIzfC(4|}l=@N8Yg54yPsK{i15wQ%DRpZ})TrI#O_y#<9Agc{v1=he@g0POEC<&{Z_&or{W2S{&TNaMp zEs&Ea^+ZW`7F-{{Xm7yQmMRVC4Kqw{CR{~*w5wmMp01!s-%PX^TuUB4#n=_4%gv_| zWcBXk6Q4aRZt?tn7nFT~8=7!|1t57wKoBr#qZ5etTI!;Ji>M&-rs-`)N|jk^;iAWa zb5}$}_O&)JgAB^VFtCgFq%S}SVd7?>C|Q!&kD|Q~wW@|IfgY8qE1KqjBDQB-`tjlwMk95^MMu>*dR%MH4Kfw-c(%Tf%iLZWZmu9m_9&O?qrr# z>yQL@6*;+@CnXEQugkf-PF~wzVpT>na~sa@UA{IaVKTOLFao>!5$I-Hi`M%LqCH&{ zZm&$~*7l|X5tWQ#6PHS-jYaK=I-6kD6rks+j}NX>?Hs|wDvHloWkbSxV@)X`LqR7% zxDM7k-k_vL$lOI?mK+b6+qZ)t-)&+6DQPe~@rsseik3H&_x2*Llr%Ts(F%ue&|f+A+bB&UfVf<5{Mdh~z*XgtkfS-u zUn-GaI{%oVfhV3M`&K~#CHV4(?`%S5jCE>OU5D$jc){rWhk5CcwZHst5y%+!LiK%y!8^1%+xixSO|uu&!BZt z@r)8jGZ~&i&$%*i;Nh*PR%9^rV8VHDr}-ET6P698RH)>~&q zH{uJ4RpwWLjXeFjKIW75Ihaf`WItr@I_}Vh%WGOz+uAz4EOlTeZI;d^+rT#|Nku&7 ziVk`w9t;~F3xyCzRBYf$hbI?oT}p8`MVv&&Z$E}n-}3rutadFN9hz8zg9m3)F2s87 z*t0X?GS!rr@BF_!mxQg_0G#TVA%^e!vk-{8*6W2Z%ML2 zDMGz4N;&P}@767r-c5P-q4%~TIn@H=Rod8rfGvz5l~*E_hr12>R(OiDmusTr9ffZY zrEMB#5&-h%L=j9h)62G!3@MND^nH8XN*@5NdIpGPyWNepJNge&UVd(L!{UpGcwi{a z9DP|6C83K~JA%e56O%-Fu*8r^&N7sGk%3jn)PM$`bz3naukqnKXe?NB*PUkUv8}Xk zVp8yUb9br6TaMM;z6XDw^glLJJT>o#R@xuuQNIiuVzJ>nQXVXdJ%CqRPO{sJOP`$##sSehEt$8vns|W`w8$ zUrP{jZzf=lI66Pv3mvsl$tXNoC&HVmO;`_lxnKKkg?XW$lIAmw?6>nRz=fd(V2^+Q zVR4dq#TlPBr`W@YRS7ANwR;?IB% zlsR$H3Ibe~y47QUUPS$!4?XZuFzr9++mVSS)sx-+NafCBz!&lyq2Np+B0ILNAnt^I zZL;W=82vq~1Q5!7cN+LjskBaf&jqsb6l}o4xUq74Yu4OLuhd&C=l=YQq%g%{g43zh zIsq1O2vx{OjNo6FaU{6~fO zV|(mfyAXO;QTnrlK&-OXyJvh%qAlD|A`wVJ8uskXJqp9&QLJ&mvMkc5$#_NPVmdujv(p20vM;HE) zDXp2h3X)i}hJ8Q7Ne@|hc54(gG~7=euENqCs<~+`wWkU`smES`rP~3?YXQ;~brevL z4dRf%pu_`p-P2-FaQ{k~y<1V#;m5wlCYyw$lWAL#lWC#KElxSr8>{1DuH zpmh7Ttfazb#(9M8*iytjmEBV(M&dolqosIOLEWOnu}CM&A;QNWo%BB%Ri6~kuC+b2 zW?PCRmW@u#v_9GLzcukpg|T+ZE7PaF+2XpiTefl5hV&;^mO8e{&UvB=_^8iPWt6NSuf*?R)5y~6qVoyvJHGvyHnUCiGek8;@ ze3i{&SpW&+H`udti_pQSIA^`NXWb(GrJz(X$q?qQ#AD`WR6`uCH#z86gVcU-OBSw) z^knkWOpR)fQEVZG?JF4ND6UpwJe1R)Ml!I1vqj5ifMpX{m4U^W&+SLOoN)a);LnE z8jHfPVz=R-7dQ@QM^uQWA~{fh|DhVr7Sxct0LruTzDJM{PI$ps^^%fACn1iApVubN z@JBa#a@+|))F>QB%`Ga=lgx`n;Z~mdfWnn}=`4(Z@EWAdPEI?h?lcUt6eTv_s|=Rf zk0_RvkWZU%R&-!Zz{!|2%ZIKoJIg`n}2xMoY7P-)D#{TGu(@I z(S(^oV9E*7C=*3tejt5XzNJtEUic&YO>)wLAH50{Nn!3ejAZ%@ zNt`Ha?5b)+mRdrlgy01gB3xklRkZ+t5b#knH9^@O4eL4D>+cU3i}O*i?Rl2mK2&%P z5+>jB_Mkh<$F??h{a^s$_u}P!*C&KyXjs1ugUjLS&LD^b>I5qX@$|vT+gg$CQ3y=J zOdLnhj8k6BkC>$mqw0YaQ!z6j??xduVTgDLRn;ADiu1Em%Tv#wogfNuUQ4HYn&Q#g z%fEc#g3;(`?b>9*YY>O)qRPvE(tu{$UW905hZXWJL~f>ZIYz==yHMo?s8ZqM zpUjQLA+PS!Y=8NLkzIKEK`8mYuN#{k{8JWi4vgRJ3J(|32+on!hpA*;7GTFb6(33T zmKNx-{!$GQ-gTdi)l5vh`}t42F

*?%8i+H}%Q(_s5;hhx%L&+HtQW)YT1ZE=Kww%3eAHj(Q3XXYoM8 z6@@tV=%XTpQybzo#dv9GIt%Lfsnh zStzbj8~Ux-{eZ}*`h8TTDZZdbtC90Lub&4@U%3jh`d`$5K4W0Z@(moeGp`lIw@dztSZI!3u16xEmg4>PGq7cY|)0qZ1&M6Tb4*zU=lfRM+Ri z!w9t}ei$;9P=a=B_hL6&;iNf=Z<`>_JlP-*`%H%2GE3?M8IAyTKc7wBVzv2N<1z!rfTNiX91rUtOa=9aM7vSNuxOTE)GeMZ4N5_5F?UmItA}Ubx zfZwD%#tcD zHfDen!d%^ZeqUmdo8tVOMgkHX(178NuI?s`%Tdiv527dU3ACg2rU%zG!fs52%Nn~| zQnD%3xBZ9IUZTja!7TcVRu0s?Nr!en5zx*)tEs&obT-TsRb9TptFZ$E)`EhX(KE7- zpDsXc-~w<1b}0|^`%z^t`TUI}2yY$hj$i#1 zPhmS)l=xqX^BydU)Su!0Y1q=}v`c5O*2%^A3r;rp+H5Wvk^dehE=vzjrSyCR>9~ZF4KI~XDLdZ zayI~Inw=3>tIVGJX3nv9tqnM##IkEBy`*o z9Motw$_V&7D2W4Pe~4p(Je3tjAgY=gyXNFV8E1B{LA;A`$+Ke#%>V`yoNr{U5PR|5 z$nNf+;kriOZtU)BNmIM84OO>741oT~&!6`GpR-x430A8v?-glbQ<*J=ZUGE0ND|%_ z;k7FKD%g^q|B~>V|2N@`N$dwAH4{s5YZPPhccIDOR7zo;l3Dm}fs_vr?;?6gWh68U zaFXK))9{T~M~2rQfEpL)EUBY)DT$F}({Vx@HLK$-jNW5W(NSq$`+ptlo1u%sLTvR8Zh38Cy?^z^i`6oldsl$ZU33Mh$VEER*8X%Y=Fn|aTG$0(_uy1ryE=wsU z3?r%Y$wxyl45*U%;<-^jaDpL`rAuu<;566Q)#<}!?oV!Fk-m}`2qnQ@4ogalh3srbr(dfw`w z3~(RS!eEdvzU4|jdVfI#K&m&k38i3`=@v9fWz|*er%;&Zp#s>a9swu-uw)<=89XPW zF8sNm%Y_P?P@MfMG(Mpb?GMM1m6`9n8rXcBFq~D~_?s+F*&Vq6us5xaZa=1ynYk5! z)=W0W&D9hO(9#Q^q;X}TxJ_H63j7^Mm28{-XwMRBVChJ35X5j~S_I@I0AFz|;Rnev z8F`HuklW!efB7e1hIM8Q(21?`+JsslukR3xozll=zPu_HuyAMxb)5}bjwX_7_*`p9 zEt=>QMOXu|Fz-k<%t_do+Mwo-O#`%0K%kH#_BbzKG6hPAoGvg*Khdxi=(`9Qk#dt= z8lZU*z*VF0na@t2r?Q68p%uK5HN3P~5*eTdFs+-Px zA+=M7hHE2AKI)hLIMwL~V*U26*!o5pBhOC$ZN!$f)XB#-LFFa_Vqa5Fs*X}o=57ev z!nRZqN7de&auig|NlSb!$G}^Nxn+_x3bPk&JC=U#1>Q9}__MD^SVV4RDGT-ciF`^h z+98Gkt`Ag~>V{Ys$W>T`kBKuqdlK<0S+~2DF^s$YNxQnwpTA=m8&A}B;~K2$C1*;( zu#BZKgySuyLX`0ff>C5NqLtDvOk#^nMUTC!PTT!khDl6_KmI1SSG@&sYjBzmxJ-Ky zrV|HydDUPdu?*n~4WQJRa&Zh_G>}+b*qdxK4ac%Yz|D|v-lU_4u-!NoX|K5+_(%xC z#mRhpCFNJcIOE0KqvnjY$=Q`L)f|&O5sY{&QYe-7J_B4}Ou`)?`ogNC4czW=3zeJ1 z1)yIoo~Kw6@iBjfn7hXFmy@4(MnpmLOOPYQ)~wat;K#2*ZrS zXC?y&m@klVQ6u^%M1T!A4WxeeW<(Iev-|Ahw`GYDCC32FOw69!@%p4rFq&L)YYGar zc#^?5wf5j%!RODNi^Rrhf*?dH!yT)_rAV!mejXx3 z#t?MGgVUXRhxtlGOc#Ljf>CSh>E;4}vIZYp40<$avjFfEFV)p0dyDs$xvS{0=2ErM zI{Z2@nxN*v?RMhJHSxjHAigE^x|Ct~`-eNHPk@`oez)^hbAyrEEiolhBJyl|^K9wf zcrMX>v>ah*3~vL^v%g;p>VFQ!)w0jWCeOu}uH`fRY=p`6rWt5uW4)S9rg7aoDTMV~AuEyh!wQb;(X} z;0PV?EOs@*ccC1Q6GiCw>GfpaMi;?UB+>ryOD2zopUc~>f*8QN;o7d|_r!JO_;~a; z71*)0;MhX|bb*pX{yRk{2li=nE^t2QBP!}Ih_=w=7GuM4IFS=Vn`zBRV~&bxr;N1$nQ~P? zqB4Y-Og+HOSOZO`FJIvP%m*y^c{98WoCRJ8Ge{$_)zZC3NjOejS)Qzj{vc)*>vE8^ zbHh2!f;vlQLX(WPSMxksR$AewyRBV6UD^2}!^-|6ACSY7UhldTzT|AmxqjW_6S^k1 zfeCVQlSGpxpqkbz@|{8%4|AuJ&M!cxE~eB1-ev`)vzK1Mk`_IX5iqa)`@%ERj!I}zVgwF z#rva5n#Z2|Xb{dGoZ&=M@StXPGENrw<@xspe|Zfj%*}`r!+f5POvUN#+a(pYg4IU6 z4VcNfvc3R5Wg1jkKd@Iv-`CeaffOkXHWl^d-7>VAA2kmYyo2Y^HX{&*4g z_^CfGa0s`&74(tf;$T|4;TbOxvHJtIZT2rTA||I+Eu?2mK(jbP?b#zVqcSs~G`o`z zqra`l;U}OjKuyQ&8S8=%WEfT1)BvNs>oHjN4(%wY^TC8&yw9&D*qJ;hou1)x_9({7 zI0aB%i4HC>E3Xk?OrYR>mw-+2`dR7v^IpQOjPcm$`fkX(kEQf5DD^EHmkPxvKuaLX zcxN_4=nq^AC!EYB%tzg>zdyhORq8!cv3>);yn_>*M#AFdpt?I1eF!!ER@R_gYXvnX zkE+4R;W-^$Gof#w(BS(P3rG$GL+pIqxxhf>^q8_+uH@abAsYmj5a{nu){Szo)Q7(t z^;@Zf8l$ygy>Ga>JNnWSRiB9Qkwwx_pYk{&*un~1qBhEuTLiVDB}p%{n}n`?XUt^ z(6=Azx^F0npg|L75=+XlckK`yjAuQp8GaVV!dhC}X2D9PWS@(7OgE{4pN zro=3#&>hKvfm>MN1y+S-zlQCe%7|T@6GY?PKQ@h7gwW7htT}R)?Bvj5&98t9YOuh? zKo&J7p}YGuruqx*LC}@02&F+(fn(7_WBX?g3JYDl$MsAD1Vp(!ux`WYb4#%%qygav zX_&Jl<+)T6Zg~M44VHER4sb~tMezaJieT*NlaDED;n?yquXint^6Vw_vvt;V>l&!4 z(SkZB_AMDjK+yfF&QFO!kN(+SnnB?;d+fQwjGyL#(&E0H`tB{31W9|^HWED%_%}#1 zCr+H`3~r=^oQ`VCZ#wNGXF)W{kRF9Nsh2?8B|)@AuOuax)b&w{u>AY*5PSq0!0@to>nuZ*`1pO4-agym(E`yg&3cL{)-Jb z{xWd9fK*??W^o!Vp5o1HqM%ENzw!Ogd~OnZ&Qu=i#8BcM!{{x#>z6~nG?!6ML4mWZ z*s4lTy4gtl?6*||WL^aNlQ09BqC`6aJlZCF?J##E;obPRo#(E6+Kw7Uj&Om9dp)0yhDu;;5SK0 zj$VBT<#yWr_GK$C{=w3x)BBQFsLI%HqgaVO+dEAlVe$#~C&JKKrGB+e-ow`e zXh3O?pJnc(9Bi4H5_$*WHG6yM^>x2((QOR!iGqeH_p=i(e0m(;MD>_Wf8uy~vGgGRL9zhj70H z6$%HnuouevefWbEf8!Xmz3$>Nf|qu7{%W{g3m3`1<%m5P#Q*(28$Ue2LHfcAouDZe zC*XkQ?pK)$xeFe*fjnZqm6DL|S8^DdhqgpO(oemA?2|L^p0w#Ht)I8|{INv6hvG_f zxj$xYJC=bTs-0Z(_+HNqm6+{$O8l+CvLS8_;n3ENgK86{ZdY(h20#Q4)uYo59Ri_i zkmNu&sdb#?6Wj_RDFo(ctq^!@aKec&ruPp1SKY5g$EkKepUa6fP8D%xkI-MltgW@2 zYJ&_wI-`pqAQJ6(@|2tp8~MYpxqxwpV;`4)TGe}3XJ4bE_yG!Txj)(4`}=eLYdBC3 z<;4JBtuZbybSjuOKZh2c!kYrLY9oO8RUdTvIA?&(-=~N*kfR%^DnxS)Y-DsT;~0>$ zIFlz9xEL2$LgL0Cv=HB&cwN2sajXgi_+te`pwhRiBi6X%3HLDXa zk$nBwAh%6uyIYWRqb)VC`RCoNgfE#j@_y{AzU>%=+1~M6&nM45!4A&1{qrh3!M)cG z=*$wkO^TmQ%pAp{uY6F}hX_%Ixd16s@@|haDZPhzom|-1igx}mAOKy79zq!| z9T7JGUG5YTWJS+0?SR>&t!#2IJ2C?)Dp{`^;lmX#vKGRXKhQy@KNi#rwXLx-A7-rlO9AoZ?d=+nSft5)O% zacc?yWFVajL%R!neE892VRe#OeNm;Tu%{;j6eO#mEKK`?gJEq3{Dm%kLb-<4lCz+k zE~L7_GX>eR`;`}0(kD9@M}`fhfa&~A%~P4?z0cN9b@7B=wE}*jV&(_I>>uW)<5pli zcRPt5sFb82(g>h&FNWht?{k{rDV*OtQ^XA@KV0S%KAE$!yxSgV*!pet&GGBA{nK^| zsy!gjS5Sxq@wW?6R(+6yt;nW?LPJSO;T#6Cgjvdk2oZNUdTIQO(kMu9 z3e27l>-k*?!vx%UT4|AyrS*^MfqDI3It^d{rfDDi~?IY4#Ud zsqUAmX{_@LP#36?e+zG?V4df(VDLGt1od9{mc!T}u(YwgJ*ww7B=&5F64(l78PV@( z^UNBeKGf02-Z}-j3;Gb{DeJ2<5v`%2i^Bi6y*&{&VYFI!nFUcu^{pU9d*ivMx zvf6IFC4Tg%+PkE9O^Q(jo3#v*KEC_rI6-9AQK=_4BizlV8o z&61Kd*~fH(9y$x7t<~_w-@RoeYNzQB{60=jMPDL*jsLoPt(bpD>Kn79dTmDq*D;Ym3$+F~jb=(lIb@q)HmM&hr zPU^SPnCo&*(uEDb73P)JwA?E#EdVMb!^9x8v{lvaY#aAau_;dn%+>w6YWT!LV<%Ol z5UG1m0|rx1c}YQYE<(p_>)m`lLhuw;=#=g>8a>bjRB|4s^QFi{BkGmmnC`msh~}Ky z?|OHptMJj%-i_y{-+=4%_vaBt1YL-|+o02kJzI^FW3#MS@Ig|*b zmkek{$IPCKl$h<>95-%Dmous@A`tl?n@2IMYsGdK1V8#uDcBQAnx1$+kD~N(B zXHxs(*KGCXLfm6rh^9nKv)`Gr%@GbgDVWuqh+1fV=U^$RJal-&d6q&ge}p>cw9bA# z?;!EV@vP?o)xWZ}C07Q%o|;gaeKOO=#Ks12mdM4$WzXKd`F3EGh)*X}i2H23i(gQ^ zTAyr${9I5l#-hl`$fO)gBtbsB0W<5*S|q&>)bS2yJR@6v`fP+hfSlt#WVJ0)-se-N zHD|tP%>o|ED2##;U>+CNwaxEar9aj*9~`#@n1zg_uh$ND*!|6T{;9-Mf5rYMr)gRl zw``c{-t&aKiof!a$Fg(n^^cK|ND9w-{Ao5DWMN$~C>ObOkFD>Fs0O@C-{8|LE-2PL zdq${+3P3sl43?IDoUV$PoJPP3ZlA&hacd0 z-s&i95WnWcQY{FWo7Q(VuaC8|0yH?IyASlsDxw7}oDZz2F(7wB;#R~Fe%hTYRi>oe zPv5-G`_V+J02S{)`_Jb|8V>8$i41h!EoS=)zvDkbzf5Na1174u$^N(YNuwAo91H|wK0n|a~Fg?OLm ztb^zhYUag3g`iT-pb3J-A_N3aI&S7-99yAw{m2{|&tF8bX<%wvLBDM5{(+PnSkQ7KC*eVz}_RpSbYN?0jKH<`lSBd^4_2 zrG#Dp4oVgqWdsp2WgvZ0Xk=OoHkmDd$hJ7F|v9 zU6R1JobI3~_uD&Rt(W;9Tq^igXEBfFj+kltGC>NZqyH!!hQox!=9_f6wnX-+YcI-gw^q?7j9{YX`RD?CXF} z>bcOmm543rYZY?a7V~b9BG;_{JTvn))`bZ4lc&g?n70LWpKiG&o`TR)UKT6YouVSS z=c>nYRsn0>8q|JK?SK9CRyDk|vX+1lC?*XbfgtEn{O?6k*Pfp3Ue35qG+U{X^FaJGu`+fq%x zV@L)qcTD7*M09&h&+fvGR$coM-e~TkGce^-rRVH;LGMvreSPAT+x9CwbBxbg_GRR? zHJ*jCUdXSbn#%vR@Vn-Bmvq8TBFYh$zR!jdD&R)ii?m?u>iuNPh1=RqW&sX^oe%w*>g1dDAKA>6&%0Vm88*KhxuB26774l28)ztC+Y}O zQAG{A6>#OR3JVPl-OdjuIEf}nt){%&=>|EK6RDXFZ@-vwz~$k~7G;CkI_=H{}Q5 z+O~9T!`>$eV>Gt;o|Re#VSDLkSs9CHOdh`TDS_(@f5Qg^BUnrfEY-Vk;R5>UcQ)Fh z+`fS7OC%v?0m{Z5{E5a`sUKXpj#@LvlO$MQT|=YlO#&h(2_4GS5wumJ`N9N27*y$@ zy^k@#q#w2N1?;a=hx;!QA9G-)Aso+Di_}1BGa&lShf{-*kX8Q&Nvid2QiqIO9dAyP z1?rH~IW`ejW#OVlN_7x~5tVQisnw%=vf~YW7Z4P4yfvw(gZ7oE_6y6BF(o8I<}-q_ zTGU|h>HsJfd=QOJ9aA!@bZJ7bqdpF5U!^)Ev@*!frDx|I3uU~UXk6nPKw;MfaA+;F zmJPK-N=UMV&)xtXWA0L-go)I#+RNz7z^MvE5wu3%h6X6j2WmgB1f4=LhYJ_#Xq3vi zb6`9^ftEuHMTu&OI~+ttivfu(-?VQ-o(IFPJMzh8^ISzqw^p6z!L-Zd08%;X7x`y_ z7pfC$J!;e_VjS%7@IZYZY2W(Uqo#KrrDBDQ27}Zj!FF`TU0jjhZXVs*(i$LS?M~r^ zUQ0eBpgy7P0t+NtH-|zJWj4BDckhy?XI^u){L=WjEjm>-eXSNcIUS-===!YftTZiX z%$6MJMK+Tir->}UwxMX^17y}y5;#w~Zx+cGFatXxvlsj?H_@=*;0w5-A}7+wVWsQ+ ztHc*2g@sQ*3j7u1Kn)uhJvmY?V~nl0Wr8nSRqf<8PE`qwRXm6%RL4gX!G}P|BPsI8 zVTsR7`Y*pmYKh$q3UX+(dA%M2?bb@(l&+`CXsn}iP*6}*8v#Y4#EZ-DLP%9sQE5yV zOnJq^snDRYn~giTv{XfsVY!$xomdxgHHf`S5> z_Yi^GQ4ddU%d&fej>4?mJemhd#%yioS(L3%m(2$H@9cNY$O5QA#<&^C3EHj}NkMu= z_P@8Szkn!5gCM9n3RVLk-t%4L<)Q8*VJclP^AaSssjM|h@+mYX7klUt0R(!4SEh?Z z!U_!A7L6x`0>KzW;f6&*j7&5_RYwEYCa;6{+O=!?=H{q^>VUsp#3QyAtrO5HNvwV= zC}<(kg+Qh|k8dVMmrZY-Ah%ZD8``fE;57wiJ8Crd5p<79h$t7oeEGt}Xi%YPsHE`X z#mAx%Af+lMz8}h-613R!N)yu%VvCD{$w*f?l9q??VZYC_H%nlteMXLaL$FP;6) zTW{w0?-|@PzMtnPUbwCV=vVGap;e7X9t3HYqeaBH2+-@64|T5JujAk z4_njwEh2QVS2O@?GQ2nl?QCE?wIc?{QZU}u^bAHstW3tv9nfM6M+_QfloMA>P7dgd z94{w~Vk&kmnzvv{M#+?65w9GwGEcQg1Tyk9tV2&!_tm$W_stF5N^SIaFAzaPW~#;{ z!Yc4^rGe&Dp!>Q8`;boTuEH9eY}0wNMV2mFbfLX2z0G_lc1hyy=~HOGaA;*&y*HJdgwICB6Xm((OllfcY}7q0v_zMI z{JdMt2X`!V=8`db`qT-KWD3&2G|AE?EeI82kjOx}KMsSg_oqcuX_B5W39zI#? z!Bh)rve=N6ac^)nE+UEXOY`&dqtUfTlI)>%)Tsl}p&G$hs4Yn(uMS?tV!ycd;zmX9E&E+okGJR- za*@m|<5QX=p=*tZYKKeT)uR40O?wc85it@&Dme8;v~K8`2ZLESQj_4ymnB2c!dR*= zj<^-l(TRCHBvwFg8&E9W5Nv!}n02AkL{%Nor$A$HBxn?+YLTwxk;m10b&(h=XlQs9 zc_U$t-Kx($6?XAVe0NcCu|N4VUM}hfW(Qz|s?~Wp$Bu;o(nbXn5mXc&oAxg134#v| zvI_m?mnF6I=Pom;v71azpFXYXlXr!!Dc{uGx{Wn6cI%NBStoWjjGZ6-+x)?w>+wEG z*Nw^6EfAubRv~-6E?SMV&VI)|Bv$hUI$x2bE%y+Mn^wi3t5UJ5B65d3W1IjTF>?|$ zU0BTz#7E96)q4UK2;d4gQ3K0@ee?LL@07fM(GgNW<f2GQ_N_(2e&EH{99j6jF#!~-!_g2sVhUzOY(U!Z;lmZw z)sr$4P>=$O4QvPcOgchj#31IEmxc~vDELwPIXEBNcS=56`S&O*AC69W^@Xsg0|#C$ zZE|pMI0$=`P&GZ&RH|RS2U%}m#Uti>W>!21G>4+?kx3>>EZc(}eel&G^pl-HF5Ce5 z;6Ap+30xJLaLC)H2?zxadl{Fvhv|2zB66jffm_3mt)E#Fl+5wAaUUyohob6QzdS*0 zdHOOyYEuzZ@Hhc@lC=hhj0DB{t(X*~W73Dp*;CXTYA2Mqj=BKOO?B$9N=Od5s(iFm z1)qXgT(`{N(MfsWZukcJ?Vh@-PI)_N^1j|ww(TFd_-2rdU|^esVjXp+4DEX=s#>=|Lg~leg|ChPS*n$0&&IW(ad7RY1bb)FSXYKMavyZaIC4cn>awlEo;;wC zX4W)YELghqA|}%`wde~$}2FcEZny$1pw-D&Ihph+IyN*~{#MYwF1lNxLkY$TD ziE+P`)$`NNPmP=L2qhLb!RwKT9h9{RFI(meP5@mk%FAc~CUM0o4;`ngl+3I zp9WoWUVllXKhQKo&Z~J7!29}y;WIaplX||Ruz)8gUB_Ru8A>hZee5Kfea?MZeQ&7! z;d{UT`mb|)@!pJ0+yV)I_}iKNfAvFNrVLtm=vG+RQox&a0Hn{uOh6hfb8@p@0S5S5 z?2CJ&i;+Juf;7Z(8EorhRX}AGI=dHfqg6sVg=X#~CjP5cxh8+|BYIsyBlV%N8dZIi zH8cc>y+Nau0ZA6Vafg@e>@cMEHvkIAmv2Y(*};%nVIU^*#R}oEj#LJeMFCCdyvx)> zQcAQtnvIt7e$U*F(062GB~)3WNbOZJQUlsnH;;T{2}&gAR1!SgC1ffaG_blwn%!Fo zzSdq@Ih99Y?_Pe%FL}-s+(|bQ(!{w}hc+>EYn6}SCOln}-0q~Zu8HiZ$v%Y=g{bbo zm)6gjapKL*sBUx_Wps3ONJWYV`C5l6QWj66N57EkV;w<7A7IyuAEv#44I+1;Uz$BoZuU zEDqruQ1x-<_U0b*0!^bWqLWBegb^UhUUFX~EPReo5QTmFs4fcZ#;SS>)7k4SC7j$X zV>8l3T$a>oLsT{-qxJVr>+7^1=%iMK+Hnk%m(H+tN z!Bs==CB3>M`i^Pzu{-J+D4?U1B>8A(8%RqNF^{O#Q+z&ysUQoKM3>43$Q)~0yfHc` z)9DW|MKu>1mEQQ@$or+_nSo8=a>SwUs_sm7<)bF_MUePnx{|0nq)#KL9Xr5>TDnzU zUa5}uK;jgxiBHDO2nr5XBG_#$JV`wiLeEHKfve&=j!Tx~6&tDvIk=#T)I zw+%LG+seDZw$e7yf1HDS#mm@huba?dQ$oxn?K9)ojeUnX)i=uNJCHDLFt zo^I!h1o<|q9nffGd5w|nwvel$Wy~PDQkn7a0uj$^QYXjmGsj1W&n#;?}ql}T{ zMU?wMaf#djV;xKD-JG&85mBOveeiKLUvPoq_pJ(?Piplu20l8}P}AR1a}e1)4-fT? z<3NE?YiUOIjHn)xBh2(5T2wiE*#4b^^YRGrB?DC+`@|*W;z`qnW6Ha6*cc4xS%rct zsvT4!lR=5r{+*T>L4vM3!Pu1P@X0si**7a=%a2% zWO*b=KQ}N9Eci2X3t08u3{cM74F`5!5fKs0D?|}W=3a&GXin!}D;Py?1w##*@6LL4 z6BrB51p5b)=W-uqQo$uU)2>vY=vC=K{(j*nJ8mxl1!eS+!QtLBITLTkP<9)r=>v;> zVlKpP@j4S*42j{w;655ZbgU*>LS!jo910wb;>lB|VuZnFr&v68SQ(i?#ps(9q#0Cl zLY8^5zm-$FToYk{)LexUs^*fa%vvys;jE<0{6?Z96-0eAPrLpj?rU^Y++Rx z@t5v~gm9W|usO~7`j~PCR7H}auoNanD%RATAb(Qb$`t#7uCg4v>oG^bXVhUz474h0 z$(d5O6-9wF*->T{lg}ooSW)qC*!6q%nIvT7ts2-40VpwZXJ6KiDTV;rRdfa%mp*|L zS@vU`Q}yYod>v6;5O4a$aNX$9qw9dL=$qF-Qs6%2eInxKs!?6!jfQ;iG9Lj0U_%tu ze$Sm$~x9d!{n6ZdbXcAk9>q@hkt$`0!3@2p+n!~DTzR2L(8S*GEh>ERYP#X+}5UN!Pgj4fhI=6!g zNYE~_m^v|l6YXF^rX#C#6Xo_CXdYwYpFPxgAoEWxlon;S3pi)Cm=hCYNp3*>1DiVj znscBZt%+|Xu`cNuDG7Xo@K$U#3d<1lSI~H{oDH%`S$zVmyJ=APL39LHz`giu0{WN< z&r#fZJA5ZrGvGSTZ*vsb}Bdb^PU!Tpt?&16&RC)sPf6Z-i=i3^& zjV>Hk22;^uBhbR$p_sBX(0c7zFXnK=*DwnO|DP?Y@_(Z-RDPY=`S683o@8i86huf2 zs6oVtgehsa-GJ^FwwTH~v7(|P0ZUT+i`K0&brilWXd`^1KUT$J;V4#CsdK)ejtq)KdPXMaG{Y%TV-L4{g!c;O-t3gdutpU#e0|3rw1k+e#`2W_9d1!O z)E`M2k8GDc_@qcy>WC&MI$H(EC=^sWX|#UwH&|oKsgu|IqDVMlQ*&iJ`a*S%_z-AD z4*B`{)7F_BqSk6lBp@Xk^iYeSoc)0a>n+;{6BM@XKGe;7TSCZfn)q$VW4C0D1%gEL zRbcghAPJ}##Y@!W?Vu7$=(iDjlpG_|qRH5k?A_7z#<&n_HBG$WXDjY4(J4Y`D9+&aA4>z8@m&9;AqDb9ywQ5^~1QxXOWJ_D?1EbJEOGtb`rX#!4{C+H(eabI2e@B^b!QfMoBh z@db_4r-@3{*aQN*4jO!ZX>@WV;Q)&H*5BhGIy8aCxW69*K}v;-8nP+#tFT4PX2lGIXzPJDYjGi8$2S7<%%!w&wPUScA* zZAq$vYg^a_;P?U+CfmbcBIu0OQV7gq{6*4??G8S$6Hn1IZBUYu>->8wdmRxG!hg!uOtV<)bzzc8aQIu){`DRpiMp-NYfoVu*bH@WASNEoU?W0 zYw!)&NxN0o3ibcq6|EjSgeApq`QI0Oxpv=h0r5%RSsonWcw$g?kJ1gUT;F#O&H+=`G6&;XK(-VJ3*$<5}1gQ30$Hiw0WFK=36k>c94YaPpU| zz29(PI<`tKhh^o_0hZOg2WO7P9QC^H4hA8)Gz3c!mmJLfXf<>ra}~I2T56H@KdX?) z1EfxEthHVi8*Q^b>Yas}&tM%N295y;DEpT+d^_~9n`q+sbKL=?l7fJkcRGz8HR=|^ zv#S~SCOQX_(Oe{6Rzy%VfU>CjQqYLi&;NGMz7;{}8`^yk^3nkzPLLy-yA&w~N(cUDZu{wq% z67%XPxDdQ0s-RV(+3lZ3!)pLI9!^tEj;u=E&|Q^6%nz2AV_VYaZ^guPt}yms+$A5w{?X$`09{eMqN);cs^8K_Ung zT-T%z5-x0QYen{f7V`qMhTFIcM6i!E>Qaz&+FqRG~W(p*@Kh3q#zTc_rj|K_7{Vhx@E# z%RDLEla#?40gF6$AE}hEu*(kjgRQWQzoe+>DGEP62`z}ERv-+_)1$(Lu~7pWF_njh zTfICSZ}%%*X@pk}Cs`eyfy}V6mJ}!rXp)U#M$Nih26^Js_th@G+qRb%>_s~TTLcvqNzf44RV3| z@^OaHuQRp^W9{99fn2~+L!7)RqPj^XL2gGNXw(2^hc`N7>IbI%vsQUZJ$7(oaCz#A z^yw36)Vv{zATs`$S3GWb0}Y;A!r`zC4jlf2b!48gj<>+ zmihKs5oClH+gA4fSzqWohNgZ9kTdd=L-bz0OD2Pw9f3c&WetmU=^Z2jN@h$`Ol}=TjvP0)XU-g~C?BYy|ko9K& z_x7}ZyX(q41i8je!UEF`m3KEJfG9~XcG51QdUVspji1;t<%g#YjiGXB4Gj&{Bk3ra zCX!zmQnNJ7)jJ4voH0te*QCMXyx2+eUzYr#VOFF}mF$!@$w2~cj_yt*b^n_7xTJOP zSa71ZKT0nPJ%aq3cEK*N-zyKnP@tCFZIH4(rIBvvg13~;;{IrA_2aR2Q4S=`-GS+> zrJxLz+mJgGxMajzC9ONSwE}?*Gx2U{s1u=6pzK-4ezm8#R5Gl$V;0fnY#LYjJhSWr zyLqJ=GisQ|Z9TFj(K)odJ;q=e`aiNJz8*wjqNF@1Odv)f`N70NsIszkP-8(!?aY_4 zo-I#P_nmmbfl1nryb6a;8NHWl4l>Oiiw0M+ARq%N2lvNEN}Fg; ziMod#3{B`H7h5vMAU7AHRwh`qd4E96%G6%FJPjPjf3FVF&n9wYI&FMsd3MPe7>^qkc{6bTKDz11unB|Ho)0d$SK

OB#$iPwyDuc;0&g zFbW_#8smopB9zicaueGI!~lySIn(>hnht8fRn>7CaPl;JhGvfZE3V)iKNPA&VrE!2 zP-vk|0-~WMn)G~QlRpD@)31Clo3d>+=99j1TY|w7DKzVwbFG=ndug=y8=)*1K-26; z%q*i%YE&$Dj0K_)q6=>y(b0qUfp~j!OXbV-rIeYGv!-qm=%2DBB1y9hf&8czSs|TQ zS~FZ$8e}GEv~5(5e(TUOzr`xO5dY9wV>(o4I(3K+vL)Z>gvtS2I^h9)Zt!(UvvKO= zhJ@j7mJjPKl|iR0KMn0_z2jBrw&tf%FFGh2eK8Abl%||lYVx*JXAPP$uTuxFYTrCF zsw35=g@e*c?p(%RWLV;aDSmENF5C~X1k{NM+iyklkJ85aH22Zux@G^Y69#PPTPJLI z)uUuTPEx`7s!JsieWpdv`FH5v-ofhdWDDx(>gtj~);14*NE=ab5|@x&Lu5jQRGQLu z4qcMMID3>Mp!ZBUjv!yZ6$&7N=}1M5>q=l5lJyHvJU<~x52Fta4-Z$?Lrhyir5SmQ z)!BpiObutE_z)2Y2wjwJC~C#^WROGhLn>ydYeJT8TG$Ws;v;KzaAK8yj?d;xM^NJs zr;U#|tt7aeSK@=|R?HItktBF?AT77U22_+*@4QYRqx9UCSJDPBeE2@c5iGV1Z9_M} z9qI)?#DX!A9KWH<_gOU6=PonDgi?kY4^>t>_d~k z4tB+ki1%ys`>A(ET%_%-;E!wCH0`a~>aiZ=Pc00>-rh>)-NeWaG$zG3`~;rI?LpqR zCb>JyFb(9!X(Wf^V-P>$GLasQ0B*R5)P-Qm@<6xGfQ~{HWV(wtUn!oM*Go? zByd0(#ZSZOfMA(jikGz1 zw52lwCB)<8%mgw{BXa;+54G?PmG5aLWvva#i(`t(l@5Nm`*qcEm1#W?k5b3}ZVb4X z%-9&PopyfZV*0e~!QNS329IdIv86PBffV3!(~YI+xX7$UqnIX+kW>jtNmfuJ4GPr! zlJ80}Sm)!&=|)n$_Xa+v90XAfOlw85?ILi2vW$oz+7ali>(Ei&>CpzG;@$$uJ|(Dw z4!Tx+A%7@BOF`*A`qg98`%TMBRN6#p;*8#=dFN=b$^f0GeH5KdUhGJfhimBmq0RwMgM7*L7VxI5jZZTJX^>D>y;7 zvW7-VMAbx6dd9e?1B7&Sr(K%lW8|&k*O&|`?^6)k1n9o33Nm{*eCiYQT$JjF+y!U^ zvkyK>l7Rq6BT5c1>P8QTb4GgI4GX(SGCS^!AlYb6_*vO7BE>cXTSpy9fv~KW&^s8R z)~jTq%TeRMtA4(uTYK4mXux`zS6~CXR0G9FEwRq9OFy9pXf2?Ef=5`}iFst?(T+## zNlITuil1!!=rL!lFmYzutn5OyO9k3QL#uy=yiW-XkCF-Wz={e)zXf(YW6R>WUJ>V=$@X;zp z(kL7ntfpa*r7cfH84M91bI!yfM4k@?coe)u_odj`!e_xMc8&c&?bMXb`~zCrh8EO# z>vA6GaxN@LCS4Z@?(@K0%zg8PoP;In*3+P21SgMBB}kPBLRFh)1ZCPFRwEV6fim=i z@H8d9fV+U)_ApJ{Xi@-*P_qDVtQg?h5=?O+OI4R9emirj0(Q@ztr+V+Pz4_ik9MHJ zc(J!J2u!X&2+j{O)j?A9P#<6n0!Umg`#RfAQ%VvN!Yc3B#GI95C&)^Zw*xJ*LQ8Bl zq+Q|K);A7*6GfA#b|O!J*@Gkds>UhOBQ=gas7f)I@fjIfgm0ln)@22N=5#FAGkQl+ z$)o)T-8_98JX@{iB;_CMy?o{iGqkL(35B;RwhV8+sgozmAT2A723`D$N-$g;An&0s zVr1+kOIWM75PZlM{YX=*z}>tgY5@$o%{&KPfc!K>;O9Y&M3_t4F5yuTzT>g&l0XpU zuB$=EU!2n?n&iascqr{*K%v}uG+3((!zH{$F?8on7ktDMD{R4R)Tsjien>g?)fZ|p zAYPHXQ>a?NeTlI-$H~(wDCKUTM0~Dyif970^*AyeE%h;sB?Zh>C@D2VW|cZc1|-sh=Db z53FF-II%arFa|0r@^iv01$X6^GruLDJBLI*>IA+_gzIna2QcH(CZ?Hk+BQwH`ovGH zs8GS)mm{g~>6Zmf@l%XwJbEZ9<<<5RDE(E7YT%j@c{E0r4yk@hYTCb4|6CGeFehyh ziuE=<6*W6N)ZlUWG=n@n%OiS)Iw2}rW@^;op+Kjyj;U!f z1eeb19{7fuWN_L{zRDyFHZE2@3VHdqEZcS{pJ_ZjfQ7WztH(Tp+;&0m2EMR1$P{j` zX=>5&O6!Qi1!Qi(AkR((^sHsXP}M@25g1SIsdJpgC!inx{9VYIH8f-ZlslvfoWZ)h zMLKc!grX}4eZHgS?fir$VYnPsp1>e<%O}QCT0*=(B5a1_^b`hcxF#AF^t|=_nKMmi z$MP4yNg(ztBx0VUgbZMYfQr*&%&^uioaO)K&G*tQfeQ@4rhT6VI~YIuWxh1AfEm^g zc|PGOcb?)^wtQ|Zwt|q3Wk^S3U-xOCqNt^$>4KhqRe}gJfRp=darn71G$;w(gL7zt z-)W@4*oAN@0ACv2_IS|mw(+N+ZLG6%K=dez$3zK33!iJQu1D2h69k0k)jy3Kgd_%m z;;4lT)E7ZiKkDc*c2Dt0N@#3QtM+%;ft z-An(0O!rsE+Y#vtFjiDNWiJUJQ*vj=96N4cN2 zw;p7s6}KX(MHzKzpB6+leAKigk39$jrKQR6WCcn`@`@wP9^nPQN9!uT`EWzioy-c-DV@^%X5Jw!qzZb`ORUk4wvRJ3gg z#x8$~Rs)(M><77E@bQwn6I$|qS$iM^CPoi|ofe?{!5k_XcF;$a1IT)ibOTgiMs=em zq=bxyyj2QS?om{nK;EBqKK*ZfB7!*0^GgeuC+b5vXYC8JN6 zh#b;53T(oeCT=jk2ypZ@D8W?g!|h-lJw3-WCnAhf2wz%Y_%oK?rORj5G(-nb_#wU^ zNcih(NpeDjLlTw3A;9tBsgYzDcMyVAYxMxg_L4iI?>#NS|5D{%OV;#=YbgHKQ)SYQ z(Jo>jwMJL?&f+|?dV^HI_WRDZiwO)i4-`50qg>>Y64oWHBdqiZFZ6cWbsHd^4TAU#`2kpRe zB}t*V+mb*iW6WnvgK)}Ct&=P)Nia^MMbm6?Q5k9seJ88Dlt5JA?E0Tg;n>nhy>eZ3 zH8nmk!t$36d5Bp>Psx^#oMdQ{N?V*ak@ls{d6!c_B5o zCM6=}8>Dt63pz5xBMW7N9ORoC<(2>|R6iGh1OEnj4+#Zego`2z5Ro$oMi}<1^gx;G zPi3u+7P#1K?ybuhihBOMURXTid_zJ1*3lgA?Hp&SPO#5|)j-8T9Z6iZ?cQZyH6Ntk z4!;Lu5nREUO|K0W8m4XNdn|V zgN|C>R%2E@QKNauKEh>9x5${f=z5*17-rl{XuwP|7onGwoGFd*qmCFxH93;tmiE|b zV9g;M%aA)hcpS!<6PHelp0>*gz?-&INCID>0@&sCfY!|Av#CB&?JPxB!w5Z%Zc)JNm$4)<|;Gm$0paQNwWH}XE?3fb9 z^aaNj%5BSw-GBn*4oOmw@d7^eb8McPG5J=sTx<4oG z&^GC#6^mJVo1JJVCT-{zd*RiYhKdhNSAT-UTW=l*9gPL{q5in^IO&8>!p-S8`iVB;*pngpwb)!W}kH!lSSc8pfY6Si!G}n?j){e9Oa~){pC)H!;&Jph!k)BL- z$QlBf=zR#bNIk~rp^;I;TP{QR=TcAdY5-_dOAK>3xX}nm;&+j*8p#_qUZx=-oKb=t zq1>5`=tHll%b<)h*gIKxCKfGTxX=M=jC5?$6`}LM#S#4)Tk!7hc@5f=efY(NOO{BT z{YokQ%R5*B>Nh0lELd88A5+0=CExmIrR=}zmI6J#l1lb zQ7KruaPK6m+$(dluNCL_t?z>~#@uv$<{WcJ{BVgl3YtR(7O@|%{y+jN{_hDjtf**e za;Ry3Z{;J^_+NeD4>#n8BmdzByz_+kqI?rcUD^Uk#{Fg(`@tXfNK=_tcPjVU#vd=8 zek|x}@>MQQ$G%g@8<-n9zhHji< ziq-7&?TgMa48M)lrBzQyv06CNTh77!g%J3|d3<*hJ4!kCS!_BtNx{ee18FUFgD%H8 zl=Dlh<}=(tga1&^Wlk}FS+0m>hQ$-=A87B*S!~+lxoH;O!JI97-qja3Jihu|uu9MV z8&wr2G9PFCRYgQ}4G1+vZXGuY+gm!nuTHRQ&0PF~Kt;{K`qY$<%*E^2@WYk<*QB#u z9Gd{<99XH|f!}cki#eKo&R_k9E5&&eg20btH!i&|H-Vcs;f-p4FjrA(#Gj4K$FvQ9 zIM#2!${y#>iD^=cP#bk@?bn*bwsC1m@!+Q4%*Vw>arZF%QEG+>6O8C@q}G32IYuCB z@V3vTCx1ZGx>Gzy9{y zV)i5%KZ{*r`F^K23vZcu_4wx2o{@&dFRmY&Uor1lr)jpg%X+uo=^jXl0IN z@PCFL#L8yN%ZwcJ`S{P_ClkL?Bk=djHyrsES(x{yvZoPN{@n`%Z7wC4`(KA1{BG$n z|8Ycp(_8!>sk}+bp$^m63e>$_jz7MXRh}P`8*TR~DtV~`^%>|jYQ*39&GvJgb_wS* zSh5w$Uf~-{zT_2rNf4e;$2owPLr%C%zI@9qock^oONMtSGI4r2u-~w6`uha?FL}S8 zmL&7C{>!uvEw-RErb6~ov^BFh*3h&M3pyT6D30Ljh@Y{k;sJNX z%crn*t^Mn@V~sh-%eg30H=hc889Yk%$*+egv+a25uAOH&f8p?}-s{;x{!5IWnGf*| zXMPl{jDq#6RDSq17E9PBNkU-o%eemve=_EWQ(wM%M*3b$8Rg*FBX^`*ij7GPzrn3U zxF7i^i|NT6a_w=5>)ocKDWdmjGVa{2NsaP<`dTj-R8c?}yj%u)=cA-0{#>&7}HG*4_%E|_Au7L^-hRqLqm-}N33 z%TmC|idKLP4nc^hVlOyh!fYhPm!7%Imj~`#HJw=i^%p%y$naW_`SB#1`qlWX)T@Uq z$+gNSP9$KI@m6XLtCz@c-FgL0b7{NYb~)83?aN>bKHJX2=TR-!doJ$v3d!#CqrI4PI@Sld~!*U+T@*Q_bX+Wj`O_OzJKof)qAEVvZR)oFaYszUOLA2!{%sS7&dAs z9wYW6%qf&_ebBk@!kxVIbUCp5=D}_F@&uu++ICX~1(%`meI3Pr;;P*^K32HYj-h*T zYo>Jb?~9N;b*rC71V{S*vfWR$Wv0{Y@NG)ZF$jXv!RPFk^ zj|M6>q~ujBSg>HF<@^2dCq4%yZUU^wVofyROWiQ$6E4Q`dCbB38rAYVFmeD*^BLHZ zH&r`OMm$5GesyNjg9i=JW?sc?qb+C03CtA}QvX)pruc6|wfm4Qn0tP3f zI_qgjP_7%wF={w}bX+ZzB~ zJO|83;}h}mR9whZ<1&jLle70sR2FpN8tz{$zM*8*F$ojb z-s!`~I=}tA_@WT!>`=z*JcpTJWFj1b{@fj^RWDSk!N+B_rT)0=qwv1_!P+z# z5tes-tJYMDiM%@x#9OmN;E3&{(k?K|MaO-UmK~T(~sM8 zFZg2j)sORccp9x8_h4mh&YLjPH@UN1+lGc&-2L6ZsDbxw%)q{wcdW+z-U9WAs`@+I z)_EOyATZBor)yNx8Z*O>yQa7BWnZf>o@DfA^@ba(ZglP}C@83!vFU*H4yCS!H6ztD znuizUoDEyI$bEYLwaq5iF&Ok?a*?6fr-8%gb0#flY&hw~Czm~tSLS2p{K;Z*ab~wg zc!#y#2c`6)*|N6p-u~+O=v>=lffb>4F_B@Pt&?K&8hTjlljl6sL^5`fl&_IF_wprt``rYwr~~QIyr~aNRA5~Ct8rsfI*t!BI&((UewC=88Ot?$uX`h7RzEzfblpJzMO@N`-aWwka3*mqR_57 z%cHu<=}We4sgI^pkqR%{z!IuhXr~=J50T7 zcA(j5$m6vA-M~)?#8B9Rh8~%`-}p}j=cT>Wjam_>_M48@+qZ8&AX2$MhhVQ`|LW6t z0HjA{8?%h&l}k9x#y<;hN7{qXA;&YKzsxb&llbZQhR4`*=FXif ztt6VF^kPP%#Ys2ARg%xIFIfZ}wn*b1s3POqDilCOy9#n5vXMy#@wfPaF-%Q~LvcshHIFdF;im*um$KYBRv)1eKI5eR?% zICq(lkjz!ZgqX{oo}NvjOwdwhE-nixBWFuY$Kl;USGKmH;qXHE|89bz&~g1aqM|BF z**O9lbfqr|{un3UYq15VPnb4M7=zpM7GF4j9&-^seg^Q}^zG57&vCXx+!+cLt9E`G zC%7RbxF14S6KdumluTf@bmV-Vv_}b7BFjH3qLVMJR2`%5QDv6nBe^UuFV8>1$Hxa# z(`&X|rZbSL{>vGp;S8XTw{!mhj|J%khxb&0Nu%=|t|iwlUHUcPDYO4saf0BkOP857 zcA6hyCLG=HEl3!)H-I_z384~GlAT9=A6M8ihb=sb#?Vh zv^29Kz@%%mvM2>T;V^J!e-mx(yYOr)oji+K&f9;yYDTzfp0yyb7H%s`Hm;Mkf@obo zOpu>{5l9@xi)mE3h{X*$Lw4d{9)t^c5F9`V&xB-CBohZ9sR&|1jY02xLQ) zK1s{Td0dy1md*f}S2cMlzKNy%Prk_=(+m|5`~y_Mg7VpNZK3iVba3-SR9F2ne!MH- zXQhJ&4{mE3He$qcv|#4K2JN`%6Z*3Eg5Re($Vez}oiqcNBf{v_Ml0a<^)Q=Qz9i?x zi>tVzs-Y8S%vcIJ#ubp36BliJyg>8YgM3scIS0mKxCOYuvX>KIc?YFeC2Z;@7|4)U*>o9!|`8*Z7@M<@x7G(gyxFa zoOf-fPMtaoZ^e~X9}X?p8xvxEipfsI|8nN1DD}j%o`J~+Lig|Ar_>Xtb`^xHEnxl# z&77H9@QPVqVLz^~hj>Eh?7zLnWK>s}^U7=6OKpro&Vuiw0#R*fU%)|1$0>;qh zKt(@sfrB@9U9Gs0IJu~9+RKI0Q&_CxJAQu8(AupBXa35K8^Znl{fdE#LON9m(Yx>M zt77ixP{pm!(D$qdamb{<*J_Kryvxg%`=Q*v1Pp&Os7X&tTr)qi9IhjATxVSS=i5?C zCqq$s9A*AE&=-R!VMd$ zLyZp~I&>FPFN2|rDt8RU7wD!r@-Cb+XH!WGvMxhYkB+3-bLNcg^mYun8+{*i`?ZD1 zFEj&o`ed8gU%q^KoW4EsvWvEtM(lqgdL0%a6f+yMy@F@h_Zk-^S(!GxejRXL56gW= z1zN#9g%HVIjg5^h%1K3eF?QN=sg|0Qnwxz_(-(>9FP4zdSfZJ%E&(ZY5Ud{JXUHWb zC1K!pXd!g&h46Pg-gcqx_q=0TpVHZn9-d2I#$xN^mMdfWM&t?P>&ntIbSd_rbTE6~kAVEpqPPe+}dJYdom)p#)W5c zk!WM{5Ia2K@vZlS$2+b#$ln8=wKDp_yU$M$`rw$ZI<$8~*UO;|O-*_wM_)EI1%m~D z+ot6#u7r*jI8+L#NV~=SVFIt%hdyFLN4jyyo9GpOZ=8n=_u_HZWCtUNmE9ar%}%;M zGQ%0!^IZy>GSbp$9H5eJtTo z@B-5}K9=271RCYevre-cF%==IdhA*jAXFL+M+#xREu@fwChM%}>j zj0feZ0ah*ri#yxfFM|#TIp+2|(&s0**E~&6mxto=Fk;zKrzLRi2G?sLs;r{L(jtD2`yasT(@Te54>jrFsOG2YLME9u2C0mRi=sG6rPdJ+Oy(a`)Jnw zDsc4GJ- zn3c47p-PA_g$wXpp5Yx!KzMM)Kh}U0QU|QTWjF+R(3JE>JpF;n!PlbV>eWfS;+Eml z#VvCW3%uo-BTKPvdjp%zaud~e2QNMC)A)t!)~P1U(G7s3mjH>F{mI5tF9F`EEEXd?{k)l`B^~BSN1%k)}m0BqCB2 zwRq)9MYLl#@h;!bwzRUsnPUJ+156=YA(?m-RSi1kVg@n*>37HZ;lFkp8ZBa_#sN{8 z3-0F4BV~}!)k6hw9r?!I%4xp}2rL0__c~_BWFq&k`pPRJA=eZ@B>stnb^OnDr0SCeL=H*Kz%|599~6w+CP5GGz-c>wJ(fywA~A?UJdbrALSlx zNAx(~wlPzq?b&8+t?Ua~-mlAE+eG=Tn&GGP>$G^MvD4S?I)82<9DLr@q@tK7Hm)5PtbCIEMRRo4-p&PHyj~XVc$0r@)!fT_2hD_NQrS<>~|Q*3Avk zye0jM8K&OZvm6Vi}!G>9!eM)e> z`HQi6w|rk#hAEDDzv+(;U~>OH=6wcKhSAyBomZP}+_Xt~rMjMkH3dT+U7Va1^XN_dc3dV_vk#VW^g4Wtw?gbtqEdkp679p;{o0 zuE~md^!Tx|y1IIp+0uPUcku_2&p^qpy-s%QePDd;R&|=FVfC>RmX;}!p@QZVID48G z)vZFyBM<87bX2e^eRQ-u8rxP2Hldl3#z#)kC{Y|jvi^HVGs@NLSzvix8Te_PHwCU?io&?@+ z*mJ;Ur`1iTh8+0o9Y!_fe)xo7&feWv$mh?k)+^q&a8FqCrxy1fpnj_xz!%<%ZQLYO z3AhdwF{V`)*UhmvR6i{`FaPGIkqa~uqFPVjalh4Q>fq#b4U&AZRZ$!N5N+Hi)4p~@ zoI{?oCX3ZX*(2C_Qw51jDQxoWL4<5XA z?p&01-bS#S7mSzt^A=HK6HMa}LobLXm^5rXdgk;`j;4vR0B44$;gfTb2<{Hs_WzwU-v4#;>86y zNS{|8cr>CT&}+H8?>2uu&FFEpvo*us|V5BYl6$|QFYeON9!-Pr&M;qcz)4sHnz523C@pb zH_~`f7p4?&vC6_{PpFzQlA6N{QO#?>Vp`kOma{e*Z$J;ey&C~)hQpIMZLL=2NzPjA zV58ojSiiemy*k%JR6l=lWNZ#<4GwKwQRD5Yu?}zeRLj zY2N(1k`<-}B0Nsa89uD^yx!{Y)7*QAyn1y5c7!sGHM3`Lgg>|L!lQ={Wx$8aYl5rd z)_y!+HtEG6Vs5v>vYKJ(Iyw0zqv+nA@@S5H|MtX5YWOqjd zZ?|>b)~FTfPtwwKpTBzbYVbsqc7Ht)LNMd80|lyws);N>_^~){;FBCe#0I+AD8_K@aShL1O0ooN6eiT?G*2l zxM3*Wv-6_Y?NQZS2a!?tdV}W*#qk%lVkS3=%G!@vE_xBquwK^yYSm9*;0O5QMrak} zzzq93z@e=WWZi*3=L9~!g(A9zmq2sM1dFZ#wMFZ=sWQ0;>`apJ0XH{no!rmU%7D#_ zGysIL7M?I|Y<$lW@l8C#H|pvJJzZ4{udEO~{>CQSDqh8f=*t;z^iPhRI(6!Ngr3+h z*`$E`YatTSKL^?uH3t&Z;a!Y2gX9>H?(Ng^Ztp3f<&N7 zsC$^c(e%u{2lP>Ov9#*ChHLu;1Y`nAst3Y@GIKr_#{?dphcbebwq$23GCVGxo{OQ&3J(-NR=OPH-U3F>`Kj5}&20gQl%Ypd zeKy#NPa5m^r)lEAff16Eenwj7exdarQTeN-FJhHYc2`vx&5e2UM%%-pZ@R>Z-5dHo zDV=w4xB^L5dTZh-@jh?yKScd&06mEeZ0qamI}Gk>clAEpsjR#Y$h58l5q$;^fkmL! zT}E}l`0f$W){v7fU+xzg~Mi_EC8nYO}Po_R(EA zxUqiFLMcLWN!uB0k7W^2goL(Uy#y2?1BrzY!gIlapA71>eS+2FO=_EZY9u~kuQdTk z5%6S09Bq4dfC}Lr%vz!rbqQBn9x)t~(KjyKeRn1{4Ij!8y~j;tiO*ZHBCmG92HhM~ zi}~+fZZJh8zKnc5bLe>SnQ&(@QobSlXrEp8;dQoOqRv&Gh@ZS3R(4e}LOXA^4$5DR zoQccufR^C_&GK5mN2#^sp3k3W&#q6ZN+P5Mh|N68i!(bLw#gc3wbpA}$8@e*{;o6a z8n%qvSFfNYMTzmYOe&lp8!#)|u15YauD-eL-Y?w0-g_lH#s8|8qU*<-};8;M4*PWA$P&xbZyr#QrI z`dXvZth^!Y*BbFAPY+V6zHQXLlKsyv$$39yca}Av+!(RgKjPZ zJ#9buy19$Fxw)-0s9f8P+~h;gl*;UL_HsLoKADDht`c_eu~4wd$zHBszPcMqj@6m; zoM=q#SbMSTUU>A1FIrL$Q#*gjoi8HtznFXTaIEvUe^@mw)3l7H(u$!%lw>J;O-M?% zkZhHZy$IQxshN~YvR_0C7s4fkE^E!yST8DD_R5yM2-$zH)A#=Uj{AA;; z_i=w`itGA(-phHuwo~8CYe2fEwLsos>z}-Hf?P9WgDs-yPQwuP;VHM4>w>7=qG>!k zK>-1nM1tukMg-A0^omqGY}|X!-y2KSx&OUHPhDyhvlVO4oIm!<0*f**hB(QOph5Nb zr-AAdg;qd#On&~<6RJ(v3=XNSD)O`!G)tuI0_zjz7a-gvQgGKPUMDx zMkzwcar#y#JbgC*oc|vGQT2X!c=$7i zCIe)Mh{Ei7j{sqSjjx)TjM4aP10EFw$XFkKn$4VXOW**`aIlnOIlU?_F1|X%bz$r5 zVJ-nWh|v)r86Rw+JCZ=iA6Kpnjf>lc&OZnsNjXZWb0`;>a!E-^&aiDA#o&cF)c3r% zc)6O3>rP*J^F|xFpQ*s-IK4yVAtHj1SqD6`t<_k?s~{|pQ~6UNhAF>;V=er3z@v5; zu_P5G0LLD1;a#(5Z+r-5&zs;*C&dPc>mg8e|hfSvthZ%lpi!Ai~pDqZl0&c z)U~v#T%#sB2j5d^GjcW~>%G$4vGZz02vAcPbubxd|qlE4Rd02nzsn(GrK`^5n8uwLv`9I&mca+w2)HCxosjA4i z^$TMx>hG+9|J!RY0-)Rp6gR`Q&w!v080$^xTmmkri^WE8Eg=p#2zD0-@`dA@+V!TL zO#h8G&uZ1x&#^zWYk)YKpS7@{E^;q!G`f6HIDQ=+4TYpy1E=^oggX#yJ%OwxX`X-g z?%jJ1pUi-7W)&Cf3&NHBu^7tDVYW-p^)sGp2f=*a<$`%Okd_HJRi(<|k9Qb(`&oE{ zLdyC#>KM0w_8tSBw!@6`R?MaTL>rvU zLGwtBJ@Q-_3*^)+pA|h$*gq-zern^|*HwAKh27H-d*A&w&}1n2iw$}hW^7KV+4XQ)z3d?+%G(oo-4u~Sj$&)t$5uyciG9wiHZ!Hpry1&2ri4!5zJo4UI{|p`js;c>mL^a5kTMH;?_2I=G1IWC+i@3Zanf>@$ z&SfcAguUthpQ+OOLE*uF(Xo?{TK~hx#-UDebDHO5cZ1>5J1f~%324mK=^y>{PE@Y@ zG$%m$JqlTaDDD8)pUS+Pci@|b=+1xqFt*)Tp*@fRV)zJxwP`?G8wcdZ@%ABc!5j(q zo%os2@VlR=YnrcGzZG2MX*}6VWhR=baM%wb!}M7uMu_8h+~?xFwm5xmZMIAp&!oi_ zYqVhB5N*K3(RzUNN7Whl!KD~0_>uj9i|69ADpzm=Y>yFUQvblfE}W8X8unLoZu2Rd z(Yw=|K>raIz$2b3owh_+ib>~{O=%yJ+O0@Yw zXKDZ(?m#QSw1jXfx9}PMFT)vk%KbG_9@f)sesi^WZE}@2cO{@jv@6@^)Ea^|NJRfh z$m`t2or()#2%rMvcL^ZVj)4c~A1Gj(JJTo{m>CmZ zWdQ}TzXuiW8~kl^xhb$HI@cs$(1h6xE6yfdG&h^tKLS-fV{0+?084L4vG{=^c$aOK zd`Hk*#nrc5EQ{7|XQ{)tfkXo+zTUp@7EBu&P!QN{3V9TA4=46@FoY&FVEoa=a zlyNEGXn!JGbP`$zq@I~8qfQk`e<`WZumds|X~`q#D)bOXmEnll4;+tccYT`bE^m6Ox;_yql?S-{6&HPZ+1)cWfk$|D@Mc{&5KN=UkuCDH}P69~+iYiY#XmsHhoixpPkS}EY_;#lQf@~Ph zxDK}~C@7dWIbZYe%B~H&{V(;*&7&JP^mw%&e&pavvuMU%0(Vy3E}kPRrVm&C<3V_qcn3yuAr2$j`T5Rk2fez8+_jtPoQlY{J-6 zU-KI(np^;SDXh6}Mr>$Di8cS(h8RvxI7hf`v-{)QMjFSDhXHgbgPZ7BIUv&xT&v+= zy1c}8-?8{J;dal#{}kj`lopR#{cs=+XV3XYFKD;W4Ym$Wj&&s-IP=fkk6fzy!0)9x zv7dUMIL)e?X&rmO#Wk3X8+GIU3lFTcF9FRXg5}fD(9p{gZS4z=NQ+i+qxU<;Zbfmf;mon=>gm_S(O(G8(Ehx2f%siK?F?8J&K9^9Dp=<(xD99#3U z34+SHCe^;TKHuzcOcd`7zTQ&W;f15lmB&bogA#- ztCGhsEt93&pO>Klf6(*8dQpR8jX6$3WBZ5yAy5qBs5o%33`-QBS*EU>`aX2_EcdYu zAHCWgpQXh7n zyvx_+vwNhyaGn)|-8-rb<6?smQX?-d^THor!R}(_jyWN&wd+uyV+`Z`2Lhl}F9#vvFmUd!+^sG#v#pmGI`oqOV57v@ zYe-OPepZ3{zpE0)?b-o-6>@egv+r|EoNPo)7p88jt!VV%;#TZK!&oGEdRjQ|eI zc>dk-xX5;t^|fMN5X8J{imDzEo~{tTOBX1Rh|Y)Sxn9ihB5FjFmR644`iHPp9v-<| zhNpHEDx&+md|Vq|qWy`-d4BKi-P5NGVB-g~Cmkqs-4VB$-*VvtfSUBx)&19SSA&3R z&0x=>8o&Swed#{RZSfcs>YfyMgbcn|>-)IYO!bPZstG8xbo8?@?>35x=?X_vjv`}>9K+4XpL^Ndv*D()0k zR7?zOUVucyuiWODcY6zJ&|as1!Xy|sVI`L>#Wx){6JuyHDCfIiaSPf!sex8px{wf5 zR-ak09^Wp_CK-~6iPkz4Q;7`*S+=z&?Cn!HqpQb(}sJ$YAeBI7d*5InkAfwRhM#ti=_v(co>fOgS*XLCW z>cZDh0qdi{lXgf&CDDt86timO;te2FVEkAfy|2x?`qLjn&<8VRd%_|klSm`-hA-B#r`8PR3!!$wgL6smoLY4-+pa z2{AQ^D9@Srpkj4LwX_UzEbC)>z|+g(s7`Ic^}7}Dx#tTB?ksbtU|{*`KUQ1G$yP#T z?d>4igjE#kp9m40^rg?*S(m?_jS{L1I7T&<4Y&?>9EqCxxZmJX(}o#|2d7<%zy7r6W=^Z;QT)~N!BMB?=MORR#VBB? z1Y?0Z{}%o|AGgYD+gJxkWf<9~z-2_uXczV%Z zGDbDiMV4DpFe-DkmIB@a?4*B4U~So#=6=>9YK42yB zpr@AF3CNwKajv|xFK=sW`OGw6-S+L#*`{vn;!M-au+^asSWVQ;ip3f1&j>olSSKp{q^Odw~OW= zl(_WV&$_CgLltFX!cItRNuxv0;dO<)z#~l7PPB8geqqMi(#%j)-veUz_C`rHTo_Iy zojO~9K8E zQA3wH*~$KTtainju+#jiGtIlH;s??E1Rjs7!9{+TFF$7$=SJ4o>+O@1Yy9-pi(SBw zvUvn@x4$tv>!-4@Lj2IwzDghW0-?t{pI|S6h_KCe$NaxeFXM(SJ}v z2S!61HHscoLnp9?aw3f6r}P0pjzZjUdD4N)ar1|S5MA2l;A=CyXdCDQfo08bX`f?f z3`A8ejF{OA0?*^DO9ATjd1)zv7;)$GGwC#!%Ws&MUcoiRxQ7 zCeyX^|6C*9s-xc*`}@a%YQeo^N$N$H?&Gqqy&>l;Esav@ftNNE`4!bX(Jx=5voOX5 zxp$@La5@p<8~oq_e^j3|1X83sC1h=_s6oYT?u9JsZDoPFP_O6w<-@@v$BsQanE>u; zFJaeE2`v@)fvf$?@bEo4{j#0fb_3kZ_V6`Ui9;X;b?4~fjQf?sm%(DUuG1yYOhcrz zho9^4edq!J$cWzn1rE%PD=cHKsd%xT(!GUloQ#*%}v5rDJZ8wj)mD- zD~sb4AlR3_U$ml^0mKeFKp3N<7a+S8_(hwBjCfO?n9&QJUVAehz5lnl2aOK>6@n{a zzd-fH4b?pX6nI7A>43eV?*6L??77~|LBrq z`2QB(9{4p3OZNI|zA&`@vVODq+qQ2f>^uZbDPmmW08Fk~w~ornm{sezJ}j`Vj1GbT z=P1Z{h~P9paKYK8j$eNwQTrfbC3k`1BmM~gb5rbpDt8s~{+rE?{?PybWWxW`Yy0Z| zTix>i>mTUKOGwlr$s+dk(tcrnB7r~)@5{Om@0q9Ew(HdGj+kBug>Er&>@5aj=xDI* z!FzKxpzoFTxexK*Ww~t~)vz5%`IUn&!GFuiPQyPwKele`)`1M4&TmLyjTmcqqA!}$ zpZTDv&?m1)@+XiA0OUO6wqfnWAt}~&QVaim^pg6OqjyDvMAxnD&=3~(CJ*cjS%{Q` z>4<;?pac%BZRo3kF2oT(3XX;ZfhV4vCmK5b z$QaU16WxWH_b_J4_CRlh|9O7_!Z!~{12jAFEj{)y{&s_6Ye2JD|iI zy>t==&ZF1|;KvT%;Zxp?QwI7(F#`7iQ4tD;=IqcD!?fM4trf0|9(?9EEaP+DzIH8S z^;Z`5118uDfr?Saxf_s72~>>|Jp#eoJrsO~=p=;jgB<fn(Hxl6e;peOgPW5!H=WR^PehQz6i9XzO`V0p zw-AG?N@po|5ZZH1QW&g09FhZ$sT3!YstPGNLy*<>ui!-*lm*>k5dd)Xo#HU1#u2G3 zm=0$mR3{kKzB|@$mJJ$7&9OBfCnw~6B*X1#W@jQ!+8DpO^olaqpPSgavq7Q{`5*8s z;##bYhG+%kHgpW4>Cdsd5bLk*?VT@XmVXlHff!)`=zU7DI!rd(b6dO;DGu1FrRg{L zBi->P1)lmUDyX{zFngsmvl3{5C6uLf7$==bx<{JZR^KTHI&rNo#3qy8fceq~(q#;k zRt_Jk4kL~ccYZWz0@sZzybCv-|;&0YXVm?=1TMDS-FZze?a`_Lx3h!%a%j;1KUFac1fdE|#126fya`&>(<18apan@Bm=CnOC(2p-Qql~do@Bisow1|hAY z%axqB7vIIxI}Km^+C4~ey9;j&v8vldMaw^pV+E{1MMMw@J{(EeQd&caBlf_!?D$hz zw!|;HUt9HJG3`Cn<)h%3U%}{LLq9fzj9fc~0zMv;I`54`D%e%qwu**s+Z3fKC?R5hM)Xm_~OPvug2y1(GPytJ!xU;ZR2fqqs$<)wxRv z*CTJ>1col`naPJ7jnvRfA1~nIcOp#>Zsl?a0mOW}hla#SS3#~`vT6Xdma*K83qbl;ih3?K@e090on70UcJ}Z%aQ2puQi5FD#-AJ!%fs6!kI?t`eC(44SeW^4;y|S~>%hG43MO zM*ES!I)HQ2TxBm66_p64IS)5+lPQ(=mUD5X*tO=fiDDSZMPo&*>t2h0SI|yVnE6)C zkVCz;*LV8zYSk4F9!y~N&@rB6WS_#HC z<9fc5eQ)Hh=*tpH@>u)=LlHA%5ei^< zSj%{>M2P`aMfrNH6Cr^w26Jbo#>3GX(YbXFh6@4;OVHvEguN`1UHUUHYf~uuKMeac zw&Q@6n(+oCVFc!o_Qit>U&qJi1w`1vOrt`;-m-8jTz|AsTRRS`3pkF&&edD?ziH2u zf8S0>JcMbCGBx&j=#ckRv*XaGa&B9|hIOQJZcZSF_h18>2h*m{IERr^U$bZK`hpjc zC85y)CO@j7+u{=D!U^}tBZUPUBSDJ~4@#gD42HMv1e^uiuzf3+{caF0Ny zSv#0Z*Dy}2zD@l7D>Ot1E7Y`nyv;#CfFc7RERHObRYp1SVGC4wnVnMohKU0S3b0?K+XENlmqU7@J4k5Zn%o;`0qK3|>;!3`DpuU@^vjfeAI zkb)5qn@GK0!au=)*-LTncAzbx9{`}wiv%;Tbl3xBBu-Sg}EdP6Lp?f92O145p5 zQSY0Fo<=E}+Fhh#L~nEi+zL8_qiCn&fHpb?NW&Y0WHq~;<2}{Iy@DdQc1)cN+Euh@ zn#d+nG(v8zj#33ms-rlv;z`bP(9@HaH#|fgXoO*S!{)>YiJK@BI_=``lWIKhuG(J_P025nQ?S1CXvChu)Q4hl(Vkza`JGIxqmjhE-eT)ZtCK zRD5PP8an`fJ3yERnn0yXEC7lH>ZW1NbiX_mbFXEolIOQXh)>G#1jv&@ua%B9Ov&N( z=z0LjV+no)JvbQUsb8Eg_5j6DQ8Mrq3MU;%;kJ4abb7N@R+;H&Fb`+ct`;rxqw0x9JK$RKl z5Ar2?bln`ZdNx}Wv~eI42lp2Cn!8%dxlW(QD0c>MbWuD=Ql_O!bTs>6MQfHr?q=u; z7(fL00!L2Z5#ZdjuEuc0=^?y4j#B10aFR!eht$_czaH>hBSiR2`hB#`Nw<=tku3aCSoK00qahLx%|`0P4DKBVN8_s8y7#??4ee+}dZACz z!O6nOQr-&1AdYjZAj8OU(b4=ZU!gLw%a+E-3U3E%JPF2tHxS+ReGx^)fPeZLivcR@ zqdp2rOH1QaJt90G1->3`VmF8CAQ=}>S$J3Co$c)wlJ1iz%k|Oj>uMwc60-A+ZTa`U z2s8+bmn>n7y~UFAcIrd_q>Y!IHDR=m+$y*So)rqV#lrMs(>sg9+oMhvI|;L+Bd}zi zZZe0Cuom4B5dgYnZg(65@w{z&p~D)l+%e z4eMYze(~WH3ZS7%W@dy?HWahHh`2714oa7K;e?vW!)!y@1RQ~h@MjqEyl$2)Z%U9*`%Gto4C>sx;R)(_)QNj4taRAG)QhyZL4->5QV(s} zx;3@8KFvvz7cxhHh%sqZc0hJ|aizHxTMvn*EwDHD84cz9B3fsLro$E_)hgdc_GaiF ztzsb(b8pNxm3<*@{l{e_*EE_`opOE-%Mmp2B6+h*2!O>Q^KNS!l3}EpJdhJSGGn%Y zOSodo#t#%yZPPmjBD;RTdR̞mw3BXdPrKPfF;%}da2eeFJPbc^<_*G_YA)RV2Y zztN4}E9&hP$}hxmlxs%rech$Gj$Pn9T*Fm_N1~6uyE+@yoogExt~Dl*e9fk1%a^}v z?y&4rZ1j5D3+(?1o?5O_Fcj^{c$OXPf$8kXw8BXZY`6;6Ns#|>?~qmE{MHuT8^edv zh;ws-;1xzFyWP0;3}kG=@muoFhmJh5h8IhdXVRW(pRW8vj-(t&M7b?@>1{7iIEKPL zC`sz47ID3(#T|6+tMZ%3?gO08=0M=vuV1}N#5ZZIU7ZNJA0H;%^kPqsd53qFQ(Nm< zV;1j+gneyOsAGrMX`!B}#bb1yX*Q8~Q58Dlr&tnN5?T=?Y9wIzhmOZjTrZx2!jcMP zt>Nxz%1OKaXrhX`>tHPRYn#3b6v19c`z^MPybuq+FC zJG~n{1I9gRQmM^3IgRTII52Y6JtC~pEv!n6^*O_#vQ{F(fNxeH0 z_pu4)XWGD$yf(-<)*UQL98M4ezN-qr7bZZ-HLqy`=S|eRGY*0344|J3rrPRNtFljt z@7l#VYlPGtDQt0+xq_H$ZNP`qqU)H)_m9`_k1y%pWAknsVt}8~y_gAO^QU(Y4lW|= zB!YVMNAgfQMw0RkwfOD;J2YC%SWNp9LBz+UhQjDhpd$WL`?ePf}#Y9773VSPL3p6*cBsJ@c zr1N23P zh+K+)K)A}WPTV%-q;{~|jBg!;RUTOebzIt7akFNTuUnOUP3WP5p?)J))!>M+Hx!#P zG6lKF;l^wSQL2gbK9%&q{~V0?c6I1WtUR#aNN-E|}A4W7g&|e+- z6PKJQjQ=ixxl>|QzUPcV@kveeA*Y`o$P07!w99v_;$zC=ef8q?#jfDVb%?8y9pWEu zll^66WEYCodoU1nc+Lun1LGynklqBP31I(uJ0a4+IvH*+K)mO}IxBu$9srjw?zli$ zAZnhaK)N??mc~2yJ~3far;IbY8D>K81usow!&&KrlkIX^cZ~H+d2OKi$a5aoeu~c!#7jsj`tllXD#!lR-GL(aD2c zd+{^Z-2iCujG8?zz-EwB9ON>G9VDT6F9+}27Gqs@;tI>0h1;QK-h_;LTpurt`6?@9Tr3Jl&QNiPXP#{P-WJ=Ssw3@+E zKJQ!PIcl4Q|CL7X$?+tWWRH8DSsn9gl@WO&nMRTjJ0yTjvHwcq9OEp=ul2-HfdRgI z@2xyx>03)^>d$lT%WnjoH3YuienqJs=(svpUnLh#wtfVNYfG&H0YLw+J+< zFe9r0C{fr#xYA4(=k~pAtzy~M|!vVl;65hV{Kr_4gY}l*!?@x|muz`_+ z(g)m>&&J!cnxO5Fo_gwbI9||1`f3|odA5zrv@|DH;GsQ5Q=(p7_fhXBk+AcTPw~J1 zJ^^TZ(mN+Lt0=!CI_O<}ef=kS1aA#1Up2?|ZneabTZaaGv6@z|Tq#{kwt0r4S2q0l z467M%5J_kkBFd<+#OuoXELa3#_4>@|!L}mv7JyglXZ*31C91|pFwo`XH=bC4M6Lk0 z0=_%5?0BPstiF)7T}&wes8Aw4xbgjlk0{=IVQtpNCHL(8EShaipFuRv2QoP@GIuaU zWqWb_GBzHlus%~&?vT^Myx|T&#h|`gUQ`ty88~bV^El3$8vN!nZchrHLonx zhaP{IRX4O}_t3gBUR#Jfe)P!szDGWWrmgp(EEs*buZ&Zof`T5xNb$H8(vfxR)>)2v zkD!?*M|3UvDCwpFbik~cNgS|7_T_KAwM61Ep)?WL#tEcw)Z!^U1gh;gTB=5`5i8CR zCuH__1$)k>u8Q&AJF`V*9U2`P4JD!Wf`)%^Q|!u$e%yXy-$E0T8H`Gy**2bE~_Vz2ZW{p+fY5aR8HT z#wSs|ygTOC3L}R?-+s9nw#TRS8#bJ;Kb;PJgzfHA;k%6MdKSF`u#)QG1pMq$@0h7H zN~?^>`XhTsetO&R<3+RT{y^~gdfk{i{AO!6rjtuGJsl6ic!{;!C$@gr2fIta+*fpY z<&d|`jN>6SWyN9)_-}eS2(YjPp2@D8*KN5%D_sjP*nw5#Gv&rn<%X&mIUo5Z<6mhV z3}|h(ywV0V`3!dx^dpv|zeP%S?fb1$%3~O{$;QJNNPH->s%UPuiRCGz6;m_q01WfA zi)n%E2V^EbF)H$#oAv0bL#f{jw4$a4N6ffAD=mi;VZIiJZe(rL(+m{CMnHSs*c!XN zR;4T#M)pv5x3#<1iQYPEL+B?oZvhzcV>PL(tG{XfW-&A_lt2u5@KI)5+;ekd2(I3FM2NDR&}T={8|j2FD+~}rbq21t32^c$tTvQvoOTlz zujWA%inu^~s_CMRvM#_mKrnPtbGCzVz~M#DbxC=RH5xKcr4zXV^j)f)Fjd3rI|KyC zR5y6|E%+H7?5TdUB52(n7gs z!3SgBZ<51JL0vrJZl85rW%*<=k#Qf?+|P2&0C817+?v@>H5aKDb7%0aj{vn8*=jE1 z%*S=*t?TDEF9oibkOVUlU*OgjSzUCw^GFb?`ch0u*@1%7*(L4{@r~Yy9K({%z%4M` z>NR8&=7SU5VCouKh38>bolcVPZ6 zy-o_}o|?mnI;_Szcf;hzFGQqY`8{&=m-5KV?=66eLSN5NFqd7L)?k6I(M{+S8lSpL zW7k(~6oAjGEHehZKgQ>nX4=Epz;Lh}L8K0zNMso)fT4stm4b0WJFxjAL-Snwm~5_4 zmoGZUG2}j+Ecz3GZOSEmtr@T=n)*#)@*{D8N%_`QyoP^S4r9g`+fuoU=cvoMmBVwaysg;X9<8RrYNZ z`1I!V7WX&7L$Z(H^kzimnt0qk_$p#%&b~v#L(nke4i?>(`9)`nZclI3s#SIRexOHT z!U$9_2O?6P)q;?s_XUG^5z?Jdlr@^>;9z4!mJ&Hg?M$t!%c`1k#N|OPeKIA}p-D#X z53+!x<*KP^LaZ-kDAh>veMj9Pg6ytyXd2v7``X(dM~?1MQZkc#P_~XJXKEmOlrkdQ zLNftChY#4{w=;tIJ%dl6vg&EfN>0kh&rXO@-&<5-UuDmT$%a9yx{6#|(f%35fWGX; zbAi9V4H?~G))kwO6@WnQ1IehS5a$-}feVMI&Nvhs!zcrdn^Q(`0hA$6W1z7x&-pH% zFJ;3W>jXJCfdYJ29f=i~X)Oq*A^VK!lrZc(IGl?IBbqI-pBcjxyaVmzw_|&be?o}K z#FWsE9c7r)?VOqkBQQs7iF=D{c#B_C{xtM~%vdzS;v_lOSMI(oCLn;L!fpSKk>&|h zGtcrIeZ_k}e^eg~1_r{uycT*SRMgM%e9a`C8_8B&ed||f;fRxt>chZIRlPbFUnckk zk4m#39vor^4$|=IQgF|mC`og?1g;UaM8;ASRC@*IxvBc>czM+?ifprByaq;MVU z&xk68QOv70YPPrB<~gi*xU*jwSvVTN`pd^GU(Nc-ILGG$K~rP>aCr&AXD@*JNOyL0 zoLj9r91FK+63T4TJ|-k-0LYG6;#KAG7KL&kJeO40P)RW}`6WGCzpByRTbA!-6I3AJ zH-f+zMJRRSx=Aj*Q0WQu&y927vlu>SDC*?A`YKtwX#YO>=*sV6Bz6FN6hhG#pa!COOZ=DMF{FKZpg&21WJ_~jaY4d-$0 zs8WofN?Y5Dw?n^Av_HLlp?@(r{2y1X3L^#!!!k|t`abu#6UfQPXx;dn?$d+ z^akI>2e5oTo3?GOn0leMZG5~9;BK@3kC56I6-dNz9jUZH8 z#5AxZZ6d0~?zvn^SNz6uy3@RrOZzTFE=OQ?65$ay3qdbb{`_M5{CQfrKg(;}ks59y zbv1)}tC2vHXEjuA6>~JA8)XS_ZN}yljOiBdsZ9Mad$r8 z2Gj_20qg5GV25@X5wbpfs;Mg2z{_TgzJ8yp>NxbJ0E8p$_?!i_5w{ERPQJYs+ z0HH8I_lPp!#I-ZRPw+kM%D|-<)Z0PVX{D`IdC;T5dDUcj;rVXtlE`-r`DVmNqj5bk z2o$$aE_K3ENn1p`D^r1?^?JzuPV<6H=(XvprFgSe&%Rv~*s-11d*EjhBX72Z;fCn& zYV(lLngyU_IePAZqxi_-V^PY^P3WL<8`WvufInbnv=)!t{5-XL|D@uc$?hMqOGqwC z7Z|_|3XWzK*Al0N8gk&2p-6mWK@RXP%4jo9Zw$T~t>kk`uWo98QnaMg=07JES4}r} zoK>O3ScSjra68Lb|E26TmV)b_kLirVH(F-H2)+@+w+p5$rhM_9p>8>bMKoB5;LPss z^z(y`<(`whUHgn0yfV*bqZVi>4#W~MVmrqtMH>zVOa6;;yQeaJv{1;ULkSw4MBG9| z>U*HRKL@~!TJpaodApp(Q0(p0#CkzEvR|ZeM*b?Q2Pfz+*sP)f9 z;exnrBI4emam52gg` z{0-IWiAvev8*~Jro7e2@-==I_X(a1h`T2~}3nyTPjHJHN%Gr;?itZIB+k00f#*E#q zMhE&U7=$piJ@Rc+Zk_GdM}6!2KUOTr?Q&mbsqER9=-e8*j+ZwkO+I1E#O}{Cyb-IH z)l6N!1QppMU;<=?l1{@aEQRZn1Pb#{3$;8Aq|F^!sOVFPiilG2l2WW?`t8R$_`7(1 z|28P3e35;s@+W?ruM>qORw|^+XHJ7#GBS0dD6fD*T!wC^R;X1-Y;h=_NPT==kR3QN zl{tRVSGMQAs|A!OjL1F1i~F>w+u$ND;T44LVqW|(9nPqrDDRe< z0^^FCIRJbpT0voLyo2YI9yG0t29Eto?ahc{$scR9TR#&3r6zS=WbdXmnFPV80!Dq2 zjVW-&`O+cjzi3B?NdX-r)e{nF!I>l0EHq-nxCSE2(Ax%6Dq%_L9gDG)3n+JpmDVh<$E8o1JyFa* zW%#~W&pu~8ICvBFEG6_4?9Ie8zk>~c0tZQP3*h^;g@@O-&mS*Tj9qwb z>Ln{KC10i>Q99st<_BDd`(~O+b`Ti-<%baqL*IMGc#{lNV0r!NnQ9dWE5g&GscI($jK}*jJ6-H7y;10vZUIInTx|C@3=mci{n^%l=Y_irQ%>sOdO9W>7t>rk zz3`YLPmu!~2qbINrP8bwlhzgL#fg^tca8fi>-lRl0{E{MCOGe=YT2d%zf)mDkSmT! z4G~U-ZkOy`HW<8eU?Ze7Ak!!*e(W2c9YGIenLY?UpcAEAI6kK#uC)Zw-R`G=>cRB* za=wQ^1ktg-R&2ayy~;u<>1y(Z^f@O;gk0xK>xIpTe&;%U8ZYVHGaEh5V@p4z?`ak{ zmQ={UnTWKK$G@m|=sE#o97#t>LgFu@Q$CS7A?8h$9`Y-y`~4agO_RC|S_H||dI$|# z^bQ>A0}vU6)0$C6{zO70S$R&*N_#76EBFo@z%WeJK+{+(&&a_-pvR-f_}xk(pG{0n zm7{$dgrvqI=J~pigSB8=>V7;8Wk7YyB&+OT#Zbt;v|t{^i?WQX@4bGdeu25bS3~58 zy84A))y-O)K?%{h#EfjQ<}l(*Q#pL9Ag4DZ47Mp0FI%>Zw2$(xe4et6cT`PA_NPYU z=-Uq07(^0y;i{ruOJl=!>TBr940Sghs!}C^$@$&hjV>-oU5Y;z`w{2VHZb#50pDah zyA?YPVyW(Vk1X<&k}t$XM24jG~0+z6XDiRe`v zM;GCZ3W1ghr78))pGt?p?mdu;*H?@4v)WGcE}g3liqBxE!jVpOeu?8batxa42~=^DcsH4m!~_M_Tw zF63fHsQ_)4lwOvxSA}DxWkco|0us$6tD`4Y{QhPLoLx-_j!=j3nnr*p&Z_DLsCPB> zl#tcjH0BTpotjMd%8<{;a~T zV9P}{s*Q=QYk;+BC))8#y|cF?EKXp91qb#x6bqdFdQ!@;By!%Ndpt(L#t@BTTlRO0TYTf^(Y>LqVD9d$FP}?qU_Mb8W-;?+XYpOICPH} z51u;(8A^S~K!Nsph)E_YwD1-Cx)SlnnhIDGlf;Cg!t69E_GW&^kytx815c;ibi~1t zstlkrs~kWCK29I=uRtS~+}G9b-q+(|jms6L{%=di=P)r`02qy1np4ct{q3ca=q)mU z!~{G~k@&4hsk`uT z$&m_4c$9So8W%=}pxy|NTGx+H3nb;xjoR_XpI&`YZy$QGhE=*kN_3X^& z@}no^9SEw`+f2R#(B0J_=>Uz@4`ypk1uiW9EQx z9^cocXnin)^|&V6dtz87Ryf$DYY=2<-qbigcHSW^Q%p?`Mjg|b<%s&Y0ue-+6$*2u zY0xZa5Q}MPoawUhp?U0x+|`%_HKHJ){ID9Iyi;h19`Qe$^BjQr53=)Shts5eFFuAK zd7|RQm`h~@M)Eu`tx7&mE&?lvQf|+O-R4!4tMY^*q-MoJlN`tUR!i|`??9k>iN8(QVhgC~sZV;$ixo?TC%1_^3U&{2Tay0@_? zxdr4jV;DkAg|#;vWD`sSZ{Ez9RA2E}qG(aww967Mu7CHPEBTr8X9TuOIRtzIPvmh$ zXnNqp(IrpuC~`zZ;Au}tiUxd&VPDyHe59CT1!xNhKu{?;6Ah&xx{1onN}Q#gxLE75 z0wF({=RjR-`Q9&M-@_?Q)jHD|1oyFsJqLrQMnNt>!0`FrOyK5y$6W;9f==jvV=rEL z+V^)ySTWok5Q4*SxMiDMeHN9EslY#^0+Ee7F=NG!W+U4R0w9E69XyLTN~Rv?9N+!;K@#dT{3qA%Brojg6x+0}&$ zjnX6Q#L5TeOe>XgbTvQS@Zq= zacPU*gE>HNm8;$|ampS=Lh`Xr;5Venqe*KreZuiXLoo6Lk-;IYcddIzH-90pXWKQc zv~V(GCSGJVFIm#H7WM{|SIlAj6ii`w%gR+f2y9QPlcX~^_Ji#1qXhU3%DRVM=CEzN z3E|mwDlU1JQk6Xv#-M`}rY4XTkWPt?V6{vo-*Aj@1IEj;pQ7VQ82X1BtC$gKv;6OV zAAv_6VwbhG@3vg^!uYR?5Wl}WyZ#%X(k|JbCQictGUW_$#GUu+;Q+P7^}%$82KXCFVAwWUcJk=$s!hCI zRB)F|@rWYZrh~{slZrjzSj@EA4@nAq=KlHT2c@N8xzCJOtR%Aqbqy!5BbmtMs_%N7 zmzj~#0hxLzR>n>L_cPzqqh-w@IhM+F?CM0ITXl#sh9Y<%WZAwehFA!)#Gnk{>Zx$5 zviYz|f8m=Ym<~hEDkOAmgLaFYLdcVItJlO-3n~k+kK&AGp<`-HL2QsO0{kfN@;|yL zoZ~0!Zy9CxLs@_rzON?r1lD#ESt;fP|7D6&j2l$I!l=< z<|IQR-3u007c4*YR8Yvl#HHZ_Qs@a}T2kD;;&`+f6c5?%JlLBwf8JhTwo`>YxSN`H5>HZ@F()zYmO?>np7xni2FZ< z2~VdGkl%%Xa?60pJKn9BnO0w;j9^aIqz9JN9jht0<=+*DB>Ym_Kq{8m`k(V8b@Es}R_ho_iaWM(d+pB-rsm5DDe4 zukS-Ckc74@5$Kjd3sS~+V(wL2Y%oT~e?D_lR7{Kx{LfE{EX&si$guyncE)QrtlqVw zM7xtd&$Vej3ZR`T;&sM!>5q<w=~ZH z;>UQER|46Pzjo)w0ytT>c5PfzHQ3!O@Le2FEJ0hGX3WCOq9XF?-(&gKqU7486o7l= z33i%shm(eg>-6`Fqd@Ev0aJA6&H%mBheVa*hU4Xl64XU>CBe(C>FsL0DN<&0rF+Kgo)fHJRd$F^;W&~zD17f>$LD4qgU zf5|BBlIR>GLBO{u)C9=i&r>K;#+TlSEc9oU;Ic0j6+wk&^a{1UD<)WNn_oGo67?zO z6<+;=lq+(>e|T)n02TLzLYHsR-Pb9q3MMPp;+0%iL?g#-AO&FoQA{N^4hb8w$*$=C zYEk!qZa{v*%1t4Cv$$Ix(xXYzgYY8@=V>TN4j0wa1pul`xoIA^+esG;;GSu+eJTqXn^8j_ z5s*`tvYDIvA)%s_?*?9cr)E)WV_Vr;2jwrF!#8(JaqR(+9`R6BJ2|qNEs; zy0`Pf7s(*1UguS5>hs>83T)Jx(mf zw@evqYb-xC{JEst6lJPIOK$Di52lDZg%JWo0bBJq?k!tVNb@t5NnxUiBS z(fW+9U|&0?acM#4Q8qYch;8i(Aqi(3LjL03Y=BP>lkEC-BsL>|AsM2uzOvUu90fF6 zgR*fO7{Uq3P#DLzsNX6H@w-)Pf`lKsoMbGCM05|y0FavU3;6|TjrZbdc?`Nh#9+_| zS&{+l5WlIasv3Q}fzs_kvevm-%zCMaT<`M_FykoJ&`J4lUNm&*^PF7xfC*KYgLgcE zAEb|^po4-`4Hfe=anF1H39$19!FfA>e3m#t()@gI}CR z40X1ANT^A@RuWSsl$UDdcidAs3f-cO6+3gZOjLFj#pnrie#4`tXtN^9m)t}IimlZ_ z5~8@)x_1KGylOeR>YaX>>_&sCkv@TQIiJ7Mh7zU*-JYF9W^}3{nz|ZNyZfxpUh=(RWRs-Tt=hkNd3=XvM)}V$|SeN?XvAZ0GIhxC( z;r$_9G(U(>3J*Vutv~PtpoA>D{f<1%)Vm7|xf~oGMVqr$%3KF}T#g#@+^1JJ5L14} zr2u>w{n>L+(+(rlzRS)WO@HP|9CtbFlo&Q5b#!rD3ebF-4hUC*5e4+)^5v8l+S0W1 z7NNZ4d_xQ0U?PO{NEF2)q4nhXI}=4#S>Uw^V!nSKNG7DIde~ACEB;$xN_&` zKS5v>(%mKj)i#AG$NG##Qd~VcuHdxqBS^64r_LY=viP%jgg1|l#TVmCkdS3w>7uaV zwhsn_i4(SyG!0AZ&76IvmUuq7IL*sYdQk7i?$V@m87P#*&j<>n z5=kd96kfM@6;FW;4eIlR>YJRd$Oj9!wN>7Ll=$HC$cEV|UpMUual2F}DS&Vdw`9-Z zEG066&O;#FXAK?AaI$*9e`JZ@NmFkUilqSlqM!}@*56QVW&RxgBXR_n;T(JoIdzXj zM;C5hna;B~UkN2L9mT~4Ak99ABJ!cThzD9k!7DJ2qQ_siQR@6%w9BhAz-L3&e+Lds zWV4+pg0RvcX9|rh!xvnR2o41jJb_E$7ccmBk7j;pgzw&kZ>I}Wj7?i%0fE%cXrswq zq3X?kecll_Br_JCF6(iR?Oa^VN%X7{piJuDe4K8?q#`6HGuaUbPX|797^RR~$NKER zs&N}~2UkR)2I?p@?OD~B^FWd3=kOwr%XXVX@=JlV6c3DR{H*JJiXQ?!OBUmIAi+#> z#-VvG!T(3CE08>n!nis7e-u4U6F2FZ-NZhRai#1rTpxbt$bF1ua1^BpWrsV|A0Rk_ z7B@w_H7=#xB(alE4}j2}@*X$8|JCgF`?;JyO-k3W@t@N_{8s`G*ByE2^ru0cll}v_ zJ|QR^$##f1X_}IWDiB27w@VS5KraM?x+Av=F1Mp3lR*thvuv=zhA&;d5DX@g#E`TV zfG*8XCm@|aa+uFF9fVkfl9ZegTF8b-8DT_6P)Nt4h|)!YM`Owc4_=#~prIt3%-z}KqImdbDe_V%|Ee*j z4?tl=KLX|q7Cwo}7PUJopV4zw$4)~==5qomqYM|(**3625X#5JMPr(h(g@F-@U zVvlf1eSBLqidudbZmRV`#yoZ715Mo-KA`(F0bGMeJF23BoB#o8CQ=|ULB9@SF>(kvc}$*cb5r;lSmA+nJyUJ;^NvLtg8V!TaYwc|K&Y~-AMnB zKmOPzB}H@d$oor~?+N`wxTi9Z1whXaG9?W{VsRDFK#BzWHU^St=@db<(W@Fh;(F0b zbWLrs!#dcapiF;5$Is)$X?QkB$37}&)%F8N|?=<>l5HgLg4BuH2cnW@{RsBEW;o+rl8@H6`eJCoD!)f*0S5;vv(s z)ti6-5ouIEuU7j3f737*K8t)DO!J7B0!kX*TgyDDZ(|l$15H1UQaIdtYr*RDd1V8( z9n%>XX`EAAA;T3Vfe?0(L?{A(((L%|ymF^-9v~~y<+#lwtqTmzJYGLbL+;oS6egDj zpv&j_lZUPQ@-Rz&jZ(LS6-m=H$!n`jo@K@)$zvfJBC?o;Bw0xoR!lKXQJS@cWWi7( zWyYgOUZt3+k;g)bLMguwiEL%%EKkk7XYRe{|3BwD-~ap29GstG?j|N3Y`+lq=a8#5 z4AuW%;iiCFUHn1D}4ludC4aIDBqlf-3%H<_Po zI&E4XH12peD!uEv+$|Ip2prB!t_=cvYj%hx#rAAO5b8BSqgr}xUTakcm(T&UVTf`< z+A3DG3;pUk`YnH7G&KR!K5b!uTK+3VE z>`^JG<|~tU&hpd6_(XiPOVb+Ur+bDn2eVdbD%%Ih39kiQ7I*=)%gKEcUrpH&+f>MK~0!r3^7=(&-Hp~-+U0MA| z1BoAo4<8v@Wsf@}&D?47IVI%tt;Mc?4)>$~_uP~JT!rlGKkJM7Y3KYupzlxUC3U0K T)YcwreNw-zw4!9X$l3o2@OM4h diff --git a/article/julia-env/Manifest.toml b/article/julia-env/Manifest.toml index 1a7f5c6..90c14db 100644 --- a/article/julia-env/Manifest.toml +++ b/article/julia-env/Manifest.toml @@ -1,20 +1,49 @@ # This file is machine-generated - editing it directly is not advised -julia_version = "1.8.2" +julia_version = "1.10.3" manifest_format = "2.0" -project_hash = "d4a65fa13e61613f2f9a89d8657a95e3caf2bbb4" +project_hash = "3c45196063929e990fa2f17235278d5ce82da0b9" -[[deps.AbstractFFTs]] -deps = ["ChainRulesCore", "LinearAlgebra"] -git-tree-sha1 = "69f7020bd72f069c219b5e8c236c1fa90d2cb409" -uuid = "621f4979-c628-5d54-868e-fcf4e3e8185c" +[[deps.ADTypes]] +git-tree-sha1 = "daf26bbdec60d9ca1c0003b70f389d821ddb4224" +uuid = "47edcb42-4c32-4615-8424-f2b9edc5f35b" version = "1.2.1" +weakdeps = ["ChainRulesCore", "EnzymeCore"] + + [deps.ADTypes.extensions] + ADTypesChainRulesCoreExt = "ChainRulesCore" + ADTypesEnzymeCoreExt = "EnzymeCore" + +[[deps.Accessors]] +deps = ["CompositionsBase", "ConstructionBase", "Dates", "InverseFunctions", "LinearAlgebra", "MacroTools", "Markdown", "Test"] +git-tree-sha1 = "c0d491ef0b135fd7d63cbc6404286bc633329425" +uuid = "7d9f7c33-5ae7-4f3b-8dc6-eff91059b697" +version = "0.1.36" + + [deps.Accessors.extensions] + AccessorsAxisKeysExt = "AxisKeys" + AccessorsIntervalSetsExt = "IntervalSets" + AccessorsStaticArraysExt = "StaticArrays" + AccessorsStructArraysExt = "StructArrays" + AccessorsUnitfulExt = "Unitful" + + [deps.Accessors.weakdeps] + AxisKeys = "94b1ba4f-4ee9-5380-92f1-94cde586c3c5" + IntervalSets = "8197267c-284f-5f27-9208-e0e47529a953" + Requires = "ae029012-a4dd-5104-9daa-d747884805df" + StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" + StructArrays = "09ab397b-f2b6-538f-b94a-2f83cf4a842a" + Unitful = "1986cc42-f94f-5a68-af5c-568840ba703d" [[deps.Adapt]] -deps = ["LinearAlgebra"] -git-tree-sha1 = "195c5505521008abea5aee4f96930717958eac6f" +deps = ["LinearAlgebra", "Requires"] +git-tree-sha1 = "6a55b747d1812e699320963ffde36f1ebdda4099" uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" -version = "3.4.0" +version = "4.0.4" +weakdeps = ["StaticArrays"] + + [deps.Adapt.extensions] + AdaptStaticArraysExt = "StaticArrays" [[deps.ArgTools]] uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f" @@ -22,110 +51,98 @@ version = "1.1.1" [[deps.ArnoldiMethod]] deps = ["LinearAlgebra", "Random", "StaticArrays"] -git-tree-sha1 = "62e51b39331de8911e4a7ff6f5aaf38a5f4cc0ae" +git-tree-sha1 = "d57bd3762d308bded22c3b82d033bff85f6195c6" uuid = "ec485272-7323-5ecc-a04f-4719b315124d" -version = "0.2.0" +version = "0.4.0" [[deps.ArrayInterface]] -deps = ["ArrayInterfaceCore", "Compat", "IfElse", "LinearAlgebra", "Static"] -git-tree-sha1 = "d6173480145eb632d6571c148d94b9d3d773820e" +deps = ["Adapt", "LinearAlgebra", "SparseArrays", "SuiteSparse"] +git-tree-sha1 = "133a240faec6e074e07c31ee75619c90544179cf" uuid = "4fba245c-0d91-5ea0-9b3e-6abc04ee57a9" -version = "6.0.23" - -[[deps.ArrayInterfaceCore]] -deps = ["LinearAlgebra", "SparseArrays", "SuiteSparse"] -git-tree-sha1 = "e6cba4aadba7e8a7574ab2ba2fcfb307b4c4b02a" -uuid = "30b0a656-2188-435a-8636-2ec0e6a096e2" -version = "0.1.23" - -[[deps.ArrayInterfaceGPUArrays]] -deps = ["Adapt", "ArrayInterfaceCore", "GPUArraysCore", "LinearAlgebra"] -git-tree-sha1 = "fc114f550b93d4c79632c2ada2924635aabfa5ed" -uuid = "6ba088a2-8465-4c0a-af30-387133b534db" -version = "0.2.2" - -[[deps.ArrayInterfaceOffsetArrays]] -deps = ["ArrayInterface", "OffsetArrays", "Static"] -git-tree-sha1 = "c49f6bad95a30defff7c637731f00934c7289c50" -uuid = "015c0d05-e682-4f19-8f0a-679ce4c54826" -version = "0.1.6" - -[[deps.ArrayInterfaceStaticArrays]] -deps = ["Adapt", "ArrayInterface", "ArrayInterfaceStaticArraysCore", "LinearAlgebra", "Static", "StaticArrays"] -git-tree-sha1 = "efb000a9f643f018d5154e56814e338b5746c560" -uuid = "b0d46f97-bff5-4637-a19a-dd75974142cd" -version = "0.1.4" - -[[deps.ArrayInterfaceStaticArraysCore]] -deps = ["Adapt", "ArrayInterfaceCore", "LinearAlgebra", "StaticArraysCore"] -git-tree-sha1 = "93c8ba53d8d26e124a5a8d4ec914c3a16e6a0970" -uuid = "dd5226c6-a4d4-4bc7-8575-46859f9c95b9" -version = "0.1.3" +version = "7.10.0" + + [deps.ArrayInterface.extensions] + ArrayInterfaceBandedMatricesExt = "BandedMatrices" + ArrayInterfaceBlockBandedMatricesExt = "BlockBandedMatrices" + ArrayInterfaceCUDAExt = "CUDA" + ArrayInterfaceCUDSSExt = "CUDSS" + ArrayInterfaceChainRulesExt = "ChainRules" + ArrayInterfaceGPUArraysCoreExt = "GPUArraysCore" + ArrayInterfaceReverseDiffExt = "ReverseDiff" + ArrayInterfaceStaticArraysCoreExt = "StaticArraysCore" + ArrayInterfaceTrackerExt = "Tracker" + + [deps.ArrayInterface.weakdeps] + BandedMatrices = "aae01518-5342-5314-be14-df237901396f" + BlockBandedMatrices = "ffab5731-97b5-5995-9138-79e8c1846df0" + CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba" + CUDSS = "45b445bb-4962-46a0-9369-b4df9d0f772e" + ChainRules = "082447d4-558c-5d27-93f4-14fc19e9eca2" + GPUArraysCore = "46192b85-c4d5-4398-a991-12ede77f4527" + ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" + StaticArraysCore = "1e83bf80-4336-4d27-bf5d-d5a4f845583c" + Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" + +[[deps.ArrayLayouts]] +deps = ["FillArrays", "LinearAlgebra"] +git-tree-sha1 = "29649b61e0313db0a7ad5ecf41210e4e85aea234" +uuid = "4c555306-a7a7-4459-81d9-ec55ddd5c99a" +version = "1.9.3" +weakdeps = ["SparseArrays"] + + [deps.ArrayLayouts.extensions] + ArrayLayoutsSparseArraysExt = "SparseArrays" [[deps.Artifacts]] uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33" -[[deps.AxisAlgorithms]] -deps = ["LinearAlgebra", "Random", "SparseArrays", "WoodburyMatrices"] -git-tree-sha1 = "66771c8d21c8ff5e3a93379480a2307ac36863f7" -uuid = "13072b0f-2c55-5437-9ae7-d433b7a33950" -version = "1.0.1" - [[deps.Base64]] uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" [[deps.BitTwiddlingConvenienceFunctions]] deps = ["Static"] -git-tree-sha1 = "eaee37f76339077f86679787a71990c4e465477f" +git-tree-sha1 = "0c5f81f47bbbcf4aea7b2959135713459170798b" uuid = "62783981-4cbd-42fc-bca8-16325de8dc4b" -version = "0.1.4" +version = "0.1.5" [[deps.CPUSummary]] -deps = ["CpuId", "IfElse", "Static"] -git-tree-sha1 = "9bdd5aceea9fa109073ace6b430a24839d79315e" +deps = ["CpuId", "IfElse", "PrecompileTools", "Static"] +git-tree-sha1 = "585a387a490f1c4bd88be67eea15b93da5e85db7" uuid = "2a0fbf3d-bb9c-48f3-b0a9-814d99fd7ab9" -version = "0.1.27" +version = "0.2.5" [[deps.CSV]] -deps = ["CodecZlib", "Dates", "FilePathsBase", "InlineStrings", "Mmap", "Parsers", "PooledArrays", "SentinelArrays", "SnoopPrecompile", "Tables", "Unicode", "WeakRefStrings"] -git-tree-sha1 = "76c8d77a76c564bbc39ae351c075ef3cafceef83" +deps = ["CodecZlib", "Dates", "FilePathsBase", "InlineStrings", "Mmap", "Parsers", "PooledArrays", "PrecompileTools", "SentinelArrays", "Tables", "Unicode", "WeakRefStrings", "WorkerUtilities"] +git-tree-sha1 = "6c834533dc1fabd820c1db03c839bf97e45a3fab" uuid = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b" -version = "0.10.6" - -[[deps.Calculus]] -deps = ["LinearAlgebra"] -git-tree-sha1 = "f641eb0a4f00c343bbc32346e1217b86f3ce9dad" -uuid = "49dc2e85-a5d0-5ad3-a950-438e2897f1b9" -version = "0.5.1" +version = "0.10.14" [[deps.ChainRulesCore]] -deps = ["Compat", "LinearAlgebra", "SparseArrays"] -git-tree-sha1 = "e7ff6cadf743c098e08fca25c91103ee4303c9bb" +deps = ["Compat", "LinearAlgebra"] +git-tree-sha1 = "575cd02e080939a33b6df6c5853d14924c08e35b" uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" -version = "1.15.6" +version = "1.23.0" +weakdeps = ["SparseArrays"] -[[deps.ChangesOfVariables]] -deps = ["ChainRulesCore", "LinearAlgebra", "Test"] -git-tree-sha1 = "38f7a08f19d8810338d4f5085211c7dfa5d5bdd8" -uuid = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0" -version = "0.1.4" + [deps.ChainRulesCore.extensions] + ChainRulesCoreSparseArraysExt = "SparseArrays" [[deps.CloseOpenIntervals]] -deps = ["ArrayInterface", "Static"] -git-tree-sha1 = "5522c338564580adf5d58d91e43a55db0fa5fb39" +deps = ["Static", "StaticArrayInterface"] +git-tree-sha1 = "70232f82ffaab9dc52585e0dd043b5e0c6b714f1" uuid = "fb6a15b2-703c-40df-9091-08a04967cfa9" -version = "0.1.10" +version = "0.1.12" [[deps.CodecZlib]] deps = ["TranscodingStreams", "Zlib_jll"] -git-tree-sha1 = "ded953804d019afa9a3f98981d99b33e3db7b6da" +git-tree-sha1 = "59939d8a997469ee05c4b4944560a820f9ba0d73" uuid = "944b1d66-785c-5afd-91f1-9de20f533193" -version = "0.7.0" +version = "0.7.4" [[deps.CommonSolve]] -git-tree-sha1 = "9441451ee712d1aec22edad62db1a9af3dc8d852" +git-tree-sha1 = "0eee5eb66b1cf62cd6ad1b460238e60e4b09400c" uuid = "38540f10-b2f7-11e9-35d8-d573e4eb0ff2" -version = "0.2.3" +version = "0.2.4" [[deps.CommonSubexpressions]] deps = ["MacroTools", "Test"] @@ -134,21 +151,47 @@ uuid = "bbf7d656-a473-5ed7-a52c-81e309532950" version = "0.3.0" [[deps.Compat]] -deps = ["Dates", "LinearAlgebra", "UUIDs"] -git-tree-sha1 = "3ca828fe1b75fa84b021a7860bd039eaea84d2f2" +deps = ["TOML", "UUIDs"] +git-tree-sha1 = "b1c55339b7c6c350ee89f2c1604299660525b248" uuid = "34da2185-b29b-5c13-b0c7-acf172513d20" -version = "4.3.0" +version = "4.15.0" +weakdeps = ["Dates", "LinearAlgebra"] + + [deps.Compat.extensions] + CompatLinearAlgebraExt = "LinearAlgebra" [[deps.CompilerSupportLibraries_jll]] deps = ["Artifacts", "Libdl"] uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae" -version = "0.5.2+0" +version = "1.1.1+0" + +[[deps.CompositionsBase]] +git-tree-sha1 = "802bb88cd69dfd1509f6670416bd4434015693ad" +uuid = "a33af91c-f02d-484b-be07-31d278c5ca2b" +version = "0.1.2" +weakdeps = ["InverseFunctions"] + + [deps.CompositionsBase.extensions] + CompositionsBaseInverseFunctionsExt = "InverseFunctions" + +[[deps.ConcreteStructs]] +git-tree-sha1 = "f749037478283d372048690eb3b5f92a79432b34" +uuid = "2569d6c7-a4a2-43d3-a901-331e8e4be471" +version = "0.2.3" [[deps.ConstructionBase]] deps = ["LinearAlgebra"] -git-tree-sha1 = "fb21ddd70a051d882a1686a5a550990bbe371a95" +git-tree-sha1 = "260fd2400ed2dab602a7c15cf10c1933c59930a2" uuid = "187b0558-2788-49d3-abe0-74a17ed4e7c9" -version = "1.4.1" +version = "1.5.5" + + [deps.ConstructionBase.extensions] + ConstructionBaseIntervalSetsExt = "IntervalSets" + ConstructionBaseStaticArraysExt = "StaticArrays" + + [deps.ConstructionBase.weakdeps] + IntervalSets = "8197267c-284f-5f27-9208-e0e47529a953" + StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" [[deps.CpuId]] deps = ["Markdown"] @@ -162,21 +205,21 @@ uuid = "a8cc5b0e-0ffa-5ad4-8c14-923d3ee1735f" version = "4.1.1" [[deps.DataAPI]] -git-tree-sha1 = "46d2680e618f8abd007bce0c3026cb0c4a8f2032" +git-tree-sha1 = "abe83f3a2f1b857aac70ef8b269080af17764bbe" uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a" -version = "1.12.0" +version = "1.16.0" [[deps.DataFrames]] -deps = ["Compat", "DataAPI", "Future", "InvertedIndices", "IteratorInterfaceExtensions", "LinearAlgebra", "Markdown", "Missings", "PooledArrays", "PrettyTables", "Printf", "REPL", "Random", "Reexport", "SnoopPrecompile", "SortingAlgorithms", "Statistics", "TableTraits", "Tables", "Unicode"] -git-tree-sha1 = "558078b0b78278683a7445c626ee78c86b9bb000" +deps = ["Compat", "DataAPI", "DataStructures", "Future", "InlineStrings", "InvertedIndices", "IteratorInterfaceExtensions", "LinearAlgebra", "Markdown", "Missings", "PooledArrays", "PrecompileTools", "PrettyTables", "Printf", "REPL", "Random", "Reexport", "SentinelArrays", "SortingAlgorithms", "Statistics", "TableTraits", "Tables", "Unicode"] +git-tree-sha1 = "04c738083f29f86e62c8afc341f0967d8717bdb8" uuid = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0" -version = "1.4.1" +version = "1.6.1" [[deps.DataStructures]] deps = ["Compat", "InteractiveUtils", "OrderedCollections"] -git-tree-sha1 = "d1fff3a548102f48987a52a2e0d114fa97d730f0" +git-tree-sha1 = "1d0a14036acb104d9e89698bd408f63ab58cdc82" uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8" -version = "0.18.13" +version = "0.18.20" [[deps.DataValueInterfaces]] git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6" @@ -187,27 +230,47 @@ version = "1.0.0" deps = ["Printf"] uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" -[[deps.DelimitedFiles]] -deps = ["Mmap"] -uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab" - -[[deps.DensityInterface]] -deps = ["InverseFunctions", "Test"] -git-tree-sha1 = "80c3e8639e3353e5d2912fb3a1916b8455e2494b" -uuid = "b429d917-457f-4dbc-8f4c-0cc954292b1d" -version = "0.4.0" - [[deps.DiffEqBase]] -deps = ["ArrayInterfaceCore", "ChainRulesCore", "DataStructures", "Distributions", "DocStringExtensions", "FastBroadcast", "ForwardDiff", "FunctionWrappers", "FunctionWrappersWrappers", "LinearAlgebra", "Logging", "MuladdMacro", "NonlinearSolve", "Parameters", "Printf", "RecursiveArrayTools", "Reexport", "Requires", "SciMLBase", "Setfield", "SparseArrays", "Static", "StaticArrays", "Statistics", "Tricks", "ZygoteRules"] -git-tree-sha1 = "1691af09e21555641fe762b28bda3dd927256765" +deps = ["ArrayInterface", "ConcreteStructs", "DataStructures", "DocStringExtensions", "EnumX", "EnzymeCore", "FastBroadcast", "FastClosures", "ForwardDiff", "FunctionWrappers", "FunctionWrappersWrappers", "LinearAlgebra", "Logging", "Markdown", "MuladdMacro", "Parameters", "PreallocationTools", "PrecompileTools", "Printf", "RecursiveArrayTools", "Reexport", "SciMLBase", "SciMLOperators", "Setfield", "SparseArrays", "Static", "StaticArraysCore", "Statistics", "Tricks", "TruncatedStacktraces"] +git-tree-sha1 = "03b9555f4c3a7c2f530bb1ae13e85719c632f74e" uuid = "2b5f629d-d688-5b77-993f-72d75c75574e" -version = "6.105.2" +version = "6.151.1" + + [deps.DiffEqBase.extensions] + DiffEqBaseCUDAExt = "CUDA" + DiffEqBaseChainRulesCoreExt = "ChainRulesCore" + DiffEqBaseDistributionsExt = "Distributions" + DiffEqBaseEnzymeExt = ["ChainRulesCore", "Enzyme"] + DiffEqBaseGeneralizedGeneratedExt = "GeneralizedGenerated" + DiffEqBaseMPIExt = "MPI" + DiffEqBaseMeasurementsExt = "Measurements" + DiffEqBaseMonteCarloMeasurementsExt = "MonteCarloMeasurements" + DiffEqBaseReverseDiffExt = "ReverseDiff" + DiffEqBaseTrackerExt = "Tracker" + DiffEqBaseUnitfulExt = "Unitful" + + [deps.DiffEqBase.weakdeps] + CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba" + ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" + Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f" + Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9" + GeneralizedGenerated = "6b9d7cbe-bcb9-11e9-073f-15a7a543e2eb" + MPI = "da04e1cc-30fd-572f-bb4f-1f8673147195" + Measurements = "eff96d63-e80a-5855-80a2-b1b0885c5ab7" + MonteCarloMeasurements = "0987c9cc-fe09-11e8-30f0-b96dd679fdca" + ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" + Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" + Unitful = "1986cc42-f94f-5a68-af5c-568840ba703d" [[deps.DiffEqCallbacks]] -deps = ["DataStructures", "DiffEqBase", "ForwardDiff", "LinearAlgebra", "Markdown", "NLsolve", "Parameters", "RecipesBase", "RecursiveArrayTools", "SciMLBase", "StaticArrays"] -git-tree-sha1 = "16cecaff5228c6cb22cda8e81aa96442395cdfc5" +deps = ["DataStructures", "DiffEqBase", "ForwardDiff", "Functors", "LinearAlgebra", "Markdown", "NonlinearSolve", "Parameters", "RecipesBase", "RecursiveArrayTools", "SciMLBase", "StaticArraysCore"] +git-tree-sha1 = "c959cfd2657d16beada157a74d52269e8556500e" uuid = "459566f4-90b8-5000-8ac3-15dfb0a30def" -version = "2.24.2" +version = "3.6.2" + + [deps.DiffEqCallbacks.weakdeps] + OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed" + Sundials = "c3572dad-4567-51f8-b174-8c6c989267f4" [[deps.DiffResults]] deps = ["StaticArraysCore"] @@ -217,76 +280,55 @@ version = "1.1.0" [[deps.DiffRules]] deps = ["IrrationalConstants", "LogExpFunctions", "NaNMath", "Random", "SpecialFunctions"] -git-tree-sha1 = "8b7a4d23e22f5d44883671da70865ca98f2ebf9d" +git-tree-sha1 = "23163d55f885173722d1e4cf0f6110cdbaf7e272" uuid = "b552c78f-8df3-52c6-915a-8e097449b14b" -version = "1.12.0" - -[[deps.Distances]] -deps = ["LinearAlgebra", "SparseArrays", "Statistics", "StatsAPI"] -git-tree-sha1 = "3258d0659f812acde79e8a74b11f17ac06d0ca04" -uuid = "b4f34e82-e78d-54a5-968a-f98e89d6e8f7" -version = "0.10.7" +version = "1.15.1" [[deps.Distributed]] deps = ["Random", "Serialization", "Sockets"] uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b" -[[deps.Distributions]] -deps = ["ChainRulesCore", "DensityInterface", "FillArrays", "LinearAlgebra", "PDMats", "Printf", "QuadGK", "Random", "SparseArrays", "SpecialFunctions", "Statistics", "StatsBase", "StatsFuns", "Test"] -git-tree-sha1 = "04db820ebcfc1e053bd8cbb8d8bccf0ff3ead3f7" -uuid = "31c24e10-a181-5473-b8eb-7969acd0382f" -version = "0.25.76" - [[deps.DocStringExtensions]] deps = ["LibGit2"] -git-tree-sha1 = "c36550cb29cbe373e95b3f40486b9a4148f89ffd" +git-tree-sha1 = "2fb1e02f2b635d0845df5d7c167fec4dd739b00d" uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae" -version = "0.9.2" +version = "0.9.3" [[deps.Downloads]] deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"] uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6" version = "1.6.0" -[[deps.DualNumbers]] -deps = ["Calculus", "NaNMath", "SpecialFunctions"] -git-tree-sha1 = "5837a837389fccf076445fce071c8ddaea35a566" -uuid = "fa6b7ba4-c1ee-5f82-b5fc-ecf0adba8f74" -version = "0.6.8" - [[deps.EnumX]] -git-tree-sha1 = "e5333cd1e1c713ee21d07b6ed8b0d8853fabe650" +git-tree-sha1 = "bdb1942cd4c45e3c678fd11569d5cccd80976237" uuid = "4e289a0a-7415-4d19-859d-a7e5c4648b56" -version = "1.0.3" +version = "1.0.4" + +[[deps.EnzymeCore]] +git-tree-sha1 = "18394bc78ac2814ff38fe5e0c9dc2cd171e2810c" +uuid = "f151be2c-9106-41f4-ab19-57ee4f262869" +version = "0.7.2" +weakdeps = ["Adapt"] + + [deps.EnzymeCore.extensions] + AdaptExt = "Adapt" [[deps.ExponentialUtilities]] -deps = ["ArrayInterfaceCore", "ArrayInterfaceGPUArrays", "GPUArraysCore", "GenericSchur", "LinearAlgebra", "Printf", "SparseArrays", "libblastrampoline_jll"] -git-tree-sha1 = "9b63a94069261772bd16cd19db879e6b09d9da65" +deps = ["Adapt", "ArrayInterface", "GPUArraysCore", "GenericSchur", "LinearAlgebra", "PrecompileTools", "Printf", "SparseArrays", "libblastrampoline_jll"] +git-tree-sha1 = "8e18940a5ba7f4ddb41fe2b79b6acaac50880a86" uuid = "d4d017d3-3776-5f7e-afef-a10c40355c18" -version = "1.21.0" +version = "1.26.1" [[deps.ExprTools]] -git-tree-sha1 = "56559bbef6ca5ea0c0818fa5c90320398a6fbf8d" +git-tree-sha1 = "27415f162e6028e81c72b82ef756bf321213b6ec" uuid = "e2ba6199-217a-4e67-a87a-7c52f15ade04" -version = "0.1.8" - -[[deps.FFTW]] -deps = ["AbstractFFTs", "FFTW_jll", "LinearAlgebra", "MKL_jll", "Preferences", "Reexport"] -git-tree-sha1 = "90630efff0894f8142308e334473eba54c433549" -uuid = "7a1cc6ca-52ef-59f5-83cd-3a7055c09341" -version = "1.5.0" - -[[deps.FFTW_jll]] -deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] -git-tree-sha1 = "c6033cc3892d0ef5bb9cd29b7f2f0331ea5184ea" -uuid = "f5851436-0d7a-5f13-b9de-f02708fd171a" -version = "3.3.10+0" +version = "0.1.10" [[deps.FastBroadcast]] -deps = ["ArrayInterface", "ArrayInterfaceCore", "LinearAlgebra", "Polyester", "Static", "StrideArraysCore"] -git-tree-sha1 = "21cdeff41e5a1822c2acd7fc7934c5f450588e00" +deps = ["ArrayInterface", "LinearAlgebra", "Polyester", "Static", "StaticArrayInterface", "StrideArraysCore"] +git-tree-sha1 = "a6e756a880fc419c8b41592010aebe6a5ce09136" uuid = "7034ab61-46d4-4ed7-9d0f-46aef9175898" -version = "0.2.1" +version = "0.2.8" [[deps.FastClosures]] git-tree-sha1 = "acebe244d53ee1b461970f8910c235b259e772ef" @@ -295,42 +337,60 @@ version = "0.3.2" [[deps.FastLapackInterface]] deps = ["LinearAlgebra"] -git-tree-sha1 = "14a6f7a21125f715d935fe8f83560ee833f7d79d" +git-tree-sha1 = "cbf5edddb61a43669710cbc2241bc08b36d9e660" uuid = "29a986be-02c6-4525-aec4-84b980013641" -version = "1.2.7" +version = "2.0.4" [[deps.FilePathsBase]] deps = ["Compat", "Dates", "Mmap", "Printf", "Test", "UUIDs"] -git-tree-sha1 = "e27c4ebe80e8699540f2d6c805cc12203b614f12" +git-tree-sha1 = "9f00e42f8d99fdde64d40c8ea5d14269a2e2c1aa" uuid = "48062228-2e41-5def-b9a4-89aafe57970f" -version = "0.9.20" +version = "0.9.21" [[deps.FileWatching]] uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee" [[deps.FillArrays]] -deps = ["LinearAlgebra", "Random", "SparseArrays", "Statistics"] -git-tree-sha1 = "802bfc139833d2ba893dd9e62ba1767c88d708ae" +deps = ["LinearAlgebra"] +git-tree-sha1 = "0653c0a2396a6da5bc4766c43041ef5fd3efbe57" uuid = "1a297f60-69ca-5386-bcde-b61e274b549b" -version = "0.13.5" +version = "1.11.0" + + [deps.FillArrays.extensions] + FillArraysPDMatsExt = "PDMats" + FillArraysSparseArraysExt = "SparseArrays" + FillArraysStatisticsExt = "Statistics" + + [deps.FillArrays.weakdeps] + PDMats = "90014a1f-27ba-587c-ab20-58faa44d9150" + SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" + Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" [[deps.FiniteDiff]] -deps = ["ArrayInterfaceCore", "LinearAlgebra", "Requires", "Setfield", "SparseArrays", "StaticArrays"] -git-tree-sha1 = "5a2cff9b6b77b33b89f3d97a4d367747adce647e" +deps = ["ArrayInterface", "LinearAlgebra", "Requires", "Setfield", "SparseArrays"] +git-tree-sha1 = "2de436b72c3422940cbe1367611d137008af7ec3" uuid = "6a86dc24-6348-571c-b903-95158fe2bd41" -version = "2.15.0" +version = "2.23.1" -[[deps.Formatting]] -deps = ["Printf"] -git-tree-sha1 = "8339d61043228fdd3eb658d86c926cb282ae72a8" -uuid = "59287772-0a20-5a39-b81b-1366585eb4c0" -version = "0.4.2" + [deps.FiniteDiff.extensions] + FiniteDiffBandedMatricesExt = "BandedMatrices" + FiniteDiffBlockBandedMatricesExt = "BlockBandedMatrices" + FiniteDiffStaticArraysExt = "StaticArrays" + + [deps.FiniteDiff.weakdeps] + BandedMatrices = "aae01518-5342-5314-be14-df237901396f" + BlockBandedMatrices = "ffab5731-97b5-5995-9138-79e8c1846df0" + StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" [[deps.ForwardDiff]] -deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "LinearAlgebra", "LogExpFunctions", "NaNMath", "Preferences", "Printf", "Random", "SpecialFunctions", "StaticArrays"] -git-tree-sha1 = "187198a4ed8ccd7b5d99c41b69c679269ea2b2d4" +deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "LinearAlgebra", "LogExpFunctions", "NaNMath", "Preferences", "Printf", "Random", "SpecialFunctions"] +git-tree-sha1 = "cf0fe81336da9fb90944683b8c41984b08793dad" uuid = "f6369f11-7733-5829-9624-2563aa707210" -version = "0.10.32" +version = "0.10.36" +weakdeps = ["StaticArrays"] + + [deps.ForwardDiff.extensions] + ForwardDiffStaticArraysExt = "StaticArrays" [[deps.FunctionWrappers]] git-tree-sha1 = "d62485945ce5ae9c0c48f124a84998d755bae00e" @@ -339,9 +399,15 @@ version = "1.1.3" [[deps.FunctionWrappersWrappers]] deps = ["FunctionWrappers"] -git-tree-sha1 = "a5e6e7f12607e90d71b09e6ce2c965e41b337968" +git-tree-sha1 = "b104d487b34566608f8b4e1c39fb0b10aa279ff8" uuid = "77dc65aa-8811-40c2-897b-53d922fa7daf" -version = "0.1.1" +version = "0.1.3" + +[[deps.Functors]] +deps = ["LinearAlgebra"] +git-tree-sha1 = "d3e63d9fa13f8eaa2f06f64949e2afc593ff52c2" +uuid = "d9f16b24-f501-4c13-a1f2-28368ffc5196" +version = "0.4.10" [[deps.Future]] deps = ["Random"] @@ -349,39 +415,27 @@ uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820" [[deps.GPUArraysCore]] deps = ["Adapt"] -git-tree-sha1 = "6872f5ec8fd1a38880f027a26739d42dcda6691f" +git-tree-sha1 = "ec632f177c0d990e64d955ccc1b8c04c485a0950" uuid = "46192b85-c4d5-4398-a991-12ede77f4527" -version = "0.1.2" +version = "0.1.6" [[deps.GenericSchur]] deps = ["LinearAlgebra", "Printf"] -git-tree-sha1 = "fb69b2a645fa69ba5f474af09221b9308b160ce6" +git-tree-sha1 = "af49a0851f8113fcfae2ef5027c6d49d0acec39b" uuid = "c145ed77-6b09-5dd9-b285-bf645a82121e" -version = "0.5.3" - -[[deps.GlobalSensitivity]] -deps = ["Distributions", "FFTW", "ForwardDiff", "KernelDensity", "LinearAlgebra", "Parameters", "QuasiMonteCarlo", "Random", "RecursiveArrayTools", "Statistics", "StatsBase", "Trapz"] -git-tree-sha1 = "d4559027669757386ea735b0b450beca8cb84981" -uuid = "af5da776-676b-467e-8baf-acd8249e4f0f" -version = "2.1.2" +version = "0.5.4" [[deps.Graphs]] deps = ["ArnoldiMethod", "Compat", "DataStructures", "Distributed", "Inflate", "LinearAlgebra", "Random", "SharedArrays", "SimpleTraits", "SparseArrays", "Statistics"] -git-tree-sha1 = "ba2d094a88b6b287bd25cfa86f301e7693ffae2f" +git-tree-sha1 = "4f2b57488ac7ee16124396de4f2bbdd51b2602ad" uuid = "86223c79-3864-5bf0-83f7-82e725a168b6" -version = "1.7.4" +version = "1.11.0" [[deps.HostCPUFeatures]] deps = ["BitTwiddlingConvenienceFunctions", "IfElse", "Libdl", "Static"] -git-tree-sha1 = "b7b88a4716ac33fe31d6556c02fc60017594343c" +git-tree-sha1 = "eb8fed28f4994600e29beef49744639d985a04b2" uuid = "3e5b6fbb-0976-4d2c-9146-d79de83f2fb0" -version = "0.1.8" - -[[deps.HypergeometricFunctions]] -deps = ["DualNumbers", "LinearAlgebra", "OpenLibm_jll", "SpecialFunctions", "Test"] -git-tree-sha1 = "709d864e3ed6e3545230601f94e11ebc65994641" -uuid = "34004b35-14d8-5ef3-9330-4cdb6864b03a" -version = "0.3.11" +version = "0.1.16" [[deps.IfElse]] git-tree-sha1 = "debdd00ffef04665ccbb3e150747a77560e8fad1" @@ -389,58 +443,45 @@ uuid = "615f187c-cbe4-4ef1-ba3b-2fcf58d6d173" version = "0.1.1" [[deps.Inflate]] -git-tree-sha1 = "5cd07aab533df5170988219191dfad0519391428" +git-tree-sha1 = "ea8031dea4aff6bd41f1df8f2fdfb25b33626381" uuid = "d25df0c9-e2be-5dd7-82c8-3ad0b3e990b9" -version = "0.1.3" +version = "0.1.4" [[deps.InlineStrings]] deps = ["Parsers"] -git-tree-sha1 = "db619c421554e1e7e07491b85a8f4b96b3f04ca0" +git-tree-sha1 = "9cc2baf75c6d09f9da536ddf58eb2f29dedaf461" uuid = "842dd82b-1e85-43dc-bf29-5d0ee9dffc48" -version = "1.2.2" - -[[deps.IntegerMathUtils]] -git-tree-sha1 = "f366daebdfb079fd1fe4e3d560f99a0c892e15bc" -uuid = "18e54dd8-cb9d-406c-a71d-865a43cbb235" -version = "0.1.0" +version = "1.4.0" [[deps.IntelOpenMP_jll]] -deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] -git-tree-sha1 = "d979e54b71da82f3a65b62553da4fc3d18c9004c" +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "be50fe8df3acbffa0274a744f1a99d29c45a57f4" uuid = "1d5cc7b8-4909-519e-a0f8-d0f5ad9712d0" -version = "2018.0.3+2" +version = "2024.1.0+0" [[deps.InteractiveUtils]] deps = ["Markdown"] uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" -[[deps.Interpolations]] -deps = ["Adapt", "AxisAlgorithms", "ChainRulesCore", "LinearAlgebra", "OffsetArrays", "Random", "Ratios", "Requires", "SharedArrays", "SparseArrays", "StaticArrays", "WoodburyMatrices"] -git-tree-sha1 = "842dd89a6cb75e02e85fdd75c760cdc43f5d6863" -uuid = "a98d9a8b-a2ab-59e6-89dd-64a1c18fca59" -version = "0.14.6" - [[deps.InverseFunctions]] deps = ["Test"] -git-tree-sha1 = "49510dfcb407e572524ba94aeae2fced1f3feb0f" +git-tree-sha1 = "e7cbed5032c4c397a6ac23d1493f3289e01231c4" uuid = "3587e190-3f89-42d0-90ee-14403ec27112" -version = "0.1.8" +version = "0.1.14" +weakdeps = ["Dates"] + + [deps.InverseFunctions.extensions] + DatesExt = "Dates" [[deps.InvertedIndices]] -git-tree-sha1 = "bee5f1ef5bf65df56bdd2e40447590b272a5471f" +git-tree-sha1 = "0dc7b50b8d436461be01300fd8cd45aa0274b038" uuid = "41ab1584-1d38-5bbf-9106-f11c6c58b48f" -version = "1.1.0" +version = "1.3.0" [[deps.IrrationalConstants]] -git-tree-sha1 = "7fd44fd4ff43fc60815f8e764c0f352b83c49151" +git-tree-sha1 = "630b497eafcc20001bba38a4651b327dcfc491d2" uuid = "92d709cd-6900-40b7-9082-c6be49f344b6" -version = "0.1.1" - -[[deps.IterativeSolvers]] -deps = ["LinearAlgebra", "Printf", "Random", "RecipesBase", "SparseArrays"] -git-tree-sha1 = "1169632f425f79429f245113b775a0e3d121457c" -uuid = "42fd0dbc-a981-5370-80f2-aaf504508153" -version = "0.9.2" +version = "0.2.2" [[deps.IteratorInterfaceExtensions]] git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856" @@ -448,52 +489,43 @@ uuid = "82899510-4779-5014-852e-03e436cf321d" version = "1.0.0" [[deps.JLLWrappers]] -deps = ["Preferences"] -git-tree-sha1 = "abc9885a7ca2052a736a600f7fa66209f96506e1" +deps = ["Artifacts", "Preferences"] +git-tree-sha1 = "7e5d6779a1e09a36db2a7b6cff50942a0a7d0fca" uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210" -version = "1.4.1" +version = "1.5.0" [[deps.KLU]] deps = ["LinearAlgebra", "SparseArrays", "SuiteSparse_jll"] -git-tree-sha1 = "764164ed65c30738750965d55652db9c94c59bfe" +git-tree-sha1 = "07649c499349dad9f08dde4243a4c597064663e9" uuid = "ef3ab10e-7fda-4108-b977-705223b18434" -version = "0.4.0" - -[[deps.KernelDensity]] -deps = ["Distributions", "DocStringExtensions", "FFTW", "Interpolations", "StatsBase"] -git-tree-sha1 = "9816b296736292a80b9a3200eb7fbb57aaa3917a" -uuid = "5ab0869b-81aa-558d-bb23-cbf5423bbe9b" -version = "0.6.5" +version = "0.6.0" [[deps.Krylov]] deps = ["LinearAlgebra", "Printf", "SparseArrays"] -git-tree-sha1 = "92256444f81fb094ff5aa742ed10835a621aef75" +git-tree-sha1 = "267dad6b4b7b5d529c76d40ff48d33f7e94cb834" uuid = "ba0b0d4f-ebba-5204-a429-3ac8c609bfb7" -version = "0.8.4" - -[[deps.KrylovKit]] -deps = ["LinearAlgebra", "Printf"] -git-tree-sha1 = "49b0c1dd5c292870577b8f58c51072bd558febb9" -uuid = "0b1a1467-8014-51b9-945f-bf0ae24f4b77" -version = "0.5.4" - -[[deps.LatinHypercubeSampling]] -deps = ["Random", "StableRNGs", "StatsBase", "Test"] -git-tree-sha1 = "42938ab65e9ed3c3029a8d2c58382ca75bdab243" -uuid = "a5e1c1ea-c99a-51d3-a14d-a9a37257b02d" -version = "1.8.0" +version = "0.9.6" -[[deps.LatticeRules]] -deps = ["Random"] -git-tree-sha1 = "7f5b02258a3ca0221a6a9710b0a0a2e8fb4957fe" -uuid = "73f95e8e-ec14-4e6a-8b18-0d2e271c4e55" -version = "0.0.1" +[[deps.LaTeXStrings]] +git-tree-sha1 = "50901ebc375ed41dbf8058da26f9de442febbbec" +uuid = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f" +version = "1.3.1" [[deps.LayoutPointers]] -deps = ["ArrayInterface", "ArrayInterfaceOffsetArrays", "ArrayInterfaceStaticArrays", "LinearAlgebra", "ManualMemory", "SIMDTypes", "Static"] -git-tree-sha1 = "73e2e40eb02d6ccd191a8a9f8cee20db8d5df010" +deps = ["ArrayInterface", "LinearAlgebra", "ManualMemory", "SIMDTypes", "Static", "StaticArrayInterface"] +git-tree-sha1 = "62edfee3211981241b57ff1cedf4d74d79519277" uuid = "10f19ff3-798f-405d-979b-55457f8fc047" -version = "0.1.11" +version = "0.1.15" + +[[deps.LazyArrays]] +deps = ["ArrayLayouts", "FillArrays", "LinearAlgebra", "MacroTools", "MatrixFactorizations", "SparseArrays"] +git-tree-sha1 = "35079a6a869eecace778bcda8641f9a54ca3a828" +uuid = "5078a376-72f3-5289-bfd5-ec5146d43c02" +version = "1.10.0" +weakdeps = ["StaticArrays"] + + [deps.LazyArrays.extensions] + LazyArraysStaticArraysExt = "StaticArrays" [[deps.LazyArtifacts]] deps = ["Artifacts", "Pkg"] @@ -502,21 +534,26 @@ uuid = "4af54fe1-eca0-43a8-85a7-787d91b784e3" [[deps.LibCURL]] deps = ["LibCURL_jll", "MozillaCACerts_jll"] uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21" -version = "0.6.3" +version = "0.6.4" [[deps.LibCURL_jll]] deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"] uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0" -version = "7.84.0+0" +version = "8.4.0+0" [[deps.LibGit2]] -deps = ["Base64", "NetworkOptions", "Printf", "SHA"] +deps = ["Base64", "LibGit2_jll", "NetworkOptions", "Printf", "SHA"] uuid = "76f85450-5226-5b5a-8eaa-529ad045b433" +[[deps.LibGit2_jll]] +deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll"] +uuid = "e37daf67-58a4-590a-8e99-b0245dd2ffc5" +version = "1.6.4+0" + [[deps.LibSSH2_jll]] deps = ["Artifacts", "Libdl", "MbedTLS_jll"] uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8" -version = "1.10.2+0" +version = "1.11.0+1" [[deps.Libdl]] uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" @@ -528,41 +565,87 @@ uuid = "d3d80556-e9d4-5f37-9878-2ab0fcc64255" version = "7.2.0" [[deps.LinearAlgebra]] -deps = ["Libdl", "libblastrampoline_jll"] +deps = ["Libdl", "OpenBLAS_jll", "libblastrampoline_jll"] uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" [[deps.LinearSolve]] -deps = ["ArrayInterfaceCore", "DocStringExtensions", "FastLapackInterface", "GPUArraysCore", "IterativeSolvers", "KLU", "Krylov", "KrylovKit", "LinearAlgebra", "RecursiveFactorization", "Reexport", "SciMLBase", "Setfield", "SnoopPrecompile", "SparseArrays", "SuiteSparse", "UnPack"] -git-tree-sha1 = "9dc30911bb8697a489c298339536d5234d54ba96" +deps = ["ArrayInterface", "ChainRulesCore", "ConcreteStructs", "DocStringExtensions", "EnumX", "FastLapackInterface", "GPUArraysCore", "InteractiveUtils", "KLU", "Krylov", "LazyArrays", "Libdl", "LinearAlgebra", "MKL_jll", "Markdown", "PrecompileTools", "Preferences", "RecursiveFactorization", "Reexport", "SciMLBase", "SciMLOperators", "Setfield", "SparseArrays", "Sparspak", "StaticArraysCore", "UnPack"] +git-tree-sha1 = "efd815eaa56c0ffdf86581df5aaefb7e901323a0" uuid = "7ed4a6bd-45f5-4d41-b270-4a48e9bafcae" -version = "1.27.1" +version = "2.30.0" + + [deps.LinearSolve.extensions] + LinearSolveBandedMatricesExt = "BandedMatrices" + LinearSolveBlockDiagonalsExt = "BlockDiagonals" + LinearSolveCUDAExt = "CUDA" + LinearSolveCUDSSExt = "CUDSS" + LinearSolveEnzymeExt = ["Enzyme", "EnzymeCore"] + LinearSolveFastAlmostBandedMatricesExt = ["FastAlmostBandedMatrices"] + LinearSolveHYPREExt = "HYPRE" + LinearSolveIterativeSolversExt = "IterativeSolvers" + LinearSolveKernelAbstractionsExt = "KernelAbstractions" + LinearSolveKrylovKitExt = "KrylovKit" + LinearSolveMetalExt = "Metal" + LinearSolvePardisoExt = "Pardiso" + LinearSolveRecursiveArrayToolsExt = "RecursiveArrayTools" + + [deps.LinearSolve.weakdeps] + BandedMatrices = "aae01518-5342-5314-be14-df237901396f" + BlockDiagonals = "0a1fb500-61f7-11e9-3c65-f5ef3456f9f0" + CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba" + CUDSS = "45b445bb-4962-46a0-9369-b4df9d0f772e" + Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9" + EnzymeCore = "f151be2c-9106-41f4-ab19-57ee4f262869" + FastAlmostBandedMatrices = "9d29842c-ecb8-4973-b1e9-a27b1157504e" + HYPRE = "b5ffcf37-a2bd-41ab-a3da-4bd9bc8ad771" + IterativeSolvers = "42fd0dbc-a981-5370-80f2-aaf504508153" + KernelAbstractions = "63c18a36-062a-441e-b654-da1e3ab1ce7c" + KrylovKit = "0b1a1467-8014-51b9-945f-bf0ae24f4b77" + Metal = "dde4c033-4e86-420c-a63e-0dd931031962" + Pardiso = "46dd5b70-b6fb-5a00-ae2d-e8fea33afaf2" + RecursiveArrayTools = "731186ca-8d62-57ce-b412-fbd966d074cd" [[deps.LogExpFunctions]] -deps = ["ChainRulesCore", "ChangesOfVariables", "DocStringExtensions", "InverseFunctions", "IrrationalConstants", "LinearAlgebra"] -git-tree-sha1 = "94d9c52ca447e23eac0c0f074effbcd38830deb5" +deps = ["DocStringExtensions", "IrrationalConstants", "LinearAlgebra"] +git-tree-sha1 = "18144f3e9cbe9b15b070288eef858f71b291ce37" uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688" -version = "0.3.18" +version = "0.3.27" + + [deps.LogExpFunctions.extensions] + LogExpFunctionsChainRulesCoreExt = "ChainRulesCore" + LogExpFunctionsChangesOfVariablesExt = "ChangesOfVariables" + LogExpFunctionsInverseFunctionsExt = "InverseFunctions" + + [deps.LogExpFunctions.weakdeps] + ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" + ChangesOfVariables = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0" + InverseFunctions = "3587e190-3f89-42d0-90ee-14403ec27112" [[deps.Logging]] uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" [[deps.LoopVectorization]] -deps = ["ArrayInterface", "ArrayInterfaceCore", "ArrayInterfaceOffsetArrays", "ArrayInterfaceStaticArrays", "CPUSummary", "ChainRulesCore", "CloseOpenIntervals", "DocStringExtensions", "ForwardDiff", "HostCPUFeatures", "IfElse", "LayoutPointers", "LinearAlgebra", "OffsetArrays", "PolyesterWeave", "SIMDDualNumbers", "SIMDTypes", "SLEEFPirates", "SnoopPrecompile", "SpecialFunctions", "Static", "ThreadingUtilities", "UnPack", "VectorizationBase"] -git-tree-sha1 = "9f6030ca92d1a816e931abb657219c9fc4991a96" +deps = ["ArrayInterface", "CPUSummary", "CloseOpenIntervals", "DocStringExtensions", "HostCPUFeatures", "IfElse", "LayoutPointers", "LinearAlgebra", "OffsetArrays", "PolyesterWeave", "PrecompileTools", "SIMDTypes", "SLEEFPirates", "Static", "StaticArrayInterface", "ThreadingUtilities", "UnPack", "VectorizationBase"] +git-tree-sha1 = "8f6786d8b2b3248d79db3ad359ce95382d5a6df8" uuid = "bdcacae8-1622-11e9-2a5c-532679323890" -version = "0.12.136" +version = "0.12.170" +weakdeps = ["ChainRulesCore", "ForwardDiff", "SpecialFunctions"] + + [deps.LoopVectorization.extensions] + ForwardDiffExt = ["ChainRulesCore", "ForwardDiff"] + SpecialFunctionsExt = "SpecialFunctions" [[deps.MKL_jll]] -deps = ["Artifacts", "IntelOpenMP_jll", "JLLWrappers", "LazyArtifacts", "Libdl", "Pkg"] -git-tree-sha1 = "2ce8695e1e699b68702c03402672a69f54b8aca9" +deps = ["Artifacts", "IntelOpenMP_jll", "JLLWrappers", "LazyArtifacts", "Libdl", "oneTBB_jll"] +git-tree-sha1 = "80b2833b56d466b3858d565adcd16a4a05f2089b" uuid = "856f044c-d86e-5d09-b602-aeab76dc8ba7" -version = "2022.2.0+0" +version = "2024.1.0+0" [[deps.MacroTools]] deps = ["Markdown", "Random"] -git-tree-sha1 = "42324d08725e200c23d4dfb549e0d5d89dede2d2" +git-tree-sha1 = "2fa9ee3e63fd3a4f7a9a4f4744a52f4856de82df" uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09" -version = "0.5.10" +version = "0.5.13" [[deps.ManualMemory]] git-tree-sha1 = "bcaef4fc7a0cfe2cba636d84cda54b5e4e4ca3cd" @@ -573,72 +656,107 @@ version = "0.1.8" deps = ["Base64"] uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" +[[deps.MatrixFactorizations]] +deps = ["ArrayLayouts", "LinearAlgebra", "Printf", "Random"] +git-tree-sha1 = "6731e0574fa5ee21c02733e397beb133df90de35" +uuid = "a3b82374-2e81-5b9e-98ce-41277c0e4c87" +version = "2.2.0" + +[[deps.MaybeInplace]] +deps = ["ArrayInterface", "LinearAlgebra", "MacroTools", "SparseArrays"] +git-tree-sha1 = "b1f2f92feb0bc201e91c155ef575bcc7d9cc3526" +uuid = "bb5d69b7-63fc-4a16-80bd-7e42200c7bdb" +version = "0.1.2" + [[deps.MbedTLS_jll]] deps = ["Artifacts", "Libdl"] uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1" -version = "2.28.0+0" +version = "2.28.2+1" [[deps.Missings]] deps = ["DataAPI"] -git-tree-sha1 = "bf210ce90b6c9eed32d25dbcae1ebc565df2687f" +git-tree-sha1 = "ec4f7fbeab05d7747bdf98eb74d130a2a2ed298d" uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28" -version = "1.0.2" +version = "1.2.0" [[deps.Mmap]] uuid = "a63ad114-7e13-5084-954f-fe012c677804" [[deps.MozillaCACerts_jll]] uuid = "14a3606d-f60d-562e-9121-12d972cd8159" -version = "2022.2.1" +version = "2023.1.10" [[deps.MuladdMacro]] -git-tree-sha1 = "85a6393ea91174f0d220351fb308f6ef6657336d" +git-tree-sha1 = "cac9cc5499c25554cba55cd3c30543cff5ca4fab" uuid = "46d2c3a1-f734-5fdb-9937-b9b9aeba4221" -version = "0.2.3" +version = "0.2.4" [[deps.NLSolversBase]] deps = ["DiffResults", "Distributed", "FiniteDiff", "ForwardDiff"] -git-tree-sha1 = "50310f934e55e5ca3912fb941dec199b49ca9b68" +git-tree-sha1 = "a0b464d183da839699f4c79e7606d9d186ec172c" uuid = "d41bc354-129a-5804-8e4c-c37616107c6c" -version = "7.8.2" - -[[deps.NLsolve]] -deps = ["Distances", "LineSearches", "LinearAlgebra", "NLSolversBase", "Printf", "Reexport"] -git-tree-sha1 = "019f12e9a1a7880459d0173c182e6a99365d7ac1" -uuid = "2774e3e8-f4cf-5e23-947b-6d7e65073b56" -version = "4.5.1" +version = "7.8.3" [[deps.NaNMath]] deps = ["OpenLibm_jll"] -git-tree-sha1 = "a7c3d1da1189a1c2fe843a3bfa04d18d20eb3211" +git-tree-sha1 = "0877504529a3e5c3343c6f8b4c0381e57e4387e4" uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3" -version = "1.0.1" +version = "1.0.2" [[deps.NetworkOptions]] uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908" version = "1.2.0" [[deps.NonlinearSolve]] -deps = ["ArrayInterfaceCore", "FiniteDiff", "ForwardDiff", "IterativeSolvers", "LinearAlgebra", "RecursiveArrayTools", "RecursiveFactorization", "Reexport", "SciMLBase", "Setfield", "StaticArrays", "UnPack"] -git-tree-sha1 = "a754a21521c0ab48d37f44bbac1eefd1387bdcfc" +deps = ["ADTypes", "ArrayInterface", "ConcreteStructs", "DiffEqBase", "FastBroadcast", "FastClosures", "FiniteDiff", "ForwardDiff", "LazyArrays", "LineSearches", "LinearAlgebra", "LinearSolve", "MaybeInplace", "PrecompileTools", "Preferences", "Printf", "RecursiveArrayTools", "Reexport", "SciMLBase", "SimpleNonlinearSolve", "SparseArrays", "SparseDiffTools", "StaticArraysCore", "SymbolicIndexingInterface", "TimerOutputs"] +git-tree-sha1 = "3939ebffebff79db0442103b6d3a5e8c50cbf43c" uuid = "8913a72c-1f9b-4ce2-8d82-65094dcecaec" -version = "0.3.22" +version = "3.12.0" + + [deps.NonlinearSolve.extensions] + NonlinearSolveBandedMatricesExt = "BandedMatrices" + NonlinearSolveFastLevenbergMarquardtExt = "FastLevenbergMarquardt" + NonlinearSolveFixedPointAccelerationExt = "FixedPointAcceleration" + NonlinearSolveLeastSquaresOptimExt = "LeastSquaresOptim" + NonlinearSolveMINPACKExt = "MINPACK" + NonlinearSolveNLSolversExt = "NLSolvers" + NonlinearSolveNLsolveExt = "NLsolve" + NonlinearSolveSIAMFANLEquationsExt = "SIAMFANLEquations" + NonlinearSolveSpeedMappingExt = "SpeedMapping" + NonlinearSolveSymbolicsExt = "Symbolics" + NonlinearSolveZygoteExt = "Zygote" + + [deps.NonlinearSolve.weakdeps] + BandedMatrices = "aae01518-5342-5314-be14-df237901396f" + FastLevenbergMarquardt = "7a0df574-e128-4d35-8cbd-3d84502bf7ce" + FixedPointAcceleration = "817d07cb-a79a-5c30-9a31-890123675176" + LeastSquaresOptim = "0fc2ff8b-aaa3-5acd-a817-1944a5e08891" + MINPACK = "4854310b-de5a-5eb6-a2a5-c1dee2bd17f9" + NLSolvers = "337daf1e-9722-11e9-073e-8b9effe078ba" + NLsolve = "2774e3e8-f4cf-5e23-947b-6d7e65073b56" + SIAMFANLEquations = "084e46ad-d928-497d-ad5e-07fa361a48c4" + SpeedMapping = "f1835b91-879b-4a3f-a438-e4baacf14412" + Symbolics = "0c5d862f-8b57-4792-8d23-62f2024744c7" + Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" [[deps.OffsetArrays]] -deps = ["Adapt"] -git-tree-sha1 = "f71d8950b724e9ff6110fc948dff5a329f901d64" +git-tree-sha1 = "e64b4f5ea6b7389f6f046d13d4896a8f9c1ba71e" uuid = "6fe1bfb0-de20-5000-8ca7-80f57d26f881" -version = "1.12.8" +version = "1.14.0" +weakdeps = ["Adapt"] + + [deps.OffsetArrays.extensions] + OffsetArraysAdaptExt = "Adapt" [[deps.OpenBLAS_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"] uuid = "4536629a-c528-5b80-bd46-f80d51c5b363" -version = "0.3.20+0" +version = "0.3.23+4" [[deps.OpenLibm_jll]] deps = ["Artifacts", "Libdl"] uuid = "05823500-19ac-5b8b-9628-191a04bc5112" -version = "0.8.1+0" +version = "0.8.1+2" [[deps.OpenSpecFun_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Pkg"] @@ -647,21 +765,21 @@ uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e" version = "0.5.5+0" [[deps.OrderedCollections]] -git-tree-sha1 = "85f8e6578bf1f9ee0d11e7bb1b1456435479d47c" +git-tree-sha1 = "dfdf5519f235516220579f949664f1bf44e741c5" uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d" -version = "1.4.1" +version = "1.6.3" [[deps.OrdinaryDiffEq]] -deps = ["Adapt", "ArrayInterface", "ArrayInterfaceCore", "ArrayInterfaceGPUArrays", "ArrayInterfaceStaticArrays", "ArrayInterfaceStaticArraysCore", "DataStructures", "DiffEqBase", "DocStringExtensions", "ExponentialUtilities", "FastBroadcast", "FastClosures", "FiniteDiff", "ForwardDiff", "FunctionWrappersWrappers", "LinearAlgebra", "LinearSolve", "Logging", "LoopVectorization", "MacroTools", "MuladdMacro", "NLsolve", "NonlinearSolve", "Polyester", "PreallocationTools", "Preferences", "RecursiveArrayTools", "Reexport", "SciMLBase", "SnoopPrecompile", "SparseArrays", "SparseDiffTools", "StaticArrays", "UnPack"] -git-tree-sha1 = "88b3bc390fe76e559bef97b6abe55e8d3a440a56" +deps = ["ADTypes", "Adapt", "ArrayInterface", "DataStructures", "DiffEqBase", "DocStringExtensions", "EnumX", "ExponentialUtilities", "FastBroadcast", "FastClosures", "FillArrays", "FiniteDiff", "ForwardDiff", "FunctionWrappersWrappers", "IfElse", "InteractiveUtils", "LineSearches", "LinearAlgebra", "LinearSolve", "Logging", "MacroTools", "MuladdMacro", "NonlinearSolve", "Polyester", "PreallocationTools", "PrecompileTools", "Preferences", "RecursiveArrayTools", "Reexport", "SciMLBase", "SciMLOperators", "SciMLStructures", "SimpleNonlinearSolve", "SimpleUnPack", "SparseArrays", "SparseDiffTools", "StaticArrayInterface", "StaticArrays", "TruncatedStacktraces"] +git-tree-sha1 = "d6fd99c5ab428c4410a07319bd63863e55b0d9c1" uuid = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed" -version = "6.29.3" +version = "6.79.0" -[[deps.PDMats]] -deps = ["LinearAlgebra", "SparseArrays", "SuiteSparse"] -git-tree-sha1 = "cf494dca75a69712a72b80bc48f59dcf3dea63ec" -uuid = "90014a1f-27ba-587c-ab20-58faa44d9150" -version = "0.11.16" +[[deps.PackageExtensionCompat]] +git-tree-sha1 = "fb28e33b8a95c4cee25ce296c817d89cc2e53518" +uuid = "65ce6f38-6b18-4e1d-a461-8949797d7930" +version = "1.0.2" +weakdeps = ["Requires", "TOML"] [[deps.Parameters]] deps = ["OrderedCollections", "UnPack"] @@ -670,105 +788,111 @@ uuid = "d96e819e-fc66-5662-9728-84c9c7592b0a" version = "0.12.3" [[deps.Parsers]] -deps = ["Dates"] -git-tree-sha1 = "6c01a9b494f6d2a9fc180a08b182fcb06f0958a0" +deps = ["Dates", "PrecompileTools", "UUIDs"] +git-tree-sha1 = "8489905bcdbcfac64d1daa51ca07c0d8f0283821" uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" -version = "2.4.2" +version = "2.8.1" [[deps.Pkg]] -deps = ["Artifacts", "Dates", "Downloads", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"] +deps = ["Artifacts", "Dates", "Downloads", "FileWatching", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"] uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" -version = "1.8.0" +version = "1.10.0" [[deps.Polyester]] -deps = ["ArrayInterface", "BitTwiddlingConvenienceFunctions", "CPUSummary", "IfElse", "ManualMemory", "PolyesterWeave", "Requires", "Static", "StrideArraysCore", "ThreadingUtilities"] -git-tree-sha1 = "cb2ede4b9cc432c1cba4d4452a62ae1d2a4141bb" +deps = ["ArrayInterface", "BitTwiddlingConvenienceFunctions", "CPUSummary", "IfElse", "ManualMemory", "PolyesterWeave", "Requires", "Static", "StaticArrayInterface", "StrideArraysCore", "ThreadingUtilities"] +git-tree-sha1 = "b3e2bae88cf07baf0a051fe09666b8ef97aefe93" uuid = "f517fe37-dbe3-4b94-8317-1923a5111588" -version = "0.6.16" +version = "0.7.14" [[deps.PolyesterWeave]] deps = ["BitTwiddlingConvenienceFunctions", "CPUSummary", "IfElse", "Static", "ThreadingUtilities"] -git-tree-sha1 = "b42fb2292fbbaed36f25d33a15c8cc0b4f287fcf" +git-tree-sha1 = "240d7170f5ffdb285f9427b92333c3463bf65bf6" uuid = "1d0040c9-8b98-4ee7-8388-3f51789ca0ad" -version = "0.1.10" +version = "0.2.1" [[deps.PooledArrays]] deps = ["DataAPI", "Future"] -git-tree-sha1 = "a6062fe4063cdafe78f4a0a81cfffb89721b30e7" +git-tree-sha1 = "36d8b4b899628fb92c2749eb488d884a926614d3" uuid = "2dfb63ee-cc39-5dd5-95bd-886bf059d720" -version = "1.4.2" +version = "1.4.3" [[deps.PreallocationTools]] -deps = ["Adapt", "ArrayInterfaceCore", "ForwardDiff"] -git-tree-sha1 = "3953d18698157e1d27a51678c89c88d53e071a42" +deps = ["Adapt", "ArrayInterface", "ForwardDiff"] +git-tree-sha1 = "a660e9daab5db07adf3dedfe09b435cc530d855e" uuid = "d236fae5-4411-538c-8e31-a6e3d9e00b46" -version = "0.4.4" +version = "0.4.21" + + [deps.PreallocationTools.extensions] + PreallocationToolsReverseDiffExt = "ReverseDiff" + + [deps.PreallocationTools.weakdeps] + ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" + +[[deps.PrecompileTools]] +deps = ["Preferences"] +git-tree-sha1 = "5aa36f7049a63a1528fe8f7c3f2113413ffd4e1f" +uuid = "aea7be01-6a6a-4083-8856-8a6e6704d82a" +version = "1.2.1" [[deps.Preferences]] deps = ["TOML"] -git-tree-sha1 = "47e5f437cc0e7ef2ce8406ce1e7e24d44915f88d" +git-tree-sha1 = "9306f6085165d270f7e3db02af26a400d580f5c6" uuid = "21216c6a-2e73-6563-6e65-726566657250" -version = "1.3.0" +version = "1.4.3" [[deps.PrettyTables]] -deps = ["Crayons", "Formatting", "Markdown", "Reexport", "StringManipulation", "Tables"] -git-tree-sha1 = "460d9e154365e058c4d886f6f7d6df5ffa1ea80e" +deps = ["Crayons", "LaTeXStrings", "Markdown", "PrecompileTools", "Printf", "Reexport", "StringManipulation", "Tables"] +git-tree-sha1 = "88b895d13d53b5577fd53379d913b9ab9ac82660" uuid = "08abe8d2-0d0c-5749-adfa-8a2ac140af0d" -version = "2.1.2" - -[[deps.Primes]] -deps = ["IntegerMathUtils"] -git-tree-sha1 = "311a2aa90a64076ea0fac2ad7492e914e6feeb81" -uuid = "27ebfcd6-29c5-5fa9-bf4b-fb8fc14df3ae" -version = "0.5.3" +version = "2.3.1" [[deps.Printf]] deps = ["Unicode"] uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" -[[deps.QuadGK]] -deps = ["DataStructures", "LinearAlgebra"] -git-tree-sha1 = "97aa253e65b784fd13e83774cadc95b38011d734" -uuid = "1fd47b50-473d-5c70-9696-f719f8f3bcdc" -version = "2.6.0" - -[[deps.QuasiMonteCarlo]] -deps = ["Distributions", "LatinHypercubeSampling", "LatticeRules", "LinearAlgebra", "Primes", "Random", "Sobol", "StatsBase"] -git-tree-sha1 = "9db6f0c539b4e7578f5d6584b49c506375867464" -uuid = "8a4e6c94-4038-4cdc-81c3-7e6ffdb2a71b" -version = "0.2.15" - [[deps.REPL]] deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"] uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" [[deps.Random]] -deps = ["SHA", "Serialization"] +deps = ["SHA"] uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" -[[deps.Ratios]] -deps = ["Requires"] -git-tree-sha1 = "dc84268fe0e3335a62e315a3a7cf2afa7178a734" -uuid = "c84ed2f1-dad5-54f0-aa8e-dbefe2724439" -version = "0.4.3" - [[deps.RecipesBase]] -deps = ["SnoopPrecompile"] -git-tree-sha1 = "d12e612bba40d189cead6ff857ddb67bd2e6a387" +deps = ["PrecompileTools"] +git-tree-sha1 = "5c3d09cc4f31f5fc6af001c250bf1278733100ff" uuid = "3cdcf5f2-1ef4-517c-9805-6587b60abb01" -version = "1.3.1" +version = "1.3.4" [[deps.RecursiveArrayTools]] -deps = ["Adapt", "ArrayInterfaceCore", "ArrayInterfaceStaticArraysCore", "ChainRulesCore", "DocStringExtensions", "FillArrays", "GPUArraysCore", "IteratorInterfaceExtensions", "LinearAlgebra", "RecipesBase", "StaticArraysCore", "Statistics", "Tables", "ZygoteRules"] -git-tree-sha1 = "3004608dc42101a944e44c1c68b599fa7c669080" +deps = ["Adapt", "ArrayInterface", "DocStringExtensions", "GPUArraysCore", "IteratorInterfaceExtensions", "LinearAlgebra", "RecipesBase", "SparseArrays", "StaticArraysCore", "Statistics", "SymbolicIndexingInterface", "Tables"] +git-tree-sha1 = "758bc86b90e9fee2edc4af2a750b0d3f2d5c02c5" uuid = "731186ca-8d62-57ce-b412-fbd966d074cd" -version = "2.32.0" +version = "3.19.0" + + [deps.RecursiveArrayTools.extensions] + RecursiveArrayToolsFastBroadcastExt = "FastBroadcast" + RecursiveArrayToolsForwardDiffExt = "ForwardDiff" + RecursiveArrayToolsMeasurementsExt = "Measurements" + RecursiveArrayToolsMonteCarloMeasurementsExt = "MonteCarloMeasurements" + RecursiveArrayToolsReverseDiffExt = ["ReverseDiff", "Zygote"] + RecursiveArrayToolsTrackerExt = "Tracker" + RecursiveArrayToolsZygoteExt = "Zygote" + + [deps.RecursiveArrayTools.weakdeps] + FastBroadcast = "7034ab61-46d4-4ed7-9d0f-46aef9175898" + ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" + Measurements = "eff96d63-e80a-5855-80a2-b1b0885c5ab7" + MonteCarloMeasurements = "0987c9cc-fe09-11e8-30f0-b96dd679fdca" + ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" + Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" + Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" [[deps.RecursiveFactorization]] -deps = ["LinearAlgebra", "LoopVectorization", "Polyester", "SnoopPrecompile", "StrideArraysCore", "TriangularSolve"] -git-tree-sha1 = "0a2dfb3358fcde3676beb75405e782faa8c9aded" +deps = ["LinearAlgebra", "LoopVectorization", "Polyester", "PrecompileTools", "StrideArraysCore", "TriangularSolve"] +git-tree-sha1 = "6db1a75507051bc18bfa131fbc7c3f169cc4b2f6" uuid = "f2c3362d-daeb-58d1-803e-2bc74f2840b4" -version = "0.2.12" +version = "0.2.23" [[deps.Reexport]] git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b" @@ -781,34 +905,16 @@ git-tree-sha1 = "838a3a4188e2ded87a4f9f184b4b0d78a1e91cb7" uuid = "ae029012-a4dd-5104-9daa-d747884805df" version = "1.3.0" -[[deps.Rmath]] -deps = ["Random", "Rmath_jll"] -git-tree-sha1 = "bf3188feca147ce108c76ad82c2792c57abe7b1f" -uuid = "79098fc4-a85e-5d69-aa6a-4863f24498fa" -version = "0.7.0" - -[[deps.Rmath_jll]] -deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] -git-tree-sha1 = "68db32dff12bb6127bac73c209881191bf0efbb7" -uuid = "f50d1b31-88e8-58de-be2c-1cc44531875f" -version = "0.3.0+0" - [[deps.RuntimeGeneratedFunctions]] deps = ["ExprTools", "SHA", "Serialization"] -git-tree-sha1 = "e52b5fdd011736509507e69d5d653d7366c6a8ae" +git-tree-sha1 = "04c968137612c4a5629fa531334bb81ad5680f00" uuid = "7e49a35a-f44a-4d26-94aa-eba1b4ca6b47" -version = "0.5.4" +version = "0.5.13" [[deps.SHA]] uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce" version = "0.7.0" -[[deps.SIMDDualNumbers]] -deps = ["ForwardDiff", "IfElse", "SLEEFPirates", "VectorizationBase"] -git-tree-sha1 = "dd4195d308df24f33fb10dde7c22103ba88887fa" -uuid = "3cdde19b-5bb0-4aaf-8931-af3e248e098b" -version = "0.1.1" - [[deps.SIMDTypes]] git-tree-sha1 = "330289636fb8107c5f32088d2741e9fd7a061a5c" uuid = "94e857df-77ce-4151-89e5-788b33177be4" @@ -816,21 +922,51 @@ version = "0.1.0" [[deps.SLEEFPirates]] deps = ["IfElse", "Static", "VectorizationBase"] -git-tree-sha1 = "938c9ecffb28338a6b8b970bda0f3806a65e7906" +git-tree-sha1 = "3aac6d68c5e57449f5b9b865c9ba50ac2970c4cf" uuid = "476501e8-09a2-5ece-8869-fb82de89a1fa" -version = "0.6.36" +version = "0.6.42" [[deps.SciMLBase]] -deps = ["ArrayInterfaceCore", "CommonSolve", "ConstructionBase", "Distributed", "DocStringExtensions", "EnumX", "FunctionWrappersWrappers", "IteratorInterfaceExtensions", "LinearAlgebra", "Logging", "Markdown", "Preferences", "RecipesBase", "RecursiveArrayTools", "RuntimeGeneratedFunctions", "StaticArraysCore", "Statistics", "Tables"] -git-tree-sha1 = "556d521bb57a9cc232a5c60a6dc4feccd64a620a" +deps = ["ADTypes", "ArrayInterface", "CommonSolve", "ConstructionBase", "Distributed", "DocStringExtensions", "EnumX", "FunctionWrappersWrappers", "IteratorInterfaceExtensions", "LinearAlgebra", "Logging", "Markdown", "PrecompileTools", "Preferences", "Printf", "RecipesBase", "RecursiveArrayTools", "Reexport", "RuntimeGeneratedFunctions", "SciMLOperators", "SciMLStructures", "StaticArraysCore", "Statistics", "SymbolicIndexingInterface", "Tables"] +git-tree-sha1 = "265f1a7a804d8093fa0b17e33e45373a77e56ca5" uuid = "0bca4576-84f4-4d90-8ffe-ffa030f20462" -version = "1.65.0" +version = "2.38.0" + + [deps.SciMLBase.extensions] + SciMLBaseChainRulesCoreExt = "ChainRulesCore" + SciMLBaseMakieExt = "Makie" + SciMLBasePartialFunctionsExt = "PartialFunctions" + SciMLBasePyCallExt = "PyCall" + SciMLBasePythonCallExt = "PythonCall" + SciMLBaseRCallExt = "RCall" + SciMLBaseZygoteExt = "Zygote" + + [deps.SciMLBase.weakdeps] + ChainRules = "082447d4-558c-5d27-93f4-14fc19e9eca2" + ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" + Makie = "ee78f7c6-11fb-53f2-987a-cfe4a2b5a57a" + PartialFunctions = "570af359-4316-4cb7-8c74-252c00c2016b" + PyCall = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0" + PythonCall = "6099a3de-0909-46bc-b1f4-468b9a2dfc0d" + RCall = "6f49c342-dc21-5d91-9882-a32aef131414" + Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" + +[[deps.SciMLOperators]] +deps = ["ArrayInterface", "DocStringExtensions", "LinearAlgebra", "MacroTools", "Setfield", "SparseArrays", "StaticArraysCore"] +git-tree-sha1 = "10499f619ef6e890f3f4a38914481cc868689cd5" +uuid = "c0aeaf25-5076-4817-a8d5-81caf7dfa961" +version = "0.3.8" + +[[deps.SciMLStructures]] +git-tree-sha1 = "d778a74df2f64059c38453b34abad1953b2b8722" +uuid = "53ae85a6-f571-4167-b2af-e1d143709226" +version = "1.2.0" [[deps.SentinelArrays]] deps = ["Dates", "Random"] -git-tree-sha1 = "efd23b378ea5f2db53a55ae53d3133de4e080aa9" +git-tree-sha1 = "90b4f68892337554d31cdcdbe19e48989f26c7e6" uuid = "91c51154-3ec4-41a3-a24f-3f23e20d615c" -version = "1.3.16" +version = "1.4.3" [[deps.Serialization]] uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b" @@ -845,117 +981,158 @@ version = "1.1.1" deps = ["Distributed", "Mmap", "Random", "Serialization"] uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383" +[[deps.SimpleNonlinearSolve]] +deps = ["ADTypes", "ArrayInterface", "ConcreteStructs", "DiffEqBase", "DiffResults", "FastClosures", "FiniteDiff", "ForwardDiff", "LinearAlgebra", "MaybeInplace", "PrecompileTools", "Reexport", "SciMLBase", "StaticArraysCore"] +git-tree-sha1 = "c020028bb22a2f23cbd88cb92cf47cbb8c98513f" +uuid = "727e6d20-b764-4bd8-a329-72de5adea6c7" +version = "1.8.0" + + [deps.SimpleNonlinearSolve.extensions] + SimpleNonlinearSolveChainRulesCoreExt = "ChainRulesCore" + SimpleNonlinearSolvePolyesterForwardDiffExt = "PolyesterForwardDiff" + SimpleNonlinearSolveReverseDiffExt = "ReverseDiff" + SimpleNonlinearSolveStaticArraysExt = "StaticArrays" + SimpleNonlinearSolveTrackerExt = "Tracker" + SimpleNonlinearSolveZygoteExt = "Zygote" + + [deps.SimpleNonlinearSolve.weakdeps] + ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" + PolyesterForwardDiff = "98d1487c-24ca-40b6-b7ab-df2af84e126b" + ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" + StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" + Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" + Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" + [[deps.SimpleTraits]] deps = ["InteractiveUtils", "MacroTools"] git-tree-sha1 = "5d7e3f4e11935503d3ecaf7186eac40602e7d231" uuid = "699a6c99-e7fa-54fc-8d76-47d257e15c1d" version = "0.9.4" -[[deps.SnoopPrecompile]] -git-tree-sha1 = "f604441450a3c0569830946e5b33b78c928e1a85" -uuid = "66db9d55-30c0-4569-8b51-7e840670fc0c" -version = "1.0.1" - -[[deps.Sobol]] -deps = ["DelimitedFiles", "Random"] -git-tree-sha1 = "5a74ac22a9daef23705f010f72c81d6925b19df8" -uuid = "ed01d8cd-4d21-5b2a-85b4-cc3bdc58bad4" -version = "1.5.0" +[[deps.SimpleUnPack]] +git-tree-sha1 = "58e6353e72cde29b90a69527e56df1b5c3d8c437" +uuid = "ce78b400-467f-4804-87d8-8f486da07d0a" +version = "1.1.0" [[deps.Sockets]] uuid = "6462fe0b-24de-5631-8697-dd941f90decc" [[deps.SortingAlgorithms]] deps = ["DataStructures"] -git-tree-sha1 = "b3363d7460f7d098ca0912c69b082f75625d7508" +git-tree-sha1 = "66e0a8e672a0bdfca2c3f5937efb8538b9ddc085" uuid = "a2af1166-a08f-5f64-846c-94a0d3cef48c" -version = "1.0.1" +version = "1.2.1" [[deps.SparseArrays]] -deps = ["LinearAlgebra", "Random"] +deps = ["Libdl", "LinearAlgebra", "Random", "Serialization", "SuiteSparse_jll"] uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" +version = "1.10.0" [[deps.SparseDiffTools]] -deps = ["Adapt", "ArrayInterfaceCore", "ArrayInterfaceStaticArrays", "Compat", "DataStructures", "FiniteDiff", "ForwardDiff", "Graphs", "LinearAlgebra", "Requires", "SparseArrays", "StaticArrays", "VertexSafeGraphs"] -git-tree-sha1 = "472216c5af9f2f1fce02b760651fe024c75187bd" +deps = ["ADTypes", "Adapt", "ArrayInterface", "Compat", "DataStructures", "FiniteDiff", "ForwardDiff", "Graphs", "LinearAlgebra", "PackageExtensionCompat", "Random", "Reexport", "SciMLOperators", "Setfield", "SparseArrays", "StaticArrayInterface", "StaticArrays", "Tricks", "UnPack", "VertexSafeGraphs"] +git-tree-sha1 = "469f51f8c4741ce944be2c0b65423b518b1405b0" uuid = "47a9eef4-7e08-11e9-0b38-333d64bd3804" -version = "1.29.0" +version = "2.19.0" + + [deps.SparseDiffTools.extensions] + SparseDiffToolsEnzymeExt = "Enzyme" + SparseDiffToolsPolyesterExt = "Polyester" + SparseDiffToolsPolyesterForwardDiffExt = "PolyesterForwardDiff" + SparseDiffToolsSymbolicsExt = "Symbolics" + SparseDiffToolsZygoteExt = "Zygote" + + [deps.SparseDiffTools.weakdeps] + Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9" + Polyester = "f517fe37-dbe3-4b94-8317-1923a5111588" + PolyesterForwardDiff = "98d1487c-24ca-40b6-b7ab-df2af84e126b" + Symbolics = "0c5d862f-8b57-4792-8d23-62f2024744c7" + Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" + +[[deps.Sparspak]] +deps = ["Libdl", "LinearAlgebra", "Logging", "OffsetArrays", "Printf", "SparseArrays", "Test"] +git-tree-sha1 = "342cf4b449c299d8d1ceaf00b7a49f4fbc7940e7" +uuid = "e56a9233-b9d6-4f03-8d0f-1825330902ac" +version = "0.3.9" [[deps.SpecialFunctions]] -deps = ["ChainRulesCore", "IrrationalConstants", "LogExpFunctions", "OpenLibm_jll", "OpenSpecFun_jll"] -git-tree-sha1 = "d75bda01f8c31ebb72df80a46c88b25d1c79c56d" +deps = ["IrrationalConstants", "LogExpFunctions", "OpenLibm_jll", "OpenSpecFun_jll"] +git-tree-sha1 = "2f5d4697f21388cbe1ff299430dd169ef97d7e14" uuid = "276daf66-3868-5448-9aa4-cd146d93841b" -version = "2.1.7" +version = "2.4.0" +weakdeps = ["ChainRulesCore"] -[[deps.StableRNGs]] -deps = ["Random", "Test"] -git-tree-sha1 = "3be7d49667040add7ee151fefaf1f8c04c8c8276" -uuid = "860ef19b-820b-49d6-a774-d7a799459cd3" -version = "1.0.0" + [deps.SpecialFunctions.extensions] + SpecialFunctionsChainRulesCoreExt = "ChainRulesCore" [[deps.Static]] deps = ["IfElse"] -git-tree-sha1 = "de4f0a4f049a4c87e4948c04acff37baf1be01a6" +git-tree-sha1 = "d2fdac9ff3906e27f7a618d47b676941baa6c80c" uuid = "aedffcd0-7271-4cad-89d0-dc628f76c6d3" -version = "0.7.7" +version = "0.8.10" + +[[deps.StaticArrayInterface]] +deps = ["ArrayInterface", "Compat", "IfElse", "LinearAlgebra", "PrecompileTools", "Requires", "SparseArrays", "Static", "SuiteSparse"] +git-tree-sha1 = "5d66818a39bb04bf328e92bc933ec5b4ee88e436" +uuid = "0d7ed370-da01-4f52-bd93-41d350b8b718" +version = "1.5.0" +weakdeps = ["OffsetArrays", "StaticArrays"] + + [deps.StaticArrayInterface.extensions] + StaticArrayInterfaceOffsetArraysExt = "OffsetArrays" + StaticArrayInterfaceStaticArraysExt = "StaticArrays" [[deps.StaticArrays]] -deps = ["LinearAlgebra", "Random", "StaticArraysCore", "Statistics"] -git-tree-sha1 = "f86b3a049e5d05227b10e15dbb315c5b90f14988" +deps = ["LinearAlgebra", "PrecompileTools", "Random", "StaticArraysCore"] +git-tree-sha1 = "9ae599cd7529cfce7fea36cf00a62cfc56f0f37c" uuid = "90137ffa-7385-5640-81b9-e52037218182" -version = "1.5.9" +version = "1.9.4" +weakdeps = ["ChainRulesCore", "Statistics"] + + [deps.StaticArrays.extensions] + StaticArraysChainRulesCoreExt = "ChainRulesCore" + StaticArraysStatisticsExt = "Statistics" [[deps.StaticArraysCore]] -git-tree-sha1 = "6b7ba252635a5eff6a0b0664a41ee140a1c9e72a" +git-tree-sha1 = "36b3d696ce6366023a0ea192b4cd442268995a0d" uuid = "1e83bf80-4336-4d27-bf5d-d5a4f845583c" -version = "1.4.0" +version = "1.4.2" [[deps.Statistics]] deps = ["LinearAlgebra", "SparseArrays"] uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" - -[[deps.StatsAPI]] -deps = ["LinearAlgebra"] -git-tree-sha1 = "f9af7f195fb13589dd2e2d57fdb401717d2eb1f6" -uuid = "82ae8749-77ed-4fe6-ae5f-f523153014b0" -version = "1.5.0" - -[[deps.StatsBase]] -deps = ["DataAPI", "DataStructures", "LinearAlgebra", "LogExpFunctions", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics", "StatsAPI"] -git-tree-sha1 = "d1bf48bfcc554a3761a133fe3a9bb01488e06916" -uuid = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91" -version = "0.33.21" - -[[deps.StatsFuns]] -deps = ["ChainRulesCore", "HypergeometricFunctions", "InverseFunctions", "IrrationalConstants", "LogExpFunctions", "Reexport", "Rmath", "SpecialFunctions"] -git-tree-sha1 = "5783b877201a82fc0014cbf381e7e6eb130473a4" -uuid = "4c63d2b9-4356-54db-8cca-17b64c39e42c" -version = "1.0.1" +version = "1.10.0" [[deps.StrideArraysCore]] -deps = ["ArrayInterface", "CloseOpenIntervals", "IfElse", "LayoutPointers", "ManualMemory", "SIMDTypes", "Static", "ThreadingUtilities"] -git-tree-sha1 = "ac730bd978bf35f9fe45daa0bd1f51e493e97eb4" +deps = ["ArrayInterface", "CloseOpenIntervals", "IfElse", "LayoutPointers", "LinearAlgebra", "ManualMemory", "SIMDTypes", "Static", "StaticArrayInterface", "ThreadingUtilities"] +git-tree-sha1 = "25349bf8f63aa36acbff5e3550a86e9f5b0ef682" uuid = "7792a7ef-975c-4747-a70f-980b88e8d1da" -version = "0.3.15" +version = "0.5.6" [[deps.StringManipulation]] -git-tree-sha1 = "46da2434b41f41ac3594ee9816ce5541c6096123" +deps = ["PrecompileTools"] +git-tree-sha1 = "a04cabe79c5f01f4d723cc6704070ada0b9d46d5" uuid = "892a3eda-7b42-436c-8928-eab12a02cf0e" -version = "0.3.0" +version = "0.3.4" [[deps.SuiteSparse]] deps = ["Libdl", "LinearAlgebra", "Serialization", "SparseArrays"] uuid = "4607b0f0-06f3-5cda-b6b1-a6196a1729e9" [[deps.SuiteSparse_jll]] -deps = ["Artifacts", "Libdl", "Pkg", "libblastrampoline_jll"] +deps = ["Artifacts", "Libdl", "libblastrampoline_jll"] uuid = "bea87d4a-7f5b-5778-9afe-8cc45184846c" -version = "5.10.1+0" +version = "7.2.1+1" + +[[deps.SymbolicIndexingInterface]] +deps = ["Accessors", "ArrayInterface", "RuntimeGeneratedFunctions", "StaticArraysCore"] +git-tree-sha1 = "b479c7a16803f08779ac5b7f9844a42621baeeda" +uuid = "2efcf032-c050-4f8e-a9bb-153293bab1f5" +version = "0.3.21" [[deps.TOML]] deps = ["Dates"] uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76" -version = "1.0.0" +version = "1.0.3" [[deps.TableTraits]] deps = ["IteratorInterfaceExtensions"] @@ -964,15 +1141,15 @@ uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c" version = "1.0.1" [[deps.Tables]] -deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "OrderedCollections", "TableTraits", "Test"] -git-tree-sha1 = "c79322d36826aa2f4fd8ecfa96ddb47b174ac78d" +deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "OrderedCollections", "TableTraits"] +git-tree-sha1 = "cb76cf677714c095e535e3501ac7954732aeea2d" uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c" -version = "1.10.0" +version = "1.11.1" [[deps.Tar]] deps = ["ArgTools", "SHA"] uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e" -version = "1.10.1" +version = "1.10.0" [[deps.Test]] deps = ["InteractiveUtils", "Logging", "Random", "Serialization"] @@ -980,31 +1157,41 @@ uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [[deps.ThreadingUtilities]] deps = ["ManualMemory"] -git-tree-sha1 = "f8629df51cab659d70d2e5618a430b4d3f37f2c3" +git-tree-sha1 = "eda08f7e9818eb53661b3deb74e3159460dfbc27" uuid = "8290d209-cae3-49c0-8002-c8c24d57dab5" -version = "0.5.0" +version = "0.5.2" + +[[deps.TimerOutputs]] +deps = ["ExprTools", "Printf"] +git-tree-sha1 = "5a13ae8a41237cff5ecf34f73eb1b8f42fff6531" +uuid = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f" +version = "0.5.24" [[deps.TranscodingStreams]] -deps = ["Random", "Test"] -git-tree-sha1 = "8a75929dcd3c38611db2f8d08546decb514fcadf" +git-tree-sha1 = "5d54d076465da49d6746c647022f3b3674e64156" uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa" -version = "0.9.9" +version = "0.10.8" +weakdeps = ["Random", "Test"] -[[deps.Trapz]] -git-tree-sha1 = "79eb0ed763084a3e7de81fe1838379ac6a23b6a0" -uuid = "592b5752-818d-11e9-1e9a-2b8ca4a44cd1" -version = "2.0.3" + [deps.TranscodingStreams.extensions] + TestExt = ["Test", "Random"] [[deps.TriangularSolve]] -deps = ["CloseOpenIntervals", "IfElse", "LayoutPointers", "LinearAlgebra", "LoopVectorization", "Polyester", "SnoopPrecompile", "Static", "VectorizationBase"] -git-tree-sha1 = "fdddcf6b2c7751cd97de69c18157aacc18fbc660" +deps = ["CloseOpenIntervals", "IfElse", "LayoutPointers", "LinearAlgebra", "LoopVectorization", "Polyester", "Static", "VectorizationBase"] +git-tree-sha1 = "66c68a20907800c0b7c04ff8a6164115e8747de2" uuid = "d5829a12-d9aa-46ab-831f-fb7c9ab06edf" -version = "0.1.14" +version = "0.2.0" [[deps.Tricks]] -git-tree-sha1 = "6bac775f2d42a611cdfcd1fb217ee719630c4175" +git-tree-sha1 = "eae1bb484cd63b36999ee58be2de6c178105112f" uuid = "410a4b4d-49e4-4fbc-ab6d-cb71b17b3775" -version = "0.1.6" +version = "0.1.8" + +[[deps.TruncatedStacktraces]] +deps = ["InteractiveUtils", "MacroTools", "Preferences"] +git-tree-sha1 = "ea3e54c2bdde39062abf5a9758a23735558705e1" +uuid = "781d530d-4396-4725-bb49-402e4bee1e77" +version = "1.4.0" [[deps.UUIDs]] deps = ["Random", "SHA"] @@ -1019,10 +1206,10 @@ version = "1.0.2" uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" [[deps.VectorizationBase]] -deps = ["ArrayInterface", "CPUSummary", "HostCPUFeatures", "IfElse", "LayoutPointers", "Libdl", "LinearAlgebra", "SIMDTypes", "Static"] -git-tree-sha1 = "ba9d398034a2ba78059391492730889c6e45cf15" +deps = ["ArrayInterface", "CPUSummary", "HostCPUFeatures", "IfElse", "LayoutPointers", "Libdl", "LinearAlgebra", "SIMDTypes", "Static", "StaticArrayInterface"] +git-tree-sha1 = "6129a4faf6242e7c3581116fbe3270f3ab17c90d" uuid = "3d5dd08c-fd9d-11e8-17fa-ed2836048c2f" -version = "0.21.54" +version = "0.21.67" [[deps.VertexSafeGraphs]] deps = ["Graphs"] @@ -1036,34 +1223,33 @@ git-tree-sha1 = "b1be2855ed9ed8eac54e5caff2afcdb442d52c23" uuid = "ea10d353-3f73-51f8-a26c-33c1cb351aa5" version = "1.4.2" -[[deps.WoodburyMatrices]] -deps = ["LinearAlgebra", "SparseArrays"] -git-tree-sha1 = "de67fa59e33ad156a590055375a30b23c40299d3" -uuid = "efce3f68-66dc-5838-9240-27a6d6f5f9b6" -version = "0.5.5" +[[deps.WorkerUtilities]] +git-tree-sha1 = "cd1659ba0d57b71a464a29e64dbc67cfe83d54e7" +uuid = "76eceee3-57b5-4d4a-8e66-0e911cebbf60" +version = "1.6.1" [[deps.Zlib_jll]] deps = ["Libdl"] uuid = "83775a58-1f1d-513f-b197-d71354ab007a" -version = "1.2.12+3" - -[[deps.ZygoteRules]] -deps = ["MacroTools"] -git-tree-sha1 = "8c1a8e4dfacb1fd631745552c8db35d0deb09ea0" -uuid = "700de1a5-db45-46bc-99cf-38207098b444" -version = "0.2.2" +version = "1.2.13+1" [[deps.libblastrampoline_jll]] -deps = ["Artifacts", "Libdl", "OpenBLAS_jll"] +deps = ["Artifacts", "Libdl"] uuid = "8e850b90-86db-534c-a0d3-1478176c7d93" -version = "5.1.1+0" +version = "5.8.0+1" [[deps.nghttp2_jll]] deps = ["Artifacts", "Libdl"] uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d" -version = "1.48.0+0" +version = "1.52.0+1" + +[[deps.oneTBB_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "7d0ea0f4895ef2f5cb83645fa689e52cb55cf493" +uuid = "1317d2d5-d96f-522e-a858-c73665f53c3e" +version = "2021.12.0+0" [[deps.p7zip_jll]] deps = ["Artifacts", "Libdl"] uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0" -version = "17.4.0+0" +version = "17.4.0+2" diff --git a/article/julia-env/Project.toml b/article/julia-env/Project.toml index 42a9d70..f9a25c2 100644 --- a/article/julia-env/Project.toml +++ b/article/julia-env/Project.toml @@ -2,5 +2,4 @@ CSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b" DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0" DiffEqCallbacks = "459566f4-90b8-5000-8ac3-15dfb0a30def" -GlobalSensitivity = "af5da776-676b-467e-8baf-acd8249e4f0f" OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed" diff --git a/article/notebooks/article_error_propagation_analysis.ipynb b/article/notebooks/article_error_propagation_analysis.ipynb index 36b9f4f..612aaf5 100644 --- a/article/notebooks/article_error_propagation_analysis.ipynb +++ b/article/notebooks/article_error_propagation_analysis.ipynb @@ -10,7 +10,23 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, + "id": "c1f9e8a0", + "metadata": {}, + "outputs": [], + "source": [ + "# in the jupyter data science docker container the cmdstan is not correctly set\n", + "# so we need to set it manually\n", + "# Check if the notebook is the docker container\n", + "import pathlib\n", + "if pathlib.Path().resolve() == pathlib.Path('/home/jovyan/article/notebooks'):\n", + " import cmdstanpy\n", + " cmdstanpy.set_cmdstan_path('/opt/conda/envs/venv_pseudobatch/bin/cmdstan')" + ] + }, + { + "cell_type": "code", + "execution_count": 26, "id": "01267562", "metadata": {}, "outputs": [], @@ -24,8 +40,8 @@ "from typing import Union\n", "\n", "import arviz as az\n", - "import cmdstanpy\n", "import numpy as np\n", + "import cmdstanpy\n", "import pandas as pd\n", "from tqdm import tqdm\n", "import xarray as xr\n", @@ -85,7 +101,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 2, "id": "8cd2aa2a", "metadata": {}, "outputs": [], @@ -126,7 +142,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 3, "id": "6fe85a47", "metadata": {}, "outputs": [], @@ -152,7 +168,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 4, "id": "63f9a60e", "metadata": {}, "outputs": [ @@ -455,7 +471,7 @@ "c_Product_pseudobatch 18.732292 " ] }, - "execution_count": 19, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -490,7 +506,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 5, "id": "bcd344a8", "metadata": {}, "outputs": [ @@ -539,63 +555,63 @@ " \n", " \n", " lp\n", - " -116.642\n", - " 4.723\n", - " -125.539\n", - " -107.988\n", - " 0.114\n", - " 0.081\n", - " 1729.0\n", - " 2431.0\n", + " -116.750\n", + " 4.624\n", + " -125.466\n", + " -108.524\n", + " 0.116\n", + " 0.082\n", + " 1594.0\n", + " 2628.0\n", " 1.00\n", " \n", " \n", " acceptance_rate\n", - " 0.889\n", - " 0.105\n", - " 0.694\n", + " 0.881\n", + " 0.112\n", + " 0.676\n", " 1.000\n", - " 0.002\n", - " 0.001\n", - " 1597.0\n", - " 4000.0\n", + " 0.005\n", + " 0.004\n", + " 2024.0\n", + " 3510.0\n", " 1.01\n", " \n", " \n", " step_size\n", - " 0.356\n", - " 0.025\n", - " 0.327\n", - " 0.396\n", - " 0.013\n", - " 0.010\n", + " 0.370\n", + " 0.028\n", + " 0.323\n", + " 0.397\n", + " 0.014\n", + " 0.011\n", " 4.0\n", " 4.0\n", " inf\n", " \n", " \n", " tree_depth\n", - " 3.780\n", - " 0.421\n", + " 3.682\n", + " 0.474\n", " 3.000\n", " 4.000\n", - " 0.103\n", - " 0.074\n", - " 17.0\n", - " 17.0\n", - " 1.16\n", + " 0.091\n", + " 0.065\n", + " 29.0\n", + " 26.0\n", + " 1.10\n", " \n", " \n", " n_steps\n", - " 14.204\n", - " 3.821\n", + " 13.820\n", + " 4.738\n", " 7.000\n", " 15.000\n", - " 0.459\n", - " 0.326\n", - " 50.0\n", - " 30.0\n", - " 1.07\n", + " 0.356\n", + " 0.252\n", + " 82.0\n", + " 44.0\n", + " 1.05\n", " \n", " \n", " diverging\n", @@ -611,14 +627,14 @@ " \n", " \n", " energy\n", - " 138.096\n", - " 6.654\n", - " 126.143\n", - " 150.758\n", - " 0.167\n", - " 0.118\n", - " 1630.0\n", - " 2682.0\n", + " 138.250\n", + " 6.617\n", + " 126.702\n", + " 151.408\n", + " 0.178\n", + " 0.126\n", + " 1389.0\n", + " 2198.0\n", " 1.00\n", " \n", " \n", @@ -627,22 +643,22 @@ ], "text/plain": [ " mean sd hdi_3% hdi_97% mcse_mean mcse_sd \n", - "lp -116.642 4.723 -125.539 -107.988 0.114 0.081 \\\n", - "acceptance_rate 0.889 0.105 0.694 1.000 0.002 0.001 \n", - "step_size 0.356 0.025 0.327 0.396 0.013 0.010 \n", - "tree_depth 3.780 0.421 3.000 4.000 0.103 0.074 \n", - "n_steps 14.204 3.821 7.000 15.000 0.459 0.326 \n", + "lp -116.750 4.624 -125.466 -108.524 0.116 0.082 \\\n", + "acceptance_rate 0.881 0.112 0.676 1.000 0.005 0.004 \n", + "step_size 0.370 0.028 0.323 0.397 0.014 0.011 \n", + "tree_depth 3.682 0.474 3.000 4.000 0.091 0.065 \n", + "n_steps 13.820 4.738 7.000 15.000 0.356 0.252 \n", "diverging 0.000 0.000 0.000 0.000 0.000 0.000 \n", - "energy 138.096 6.654 126.143 150.758 0.167 0.118 \n", + "energy 138.250 6.617 126.702 151.408 0.178 0.126 \n", "\n", " ess_bulk ess_tail r_hat \n", - "lp 1729.0 2431.0 1.00 \n", - "acceptance_rate 1597.0 4000.0 1.01 \n", + "lp 1594.0 2628.0 1.00 \n", + "acceptance_rate 2024.0 3510.0 1.01 \n", "step_size 4.0 4.0 inf \n", - "tree_depth 17.0 17.0 1.16 \n", - "n_steps 50.0 30.0 1.07 \n", + "tree_depth 29.0 26.0 1.10 \n", + "n_steps 82.0 44.0 1.05 \n", "diverging 4000.0 4000.0 NaN \n", - "energy 1630.0 2682.0 1.00 " + "energy 1389.0 2198.0 1.00 " ] }, "metadata": {}, @@ -659,8 +675,8 @@ "

    \n", " \n", "
  • \n", - " \n", - " \n", + " \n", + " \n", "
    \n", "
    \n", "
      \n", @@ -1038,417 +1054,417 @@ " * f_nonzero_dim_0 (f_nonzero_dim_0) int64 0 1 2 3 4 5 6 7\n", " * cfeed_nonzero_dim_0 (cfeed_nonzero_dim_0) int64 0\n", "Data variables: (12/13)\n", - " v0 (chain, draw) float64 1.022e+03 1.01e+03 ... 1.003e+03\n", - " m (chain, draw, sample, species) float64 1.322e+03 ......\n", - " as (chain, draw, sample) float64 -1.62 -1.474 ... -0.8874\n", - " f_nonzero (chain, draw, f_nonzero_dim_0) float64 15.04 ... 200.3\n", - " cfeed_nonzero (chain, draw, cfeed_nonzero_dim_0) float64 100.8 ......\n", - " apump (chain, draw) float64 0.005324 -0.02565 ... -0.06328\n", + " v0 (chain, draw) float64 1.018e+03 1.012e+03 ... 1.02e+03\n", + " m (chain, draw, sample, species) float64 1.365e+03 ......\n", + " as (chain, draw, sample) float64 -1.629 -1.376 ... -0.81\n", + " f_nonzero (chain, draw, f_nonzero_dim_0) float64 17.37 ... 191.4\n", + " cfeed_nonzero (chain, draw, cfeed_nonzero_dim_0) float64 99.8 ... ...\n", + " apump (chain, draw) float64 -0.02581 -0.01148 ... -0.007012\n", " ... ...\n", - " s (chain, draw, sample) float64 171.3 165.2 ... 148.1\n", - " v (chain, draw, sample) float64 1.037e+03 886.5 ... 507.8\n", - " c (chain, draw, sample, species) float64 1.275 ... 38.05\n", - " pump_bias (chain, draw) float64 -5.236 nan nan ... nan -6.426 nan\n", - " cfeed (chain, draw, species) float64 0.0 100.8 ... 99.75 0.0\n", - " pseudobatch_c (chain, draw, sample, species) float64 1.275 ... 180.4\n", + " s (chain, draw, sample) float64 169.8 179.4 ... 164.1\n", + " v (chain, draw, sample) float64 1.036e+03 889.4 ... 533.0\n", + " c (chain, draw, sample, species) float64 1.318 ... 34.25\n", + " pump_bias (chain, draw) float64 nan nan -3.28 ... -5.96 nan\n", + " cfeed (chain, draw, species) float64 0.0 99.8 ... 100.6 0.0\n", + " pseudobatch_c (chain, draw, sample, species) float64 1.318 ... 141.5\n", "Attributes:\n", - " created_at: 2024-05-16T11:14:59.933392\n", + " created_at: 2024-05-24T14:23:47.962511\n", " arviz_version: 0.15.1\n", " inference_library: cmdstanpy\n", - " inference_library_version: 1.1.0
    • sample
      PandasIndex
      PandasIndex(Index([0, 1, 2, 3, 4, 5, 6, 7], dtype='int64', name='sample'))
    • species
      PandasIndex
      PandasIndex(Index(['Biomass', 'Glucose', 'Product'], dtype='object', name='species'))
    • f_nonzero_dim_0
      PandasIndex
      PandasIndex(Index([0, 1, 2, 3, 4, 5, 6, 7], dtype='int64', name='f_nonzero_dim_0'))
    • cfeed_nonzero_dim_0
      PandasIndex
      PandasIndex(Index([0], dtype='int64', name='cfeed_nonzero_dim_0'))
  • created_at :
    2024-05-24T14:23:47.962511
    arviz_version :
    0.15.1
    inference_library :
    cmdstanpy
    inference_library_version :
    1.1.0

\n", " \n", " \n", " \n", " \n", "
  • \n", - " \n", - " \n", + " \n", + " \n", "
    \n", "
    \n", "
      \n", @@ -1821,49 +1837,49 @@ " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 ... 993 994 995 996 997 998 999\n", "Data variables:\n", - " lp (chain, draw) float64 -114.2 -118.4 ... -119.3 -118.1\n", - " acceptance_rate (chain, draw) float64 0.8813 0.8693 ... 0.7744 0.8397\n", - " step_size (chain, draw) float64 0.3957 0.3957 ... 0.3551 0.3551\n", - " tree_depth (chain, draw) int64 3 3 3 3 3 3 4 3 4 ... 4 4 4 4 4 4 4 3 5\n", - " n_steps (chain, draw) int64 15 7 7 7 7 15 15 ... 15 15 15 15 15 31\n", + " lp (chain, draw) float64 -113.4 -117.2 ... -125.5 -123.5\n", + " acceptance_rate (chain, draw) float64 0.8167 0.7464 0.9981 ... 0.7324 1.0\n", + " step_size (chain, draw) float64 0.3858 0.3858 ... 0.3738 0.3738\n", + " tree_depth (chain, draw) int64 3 3 4 3 3 4 4 3 4 ... 4 3 3 3 4 3 4 3 3\n", + " n_steps (chain, draw) int64 7 7 15 7 7 15 15 ... 15 15 15 15 15 7\n", " diverging (chain, draw) bool False False False ... False False False\n", - " energy (chain, draw) float64 137.6 138.4 129.8 ... 144.4 142.2\n", + " energy (chain, draw) float64 137.6 137.7 128.9 ... 146.9 143.1\n", "Attributes:\n", - " created_at: 2024-05-16T11:14:59.941800\n", + " created_at: 2024-05-24T14:23:47.976011\n", " arviz_version: 0.15.1\n", " inference_library: cmdstanpy\n", - " inference_library_version: 1.1.0
  • created_at :
    2024-05-24T14:23:47.976011
    arviz_version :
    0.15.1
    inference_library :
    cmdstanpy
    inference_library_version :
    1.1.0

  • \n", " \n", " \n", " \n", " \n", "
  • \n", - " \n", - " \n", + " \n", + " \n", "
    \n", "
    \n", "
      \n", @@ -2241,427 +2257,427 @@ " * f_nonzero_dim_0 (f_nonzero_dim_0) int64 0 1 2 3 4 5 6 7\n", " * cfeed_nonzero_dim_0 (cfeed_nonzero_dim_0) int64 0\n", "Data variables: (12/13)\n", - " v0 (chain, draw) float64 1.008e+03 1.016e+03 ... 1.026e+03\n", - " m (chain, draw, sample, species) float64 1.47e+04 ... ...\n", - " as (chain, draw, sample) float64 -2.087 -1.17 ... -1.769\n", - " f_nonzero (chain, draw, f_nonzero_dim_0) float64 0.8765 ... 74.89\n", - " cfeed_nonzero (chain, draw, cfeed_nonzero_dim_0) float64 99.71 ......\n", - " apump (chain, draw) float64 0.03235 0.01651 ... 0.0004383\n", + " v0 (chain, draw) float64 1.022e+03 1.016e+03 ... 1.013e+03\n", + " m (chain, draw, sample, species) float64 1.612 ... 24.25\n", + " as (chain, draw, sample) float64 -2.471 -1.305 ... -1.538\n", + " f_nonzero (chain, draw, f_nonzero_dim_0) float64 1.44 ... 0.4008\n", + " cfeed_nonzero (chain, draw, cfeed_nonzero_dim_0) float64 100.4 ......\n", + " apump (chain, draw) float64 -0.004807 -0.01872 ... -0.008577\n", " ... ...\n", - " s (chain, draw, sample) float64 111.4 229.1 ... 6.275e+04\n", - " v (chain, draw, sample) float64 1.009e+03 ... 4.306e+05\n", - " c (chain, draw, sample, species) float64 14.57 ... 0.0...\n", - " pump_bias (chain, draw) float64 -3.431 -4.104 nan ... nan -7.733\n", - " cfeed (chain, draw, species) float64 0.0 99.71 ... 100.1 0.0\n", - " pseudobatch_c (chain, draw, sample, species) float64 14.57 ... 0.0...\n", + " s (chain, draw, sample) float64 79.73 201.4 ... 3.349e+03\n", + " v (chain, draw, sample) float64 1.024e+03 ... 1.894e+04\n", + " c (chain, draw, sample, species) float64 0.001575 ... ...\n", + " pump_bias (chain, draw) float64 nan nan nan nan ... nan nan nan\n", + " cfeed (chain, draw, species) float64 0.0 100.4 ... 100.6 0.0\n", + " pseudobatch_c (chain, draw, sample, species) float64 0.001575 ... ...\n", "Attributes:\n", - " created_at: 2024-05-16T11:15:00.082294\n", + " created_at: 2024-05-24T14:23:48.139088\n", " arviz_version: 0.15.1\n", " inference_library: cmdstanpy\n", - " inference_library_version: 1.1.0
    • sample
      PandasIndex
      PandasIndex(Index([0, 1, 2, 3, 4, 5, 6, 7], dtype='int64', name='sample'))
    • species
      PandasIndex
      PandasIndex(Index(['Biomass', 'Glucose', 'Product'], dtype='object', name='species'))
    • f_nonzero_dim_0
      PandasIndex
      PandasIndex(Index([0, 1, 2, 3, 4, 5, 6, 7], dtype='int64', name='f_nonzero_dim_0'))
    • cfeed_nonzero_dim_0
      PandasIndex
      PandasIndex(Index([0], dtype='int64', name='cfeed_nonzero_dim_0'))
  • created_at :
    2024-05-24T14:23:48.139088
    arviz_version :
    0.15.1
    inference_library :
    cmdstanpy
    inference_library_version :
    1.1.0

  • \n", " \n", " \n", " \n", " \n", "
  • \n", - " \n", - " \n", + " \n", + " \n", "
    \n", "
    \n", "
      \n", @@ -3034,42 +3050,42 @@ " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 ... 993 994 995 996 997 998 999\n", "Data variables:\n", - " lp (chain, draw) float64 -53.89 -46.32 -46.5 ... -48.21 -44.92\n", - " acceptance_rate (chain, draw) float64 0.8714 1.0 0.7163 ... 0.8887 0.9035\n", - " step_size (chain, draw) float64 0.523 0.523 0.523 ... 0.5786 0.5786\n", + " lp (chain, draw) float64 -50.86 -48.89 ... -53.89 -50.69\n", + " acceptance_rate (chain, draw) float64 0.9359 0.9496 ... 0.9745 0.9098\n", + " step_size (chain, draw) float64 0.5628 0.5628 ... 0.5347 0.5347\n", " tree_depth (chain, draw) int64 3 3 3 3 3 3 3 3 3 ... 3 3 3 3 3 3 3 3 3\n", " n_steps (chain, draw) int64 7 7 7 7 7 7 7 7 7 ... 7 7 7 7 7 7 7 7 7\n", " diverging (chain, draw) bool False False False ... False False False\n", - " energy (chain, draw) float64 78.53 67.21 70.45 ... 69.1 64.59\n", + " energy (chain, draw) float64 68.05 65.9 78.27 ... 76.87 74.49\n", "Attributes:\n", - " created_at: 2024-05-16T11:15:00.090747\n", + " created_at: 2024-05-24T14:23:48.149093\n", " arviz_version: 0.15.1\n", " inference_library: cmdstanpy\n", - " inference_library_version: 1.1.0
  • created_at :
    2024-05-24T14:23:48.149093
    arviz_version :
    0.15.1
    inference_library :
    cmdstanpy
    inference_library_version :
    1.1.0

  • \n", " \n", " \n", " \n", @@ -3425,7 +3441,7 @@ "\t> sample_stats_prior" ] }, - "execution_count": 20, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -3457,13 +3473,13 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 6, "id": "e5c36a63", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABHAAAAH1CAYAAACeMwkWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACcD0lEQVR4nOzdeXhUhbk/8O+ZfckeSEIgLIobKoioXNyqLRXR69Vba6311uW6/OoFq9LFcm+LVFtprettqVStIrdaUVtRAUFEAZWwEwhbSMi+zmT2/czMOb8/woxEEkjIZM4s38/zzPPIzJmZ1yyTM++8iyDLsgwiIiIiIiIiIkpZKqUDICIiIiIiIiKiE2MCh4iIiIiIiIgoxTGBQ0RERERERESU4pjAISIiIiIiIiJKcUzgEBERERERERGlOI3SARARUXaSZRmRSATRaFTpUIiIBkWr1UKtVisdBhERZRkmcIiIKOlEUURHRwf8fr/SoRARDZogCBgzZgxycnKUDoWIiLKIIMuyrHQQRESUPSRJQm1tLdRqNUaOHAmdTgdBEJQOi4hoQGRZhtVqhd/vxxlnnMFKHCIiShpW4BARUVKJoghJklBRUQGTyaR0OEREgzZy5Eg0NjYiHA4zgUNEREnDIcZERKQIlYp/gogoPbFqkIiIlMCzZyIiIiIiIiKiFMcWKiIiShnuYBhBMXlbqQw6NfIM2qQ9X9oIuoBwIHnPpzUChvzkPR8RERFRGmICh4iIUoI7GMYf19fC7hOT9pxFZh0e/NYZw5rEGT9+PB5++GE8/PDDw/YcCRV0ARufAvy25D2nqRj4xs8zMomzcOFCrFixAlVVVUqHQkRERGmOLVRERJQSgmIUdp8IvUaNQpNu2C96jRp2nzioip+77roLgiBAEATodDpMnDgRjz/+OCKRSL/32b59O+6///5EfImSIxzoSd5ojICxePgvGmPP8w2y4udUvhcDsWHDBgiCAKfTOaTHifnpT3+K9evXJ+SxCPHveX+XhQsXKh0iERHRsGEFDhERpRSTTg2zPjl/nkKRwbdrXXvttXjttdcQCoWwevVqzJkzB1qtFvPnz+91nCiK0Ol0GDly5JBijD1O0mlNgD4nOc8VObV2rYF+L5QgyzKi0ShycnKQkzO0r2M4HIZWy1Y/AOjo6Ij/9/Lly7FgwQLU1NTErzv2ax37Hmg0PN0lIqLMwAocIiKiQdDr9SgrK8O4cePwwAMPYObMmfjggw9w11134aabbsJvf/tblJeX46yzzgLQ00L1/PPPx+/f3NyMG2+8ETk5OcjLy8P3vvc9dHV1xW9fuHAhLrjgArzyyiuYMGECDAZDsv8X00Z/3wuHw4E77rgDhYWFMJlMmD17Nmpra+P3a2pqwg033IDCwkKYzWace+65WL16NRobG3H11VcDAAoLCyEIAu666y4AgCRJWLRoESZMmACj0YgpU6bg3XffjT9mrHLno48+wrRp06DX6/HFF1/Ev58xkiTh8ccfx5gxY6DX63HBBRdgzZo18dsbGxshCAKWL1+Ob3zjGzAYDHjjjTeG9wt5LFkGfL7kX2R5QOGVlZXFL/n5+RAEIf7vQ4cOITc397jvQex381gPP/wwrrrqqvi/T/b9JSIiSgX8SIKIiGgIjEYjbLaeeTHr169HXl4e1q1b1+exkiTFkzcbN25EJBLBnDlzcOutt2LDhg3x4+rq6vCPf/wD//znP6FWq5Pxv5ERYt+Lu+66C7W1tfjggw+Ql5eHRx99FNdddx0OHDgArVaLOXPmQBRFbNq0CWazGQcOHEBOTg4qKirwj3/8AzfffDNqamqQl5cHo9EIAFi0aBH+9re/YcmSJTjjjDOwadMm/Md//AdGjhyJb3zjG/EYfvGLX+Dpp5/GaaedhsLCwl7fVwB44YUX8Mwzz+Avf/kLpk6dildffRX/9m//hv379+OMM87o9TjPPPMMpk6dmtwknt8PDLFi6JR4vYDZnJCH+vr3YCAG+v0lIiJSEhM4REREp0CWZaxfvx5r167Fgw8+CKvVCrPZjFdeeaXflqf169ejuroaDQ0NqKioAAAsW7YM5557LrZv346LL74YQE/b1LJly4bcfpUtjv1ezJ49GytWrMCXX36JSy+9FADwxhtvoKKiAitWrMAtt9yC5uZm3HzzzTj//PMBAKeddlr8sYqKigAAJSUlKCgoAACEQiE8+eST+OSTTzBjxoz4fb744gv85S9/6fUG//HHH8e3v/3tfmN9+umn8eijj+L73/8+AOD3v/89PvvsMzz//PNYvHhx/LiHH34Y3/nOdxLw1ck+J/sefN1gvr9ERERKYgKHiIhoEFauXImcnByEw2FIkoQf/OAHWLhwIebMmYPzzz//hPNqDh48iIqKinjyBgAmTZqEgoICHDx4MJ7AGTduHJM3A9DX9+I73/kOVq5cienTp8ePKy4uxllnnYWDBw8CAH784x/jgQcewMcff4yZM2fi5ptvxuTJk/t9nrq6Ovj9/uOSAqIoYurUqb2uu+iii/p9HLfbjfb2dlx22WW9rr/sssuwZ8+eAT/OsDKZeqphlHjeBBns124w318iIiIlMYFDREQ0CFdffTVefPFF6HQ6lJeX9xqQak5QC0iiHifT9fW9+OCDD056v3vvvRezZs3CqlWr8PHHH2PRokV45pln8OCDD/Z5vPdoQmPVqlUYPXp0r9v0en2vf6f9z4AgJKyVSSlf/9qpVCrIX5uxEw6H4/89mO8vERGRkjjEmIiIaBDMZjMmTpyIsWPHDnq7zTnnnIOWlha0tLTErztw4ACcTicmTZqU6FAzXl/fi3POOQeRSARbt26NH2ez2VBTU9Pra1xRUYEf/ehH+Oc//4mf/OQnePnllwEgXkEVjX61oWzSpEnQ6/Vobm7GxIkTe12OraY6mby8PJSXl+PLL7/sdf2XX37J7/8wGjlyZK/tVQBQVVUV/+9EfX+JiIiGGytwiIgopfjFwa/2TuXnOdbMmTNx/vnn4/bbb8fzzz+PSCSC//qv/8I3vvEN5Vpm+hP2p+XznHHGGbjxxhtx33334S9/+Qtyc3Pxi1/8AqNHj8aNN94IoGe+zOzZs3HmmWfC4XDgs88+wznnnAOgp31NEASsXLkS1113HYxGI3Jzc/HTn/4UjzzyCCRJwuWXXw6Xy4Uvv/wSeXl5uPPOOwcc389+9jM89thjOP3003HBBRfgtddeQ1VVVXI3TWWZb37zm/jDH/6AZcuWYcaMGfjb3/6Gffv2xdujEvn9JSIiGk5M4BARUUow6NQoMutg94kIRZKTXCky62DQJW/LkyAIeP/99/Hggw/iyiuvhEqlwrXXXos//vGPSYvhpLRGwFQM+G1AJJCc5zQV9zxvgrz22mt46KGH8K//+q8QRRFXXnklVq9eDa1WC6CnumbOnDlobW1FXl4err32Wjz33HMAgNGjR+PXv/41fvGLX+Duu+/GHXfcgaVLl+KJJ57AyJEjsWjRItTX16OgoAAXXngh/vu//3tQsf34xz+Gy+XCT37yE1gsFkyaNAkffPBBrw1UlFizZs3Cr371K/z85z9HMBjEf/7nf+KOO+5AdXV1/JhEfX+JiIiGkyB/vSmYiIhoGAWDQTQ0NGDChAnHrUd2B8MIJrEyxqBTI8+gTdrzpY2gCwgnKXkD9CRvDPnJez6iITrR6xgREdFwYQUOERGljDyDlgmVVGDIZ0KFiIiIKMVwiDERERERERERUYpjAoeIiIiIiIiIKMUxgUNERERERERElOKYwCEiIkVwhj4RpSu+fhERkRKYwCEioqSKrXL2+/0KR0JEdGpEUQQAqNVqhSMhIqJswi1URESUVGq1GgUFBbBYLAAAk8kEQRAUjoqIaGAkSYLVaoXJZIJGw1NpIiJKHv7VISKipCsrKwOAeBKHiCidqFQqjB07lslnIiJKKkFmEy8RESkkGo0iHA4rHQYR0aDodDqoVJxEQEREycUEDhERERERERFRiuNHB0REREREREREKY4JHCIiIiIiIiKiFMcEDhERERERERFRimMCh4iIiIiIiIgoxTGBQ0RERERERESU4pjAISIiIiIiIiJKcUzgEBEREX3N9u3bcemll8JsNkMQBFRVVSkdEhEREWU5jdIBEBEREaWScDiMW265BQaDAc899xxMJhPGjRundFhERESU5ZjAISIiIjrGkSNH0NTUhJdffhn33nuv0uEQERERAWALFREREVEvFosFAFBQUKBsIERERETHYAKHqB8ejwcPP/wwxo8fD71ej5KSEnz729/Grl27lA6NiIiGyV133YVvfOMbAIBbbrkFgiDgqquuUjYoIiIaFu+++y4EQcDGjRuPu+0vf/kLBEHAvn37FIiMqG9soSLqx49+9CO8++67mDt3LiZNmgSbzYYvvvgCBw8exIUXXqh0eERENAz+3//7fxg9ejSefPJJ/PjHP8bFF1+M0tJSpcMiIqJhcP311yMnJwdvv/12PHkfs3z5cpx77rk477zzFIqO6HiCLMuy0kEQpaKCggL8x3/8B/70pz8pHQoRESXRhg0bcPXVV+Odd97Bd7/7XaXDISKiYfSDH/wA69evR3t7O9RqNQCgs7MTo0ePxsKFC/GrX/1K4QiJvsIWKqJ+FBQUYOvWrWhvb1c6FCIiIiIiGga33norLBYLNmzYEL/u3XffhSRJuPXWW5ULjKgPaZXA2bRpE2644QaUl5dDEASsWLFi0I8hyzKefvppnHnmmdDr9Rg9ejR++9vfJj5YSntPPfUU9u3bh4qKClxyySVYuHAh6uvrlQ6LiIiIKOPxvJ+S5dprr0V+fj6WL18ev2758uW44IILcOaZZyoYGdHx0iqB4/P5MGXKFCxevPiUH+Ohhx7CK6+8gqeffhqHDh3CBx98gEsuuSSBUVKm+N73vof6+nr88Y9/RHl5Of7whz/g3HPPxUcffaR0aEREREQZjef9lCx6vR433XQT3nvvPUQiEbS1teHLL79k9Q2lpLSdgSMIAt577z3cdNNN8etCoRD+53/+B3//+9/hdDpx3nnn4fe//318e8TBgwcxefJk7Nu3D2eddZYygVPaslgsuPDCCzF+/Hh88cUXSodDRETDhDNwiFILz/tpuH300Ue47rrrsGbNGhw8eBCPPPII6uvrMWHCBKVDI+olrSpwTmbu3LmorKzEW2+9hb179+KWW27Btddei9raWgDAhx9+iNNOOw0rV67EhAkTMH78eNx7772w2+0KR06pJhqNwuVy9bqupKQE5eXlCIVCCkVFRERERADP+ymxZs6ciaKiIixfvhzLly/HJZdcwuQNpaSMWSPe3NyM1157Dc3NzSgvLwcA/PSnP8WaNWvw2muv4cknn0R9fT2amprwzjvvYNmyZYhGo3jkkUfw3e9+F59++qnC/weUSjweD8aMGYPvfve7mDJlCnJycvDJJ59g+/bteOaZZ5QOj4iIiChr8byfEk2r1eI73/kO3nrrLfh8Pjz99NNKh0TUp4xJ4FRXVyMajR43aCoUCqG4uBgAIEkSQqEQli1bFj/ur3/9K6ZNm4aamhqWV1KcyWTCf/3Xf+Hjjz/GP//5T0iShIkTJ+LPf/4zHnjgAaXDIyIiIspaPO+n4XDrrbfilVdegSAI+N73vqd0OER9ypgEjtfrhVqtxs6dO6FWq3vdlpOTAwAYNWoUNBpNrxf7c845B0BPJp8v5BSj0+nw1FNP4amnnlI6FCIiSrKrrroKaToikCgr8LyfhsPMmTP52k8pL2MSOFOnTkU0GoXFYsEVV1zR5zGXXXYZIpEIjhw5gtNPPx0AcPjwYQDAuHHjkhYrERERERGdGp73E1G2SqstVF6vF3V1dQB6XrifffZZXH311SgqKsLYsWPxH//xH/jyyy/xzDPPYOrUqbBarVi/fj0mT56M66+/HpIk4eKLL0ZOTg6ef/55SJKEOXPmIC8vDx9//LHC/3dERERERATwvJ+IqC9plcCJrfX8ujvvvBNLly5FOBzGb37zGyxbtgxtbW0YMWIE/uVf/gW//vWvcf755wMA2tvb8eCDD+Ljjz+G2WzG7Nmz8cwzz6CoqCjZ/ztERERERNQHnvcTER0vrRI4RERERERERETZSKV0AEREREREREREdGJM4BARERERERERpbi02EIlSRLa29uRm5sLQRCUDoeIKClkWYbH40F5eTlUquzLt/O1n4iyEV/7+dpPRNlnoK/9aZHAaW9vR0VFhdJhEBEpoqWlBWPGjFE6jKTjaz8RZTO+9hMRZZ+TvfanRQInNzcXQM//TF5ensLREBElh9vtRkVFRfw1MNvwtZ+IshFf+/naT0TZZ6Cv/WmRwImVT+bl5fGFnIiyTraWkPO1n4iyWbq+9re1teHRRx/FRx99BL/fj4kTJ+K1117DRRddNKD787WfiLLZyV770yKBQ0REREREqc3hcOCyyy7D1VdfjY8++ggjR45EbW0tCgsLlQ6NiCgjDHoy2qZNm3DDDTegvLwcgiBgxYoVJ73Phg0bcOGFF0Kv12PixIlYunTpKYRKRERERESp6ve//z0qKirw2muv4ZJLLsGECRNwzTXX4PTTT1c6NCKijDDoBI7P58OUKVOwePHiAR3f0NCA66+/HldffTWqqqrw8MMP495778XatWsHHSwREREREaWmDz74ABdddBFuueUWlJSUYOrUqXj55ZdPeJ9QKAS3293rQkREfRt0C9Xs2bMxe/bsAR+/ZMkSTJgwAc888wwA4JxzzsEXX3yB5557DrNmzRrs0xMRERERUQqqr6/Hiy++iHnz5uG///u/sX37dvz4xz+GTqfDnXfe2ed9Fi1ahF//+tdJjpSIKD0NugJnsCorKzFz5sxe182aNQuVlZX93oeZeCIiIiKi9CJJEi688EI8+eSTmDp1Ku6//37cd999WLJkSb/3mT9/PlwuV/zS0tKSxIiJiNLLsCdwOjs7UVpa2uu60tJSuN1uBAKBPu+zaNEi5Ofnxy8VFRXDHSYREREREQ3BqFGjMGnSpF7XnXPOOWhubu73Pnq9Pr5xipuniIhObNgTOKeCmXgiIiIiovRy2WWXoaamptd1hw8fxrhx4xSKiIgoswz7GvGysjJ0dXX1uq6rqwt5eXkwGo193kev10Ov1w93aERERERElCCPPPIILr30Ujz55JP43ve+h23btuGll17CSy+9pHRoREQZYdgrcGbMmIH169f3um7dunWYMWPGcD81ERERERElycUXX4z33nsPf//733HeeefhiSeewPPPP4/bb79d6dCIiDLCoCtwvF4v6urq4v9uaGhAVVUVioqKMHbsWMyfPx9tbW1YtmwZAOBHP/oR/vSnP+HnP/85/vM//xOffvop3n77baxatSpx/xdERERERKS4f/3Xf8W//uu/Kh0GEVFGGnQFzo4dOzB16lRMnToVADBv3jxMnToVCxYsAAB0dHT0GlQ2YcIErFq1CuvWrcOUKVPwzDPP4JVXXuEKcSIiIiIiIiKiARp0Bc5VV10FWZb7vX3p0qV93mf37t2DfSoiIiIiIiIiIkKKbqEiIiIiIiIiIqKvMIFDRERERERERJTihn2NOBFRNotEJfxjVyvOG52Pc8vzlQ6HaFACYhRvbWvGjVNHo8isUzocIiIiIsWEIlH4Q1F4QxH4xAh8oQi8oSh8oQicfhEOfxiBcBS3TBuDccXmYYmBCRwiomG0rdGOrQ12jC4wKR0K0aB1uYNotPnQYvczgUNEREQZSYxI8MWTMkcTNEcvrkAYdp8Ih1+EX4wiHJUgRiSIUQmSDAhHH0MlCNCqBQTCUTj9YYwrHp5YmcAhIhomVk8Ia/Z1wu4TlQ6F6JTYfCK6vSIsnpDSoRARERENSjgaS8xEj1bLHJ+YcfrD8IUiEI8mZsJRCVEJEI5mZgQB0KlV0GlU0KpVMOs0KDCpoFOroFYJxz3n4S7PsP4/MYFDRDQMJEnG6uoOdLmDMGg5bozSk80bgisgos3pVzoUIiIiIgA9Iwp8oegxbUxfVc64g19VzPiCPYmZWNVM9GjFjIyeYcCxpIxOczQxY1RBqxGgUaXuuTsTOEREw2BnswPbG+0YU2BChyugdDhEp6TTHUQkKqPZ5kdUkvv8pImIiIhouLU7A/iougPdPhGeYPhotYzck5iRZAjCV4kZraanQkarVsGk0xz9bwFqlQBBSO9zGSZwiIgSzO4T8VF1BzQqATkGDeBSOiKiwZNlGW2OAPJNWniCEdh9Ikbm6pUOi4iIiLKMLMtYd6ALlfU2FJh00B1NzGjVQryVKd0TMwPFBA4RUQLJsoyP9nWg1RHAmaW5SodDdMq8R/vDR+To4fCJsHiCTOAQERFR0jXZ/NjT6sSYQhPyjVqlw1FU6jZ3ERGloaoWJ7bW2zC6wMh2E0prNq+IQDiKHL0GkizDykHGRERElGSyLOPLI93whSLIM7D+hAkcIqIEcQXCWF3dAUEQkJflnw5Q+rP5RIQiEvQaFVQqAe1OznIiIiKi5Gp1BLC72YnSPEPWtEmdCBM4REQJIMsy1u7vRJPNjzGFRqXDIRoyu08EIEMQBJh0GjTZ/ZBlWemwiIiIKItsPmKDJxhGAT8cBcAEDhFRQuxvd2NzXTdG5RtSevUg0UB1uYNQCz0/y2adGk6fCFcgrHBURERElC3anQHsbLKjJJfVNzF8l0FENETeUASrqtsRkWQUmHRKh0M0ZLIso8Xhh1GnBgCY9Rr4xCgsnINDRERESbKl3gaXP4xCE6tvYpjAISIagthawyNWH8YVmZQOhyghvKEIXP4wTNqeBI5WrUIkykHGRERElBwWdxBbG+wYkatn9c0xmMAhIhqCw11efH7YitJcAzRqvqRSZrD7ejZQxSpwAEAQgE5XUMGoiIiIKFtU1tvg8IkoNrO6/Vh8t0FEdIr8YgQf7m1HKCKhiH9cKIPYfCJC4Z4NVDFGrRpNNp+CUREREVE26PaGsKXehuIcHatvvoYJHCKiU/TZIQtquzwYy9YpyjA2rwhBQK+TJrNeA6s3BG8oomBkRERElOm21ttg84oYkaNXOpSUwwQOEdEpOGL1YkONFcVmPXQavpRSZulyB6H62ideJp0a/lCUc3CIiIho2Dh8IiqP2FBo1h13LkJM4BARDVowHMXKPe3whSIYkcPWKcossiyj1eGHUavudb1eo0IoGoXFzTk4RERENDy2Ndph9YZQwuqbPjGBQ0Q0SJsOW3Gww42xxSb25VLG8YlRuPzhXgOMgZ52KgECV4kTERHRsHAFwviyrhv5Ri1UKp5j94UJHCKiQWiy+bD+YBcKTDroNeqT34Eozdi8IfjDUZh0x/986zUqNNn8CkRFREREmW5nkx1d7iBKcg1Kh5KymMAhIhogMSJh5Z4OuIMRlOSyrJMyU18bqGJMOg06XQEEw1EFIiMiIqJM5Q1FsOlwN3INWqhZfdMvJnCIiAboyyPd2Nfuwtgitk5R5rJ7RQDo82fcrFfDJ0Y4yJiIiIgSameTA52uAErz+CHpiTCBQ0Q0AG3OANbt70KuQQODlq1TlLm63EGo+jk7MGrVCIgS5+AQERFRwvjFCD4/bIVZr4Gmv5MQAsAEDhHRSUWiElbuaYfdH0JZHntyKXPJsowWhx8mrabP2wVBAASwAoeIiIgSZleTE62OAM+zB4AJHCKik9hSb8eeFicqCtk6RZmtvw1Ux9KqBTTbfUmMioiIiDJVMBzFploLjDo1NGqmJ06GXyEiohPocgexdn8HTDoNTLq+qxKIMoXdK8Ifjp4wgWPWadDmDCAclZIYGREREWWi3c1OtNgDGJXP6puBYAKHiKgfUUnGqr3tsHhCGFXAPyqU+Wy+EMSIBEMfG6hizDoNvMEIbEeHHRMRERGdilAkis9rrdBpVNCy+mZA+FUiIurH9kY7djX3tE6p2DpFWcB2gg1UMUadGv5wlHNwiIiIaEj2trrQ2O1j9c0gMIFDRNSHbm8Ia/Z1QqtWwaxn6xRlhy53ECfLVapVAmRJhsUTTE5QRERElHHEiISNh61QqwXoNdzwOlBM4BARfY0kyVhd3YF2ZwBjCoxKh0OUFLIso9UZ6HcD1bHUKhXanIEkREVERESZaF+7Cw1WL0bn81x7MJjAISL6mt0tDmxvsGNMoREqFVunKDv4xSicfvGEA4xjzHo1mmx+SJKchMiIiIgok0SiEjYdtkIlCNBrWX0zGEzgEBEdw+kXsbq6AyqVgFyDVulwiJLG5hUREE+8gSrGrNPAEwzD7ucgYyIiIhqcAx1u1Fm8GMVK90FjAoeI6ChZlrFmXyda7AFUFJqUDocoqWy+EILhE2+gijHp1PCFIhxkTERERIMSlWRsOmwFZMDI6ptBYwKHiOiova0uVB6xobzACDVbpyjL2H0iBOHEG6hiNGoVojJgYQKHiIiIBuFghxs1nR6MKuDmqVPBBA4REQB3MIxV1R2QISPfyNYpyj5d7iAGk7YUAHRwkDERERENkCTJ+LzWCkkGTDpueT0VTOAQUdaTZRkf7+9EY7ePrVOUlWRZRqsjMKiTKbNOg0abD7LMQcZERER0coctHhzq8GBUPqtvThUTOESU9Q52ePBlXTfK8g3QqPmySNnHL0bhGOAGqhiTXg2nPwx3MDKMkREREVEmkGUZX9R2IxyVYNaz+uZU8Z0KEWU1XyiCVdXtCEdlFJp0SodDpAi77+gGqkEMEzTrNEcHGQeHMTIiIiLKBEesXuxrc6GM1TdDwgQOEWW1Tw52oc7ixdgitk5R9rL5RIQiEgzagZ8WaNUCIpIMi5uDjImIiKh/seqbUERCroGzJoeCCRwiylq1XR5sOmzFyBw9tGydoixm8/YkYQaygSomdmyXmxU4RERE1L9Gmx97W10ozWP1zVDxHQsRZaWAGMWHe9sRCEdRZGbrFGW3wW6gijFo1Wi0+RMeDxEREWWGnuobK/xiFHkGzr4ZKiZwiCgrbaixoKbTg3FF5kFVHRBlGlmW0eYMDGqAcYxZp4bVE4Rf5CBjIiIiOl6LPYCqFidK8/Q8504AJnCIKOs0dPvwWY0FxWY9dBq+DFJ2C4SjsPvEQQ0wjjHrNfCJUc7BISIioj5tPtINXyiKfCNn3yQC37kQUVYJRaL4cE87vMEIRuSwdYrI5u3ZQGXSDb6sWa9RIRSRYPUygUNERES9tTkD2NnkwMhcVt8kChM4RJRVPj9sxYF2N8YWmdLqD8miRYtw8cUXIzc3FyUlJbjppptQU1PT65hgMIg5c+aguLgYOTk5uPnmm9HV1dXrmObmZlx//fUwmUwoKSnBz372M0QivdtfNmzYgAsvvBB6vR4TJ07E0qVLj4tn8eLFGD9+PAwGA6ZPn45t27YNOhZKDaeygSqGg4yJiIioP5VHuuEOhlFoYvVNojCBQ0RZo8XuxycHLcg3aaE/hXYRJW3cuBFz5szBli1bsG7dOoTDYVxzzTXw+XzxYx555BF8+OGHeOedd7Bx40a0t7fjO9/5Tvz2aDSK66+/HqIoYvPmzXj99dexdOlSLFiwIH5MQ0MDrr/+elx99dWoqqrCww8/jHvvvRdr166NH7N8+XLMmzcPjz32GHbt2oUpU6Zg1qxZsFgsA46FUofdF4Isy6ec0NSrVWixc5AxEQELFy6EIAi9LmeffbbSYRGRArrcQWxvsGNEDqtvEoljoIkoK4gRCR/ubYczEMaZJTlKhzNoa9as6fXvpUuXoqSkBDt37sSVV14Jl8uFv/71r3jzzTfxzW9+EwDw2muv4ZxzzsGWLVvwL//yL/j4449x4MABfPLJJygtLcUFF1yAJ554Ao8++igWLlwInU6HJUuWYMKECXjmmWcAAOeccw6++OILPPfcc5g1axYA4Nlnn8V9992Hu+++GwCwZMkSrFq1Cq+++ip+8YtfDCgWSh1d7iBUQzixMus1aHMGEIpEodekV2KUiBLv3HPPxSeffBL/t0bDtxtE2ajyiA1OfxhnleUqHUpGYQUOEWWFynobqltdadc61R+XywUAKCoqAgDs3LkT4XAYM2fOjB9z9tlnY+zYsaisrAQAVFZW4vzzz0dpaWn8mFmzZsHtdmP//v3xY459jNgxsccQRRE7d+7sdYxKpcLMmTPjxwwklr6EQiG43e5eFxp+rY7gKW2gijHp1PCHorB6OAeHiHoSNmVlZfHLiBEjlA6JiJLM6glhS70Nxay+STgmcIgo43W4Avh4fydy9JpT2rSTaiRJwsMPP4zLLrsM5513HgCgs7MTOp0OBQUFvY4tLS1FZ2dn/Jhjkzex22O3negYt9uNQCCA7u5uRKPRPo859jFOFktfFi1ahPz8/PiloqJiAF8NGgq/GIHdFxrS74VRp0YgzAQOEfWora1FeXk5TjvtNNx+++1obm4+4fFM3hNlnq31Nth9Ioq5MCThmMAhoowWiUpYuacD3V4Ro/INSoeTEHPmzMG+ffvw1ltvKR1KQs2fPx8ulyt+aWlpUTqkjBfbQDWUCpxY+5WFCRyirDd9+nQsXboUa9aswYsvvoiGhgZcccUV8Hg8/d6HyXuizGL3iaist6HIrBtSizb1jQkcIspo2xrsqGpxoqLQmBElnHPnzsXKlSvx2WefYcyYMfHry8rKIIoinE5nr+O7urpQVlYWP+brm6Bi/z7ZMXl5eTAajRgxYgTUanWfxxz7GCeLpS96vR55eXm9LjS87PENVEOrTNOoBLQ6AgmKiojS1ezZs3HLLbdg8uTJmDVrFlavXg2n04m333673/sweU+UWbY32NDtDWFkjl7pUDISEzhElLEsniDW7O+EQauCWZ/eQxRlWcbcuXPx3nvv4dNPP8WECRN63T5t2jRotVqsX78+fl1NTQ2am5sxY8YMAMCMGTNQXV3da1vUunXrkJeXh0mTJsWPOfYxYsfEHkOn02HatGm9jpEkCevXr48fM5BYKDXYfD1VM0P9hMyk16DF7kMkKiUiLCLKEAUFBTjzzDNRV1fX7zFM3hNlDpc/jC/qbCgw6qBSpf8Hp6kovd/REBH1IyrJWL23A12uIM7MgOn3c+bMwZtvvon3338fubm58Vky+fn5MBqNyM/Pxz333IN58+ahqKgIeXl5ePDBBzFjxoz41qdrrrkGkyZNwg9/+EM89dRT6OzsxC9/+UvMmTMHen3PpyQ/+tGP8Kc//Qk///nP8Z//+Z/49NNP8fbbb2PVqlXxWObNm4c777wTF110ES655BI8//zz8Pl88a1UA4mFUoPFHUIiCtPMOjXcgTDsPhEleZnRqkhEQ+f1enHkyBH88Ic/VDoUIkqCbY02WDxBnFGS/ufeqYoJHCLKSDubHNjR5MCYQlNG9N+++OKLAICrrrqq1/WvvfYa7rrrLgDAc889B5VKhZtvvhmhUAizZs3Cn//85/ixarUaK1euxAMPPIAZM2bAbDbjzjvvxOOPPx4/ZsKECVi1ahUeeeQRvPDCCxgzZgxeeeWV+ApxALj11lthtVqxYMECdHZ24oILLsCaNWt6DTY+WSyUGlodgYQM9jbpNOhwBWHxhJjAIcpiP/3pT3HDDTdg3LhxaG9vx2OPPQa1Wo3bbrtN6dCIaJh5gmF8WWdDnkELNatvhg0TOESUcWzeED7a1wGNSkCOITNe5mRZPukxBoMBixcvxuLFi/s9Zty4cVi9evUJH+eqq67C7t27T3jM3LlzMXfu3CHFQspKxAaqGLVKgCyDm6iIslxraytuu+022Gw2jBw5Epdffjm2bNmCkSNHKh0aEQ2zHU0OdLiCmFhiVjqUjJYZ72yIiI6SJBkf7etEuyOAM0pZvknUH5tXRCAcxYgEDRlUqYA2JwcZE2WzTNuOSEQD4wtF8PlhK3L0amhUHLM7nPjVJaKMUtXqxNZ6G8oLjCzfJDoBu09EIDz0DVQxZp0GTTYfJOnk1WJERESUOXY1O9DuDKKMbdTDjgkcIsoYLn8YH1V3QKUSkGfUKh0OUUqz+0QAQ99AFWPWa+AKhOEMhBPyeERERJT6AmIUmw5bYdSpoVEzvTDc+BUmoowgyzLWHuhEk82PMYVGpcMhSnld7iASWaRm1qnhC0Vh8QQT96BERESU0na3ONDiCGBUPqtvkuGUEjiLFy/G+PHjYTAYMH36dGzbtu2Exz///PM466yzYDQaUVFRgUceeQTBIE/wiChx9re78WVdN0blG9h7SzQAidpAFaNRqyDJEgcZExERZYlguKf6xqBRQcvqm6QY9Fd5+fLlmDdvHh577DHs2rULU6ZMwaxZs2CxWPo8/s0338QvfvELPPbYYzh48CD++te/Yvny5fjv//7vIQdPRAT0rC1cubcdkiSjwKRTOhyilBcQownbQHUsAQI6XPyAhoiIKBvsbXWh2ebHqHxWvyfLoBM4zz77LO677z7cfffdmDRpEpYsWQKTyYRXX321z+M3b96Myy67DD/4wQ8wfvx4XHPNNbjttttOWrVDRDQQsixj3YEu1Hf7MLbIpHQ4RGnB5gshEI7CqEtsAseoU6PJ5h/Q2nsiIiJKX2JEwqbDVmjUKug0rL5JlkF9pUVRxM6dOzFz5syvHkClwsyZM1FZWdnnfS699FLs3LkznrCpr6/H6tWrcd111/X7PKFQCG63u9eFiKgvNV0efFHbjdJcAwenEQ2Q3ScimMANVDFmnQY2bwieUCShj0tERESppbrNifpuL8oLOPsmmTSDObi7uxvRaBSlpaW9ri8tLcWhQ4f6vM8PfvADdHd34/LLL4csy4hEIvjRj350whaqRYsW4de//vVgQiOiLOQNRbByTwdCEQkVRWydIhoom1eEjMRtoIox6dVwOkVYPSHkGbgJjoiIKBOFoxI2He6GWiVAr0nsh0F0YsP+cfWGDRvw5JNP4s9//jN27dqFf/7zn1i1ahWeeOKJfu8zf/58uFyu+KWlpWW4wySiNOMLRfDm1iYc7vJgXDFbp4gGI9EbqGJ0ahXEqAyLm4OMiYiIMtX+djfqLF6Uc/ZN0g2qAmfEiBFQq9Xo6urqdX1XVxfKysr6vM+vfvUr/PCHP8S9994LADj//PPh8/lw//3343/+53+g6mNbjF6vh16vH0xoRJRFvEeTNzsaHRg/wsyp90SD1OYMwDAMn5gJggABPQkiIiIiyjxRScbnh60QBCS8FZtOblDvenQ6HaZNm4b169fHr5MkCevXr8eMGTP6vI/f7z8uSaNW93yjOeSQiAbr68mbRG/RIcp0ATEKm1eEKcEDjGP0GhWa7L5heWwiIiJS1sEON2q6PBiVz9k3ShhUBQ4AzJs3D3feeScuuugiXHLJJXj++efh8/lw9913AwDuuOMOjB49GosWLQIA3HDDDXj22WcxdepUTJ8+HXV1dfjVr36FG264IZ7IISIaiGOTNxNGmJn1JzoFPRuoIhiRMzyVrma9BhZ3CAEx8VuuiIiISDmSJGPTYSskGTDpBp1KoAQY9Ff91ltvhdVqxYIFC9DZ2YkLLrgAa9asiQ82bm5u7lVx88tf/hKCIOCXv/wl2traMHLkSNxwww347W9/m7j/CyLKeN5QBH/b0oRdTUzeEA3FcG2gijHrNLB4grB6QhjL+VREREQZo6bLg0OdbpSz+kYxp5Q2mzt3LubOndvnbRs2bOj9BBoNHnvsMTz22GOn8lREREzeECWQzSdClhO/gSrGoFUhGJZg8QSZwCEiIsoQsizj81orIlEZZj2rb5TCrzwRpTRPMIw3tjYzeUOUIFZPCH3sD0gYQRAAQYbVw01UREREmaLO4sX+djfKWH2jKCZwiChleYJhvLGlCbuanUzeECVIi90/LBuojqVTq9Fk8w/rcxAREVFyyLKMz+u6IUYk5Bq0SoeT1bh7l4hSkicY7mmbYvKGKGGC4Z4NVMM9XNisU6PdFYAYkYb1eYiIiGj41Xf7UN3qQlkeq2+UxgQOEaUc99HkzW4mb4gSyuYTEQhHYRzm3ymzXgNvMIJuL9uoiIiI0pksy/iyrhuBcBR5RlbfKI0JHCJKKccmb05j8oYooexeEcEkJHCMWjUC4SgsnINDRESU1prtfuxpcaI0V690KAQmcIgohbiDYfytsglVR5M3eiZviBKq2xfq2UClGp4NVDEqlQBZBgcZExERpbkv67rhDUWRz+qblMAEDhGlhHjypoXJG6LhYvWEMEzbw4+jUQtodXCQMRERUbpqdfixq7mn+kZI1gkEnRATOESkOFeAyRuiZGhz+Ie9fSrGrNOgxe5HVJKT8nxERESUWJVHbPAEwygwsfomVTCBQ0SKcgV6Zt5UtThx2kgmb4iGSzAcRXcSNlDFmPRquIMR2HxsoyIiIko3Ha4AtjfaMTKH1TephAkcIlJMrPJmTyx5o2Hyhmi42Hwi/OLwDzCOMenU8ItRzsEhIiJKQ1uO2ODyh1Fk1ikdCh2DCRwiUkQ8edPK5A1RMti9yVkhHqNRqSDJMjdRERERpRmLJ4itDXYUs/om5TCBQ0RJ5/KH8X9M3hAlVayVabg3UB1LJQAdzkDSno+IiIiGbssRO+w+ESNyWH2TapjAIaKkcvnDWLalEXuZvCFKKqsnhGR/hmbSadBk80OWOciYiIgoHdi8IWypt6HYrGP1TQpiAoeIkiaWvKludTF5Q5RkrUncQBVj1qnh9Itw+sNJfV4iIiI6NVvr7bB5QxiRq1c6FOoDEzhElBROv4hlWxqxj8kboqRL9gaqGLNeA58YhdXLOThERESpzukXsbm+GwUmHVSsvklJTOAQ0bBz+kX8X2UT9rW6MIHJG6Kks/tEBJK4gSpGq1YhKsmwuJnAISIiSnXbGuyweEIYyeqblKVROgAiymxOv4hllU3Y3+bCaSNzoNMwb0yUbHZfcjdQfV2XO6jI8xIREdHAuINhfFHXjXyDFuokLjygweE7KSIaNrHkzT4mb4gU1e0NQUZyN1DFGLVqNNh8HGRMRESUwnY2OtDlDqI0z6B0KHQCfDdFRMPC4RPx+uZG7Gtz4XQmb4gUpcQGqhizXgObNwSfGFUoAiIiIjoRbyiCTbVW5OpZfZPq+I6KiBLO4ROxrLIR+9vdTN4QpYBWZwAGhdqnzDo1fKEILGyjIiIiSkm7mhzocAZQmsfZN6mO76qIKKFiyZsDTN4QpYRgOIpuTwimJG+gitFpVAhHZVg9HGRMRESUamzeED49ZIFZr4FGzfP2VMfvEBEljP2YyhvOvCFKDUptoIoRjq4htXhYgUNERJRKJEnGquoOtDsDKM83Kh0ODQC3UBFRQthZeUOUkmIbqJRqoQIAvUaFJltAsecnIiKi4+1qdmBbgx1jCo2KLDqgweM7LCIaMvvRgcVM3hClHptPhCzLig4lNOk06HAFEAxzkDEREVEqsHlDWFXdAY1KQK5Bq3Q4NEB8l0VEQxJL3hzqdGNiCZM3RKnG6glCJSj7qZpZr4ZfjHAODhERUQqQJBmrqzvQ5ghgTKFJ6XBoEPhOi4hOmc0bwuubG3Gwo6fyRsvBZ0Qpp8URgF7B9ikAMGrVCIYlWJjAISIiUtzuFge2Hm2d4trw9MIZOER0SmzeEF6vbERNhwcTS5i8IUpFoUjPBiqlBhjHxAYZWznImIiISFF2n4hVe9k6la74jouIBq37mOTN6UzeEKWs2AYqpVaIH0ujFtBs9ysdBhERUdZi61T647suIhqUbm8IyzYzeUOUDmxe5TdQxZh1GrQ5AghHJaVDISIiykq7WxzYWm/DaLZOpS2+8yKiAYsnb7qYvCFKB6mwgSrGrNPAG4rA5hWVDoWIiCjrxFqn1GydSmt890VEA9IrecOBxURpweoJxufPKM2kU8MvRmHhHBwiIqKkYutU5uAQYyI6KaunZ+ZNLZM3RGmlzRFIifYpAFCpBMiyzFXiRERESba7xYmtDXaUs3Uq7fFdGBGdEJM3ROkpFInCmgIbqI6lVqnQ6ggoHQYREVHWcPhErNrbDrUA5LF1Ku3xnRgR9SuevOn0YCKTN0Rpxe4T4U+RDVQxZr0azXY/JElWOhQiIqKMJ0kyVu/rQCtbpzIG340RUZ8sniBe33w0eVOSAw2TN0RpJZU2UMWYdRq4A2HY/RxkTERENNyqWp3YUm/H6AK2TmUKviMjouMEw1G8ta0FtV1M3hClK7tPhAyk1AmbSaeGT4zA4uYcHKJs8Lvf/Q6CIODhhx9WOhSirOPwiVi9twMqAcgzsnUqU/BdGRH1IssyPt7fhf3tbkwYaWbyhihNWT0hpE7qpodGrYIkA1YvEzhEmW779u34y1/+gsmTJysdClHWkeWe1qlmux8VbJ3KKHxnRkS9HOhwY0ONBSNzdNBrUqf1gogGp9XhT6n2qRiVAHQ4OciYKJN5vV7cfvvtePnll1FYWKh0OERZZ3eLE1uO2Ng6lYGYwCGiOKdfxPtVbRCjEopz9EqHQ0SnKBU3UMWYtBo02nyQZQ4yJspUc+bMwfXXX4+ZM2ee9NhQKAS3293rQkSnzumPtU4JbJ3KQEzgEBEAICrJ+HBPOxq7/RhXzFJLonTm8IXhD0dhTKENVDEmvRoOfxjuQETpUIhoGLz11lvYtWsXFi1aNKDjFy1ahPz8/PiloqJimCMkylyyLGN19dHWqSKez2ciJnCICACwtcGGrQ12jCk0QqPiSwNROuv2hhAMR1OyAses08AfisDqDSodChElWEtLCx566CG88cYbMBgMA7rP/Pnz4XK54peWlpZhjpIoc1W1OLGlnq1TmUyjdABEpLw2ZwCr9nZAr1Eh18BSS6J0Z/eJkOTU2kAVo9OoEJZkWNwhTCzJVTocIkqgnTt3wmKx4MILL4xfF41GsWnTJvzpT39CKBSCWt07sazX66HXs22baKicfhGr9nZAYOtURmMChyjLBcNRrNjVhm5vCGeV8s0UUSbo9qbeBqqv63SzAoco03zrW99CdXV1r+vuvvtunH322Xj00UePS94QUWLIsoyPqjvRbPfjTJ7PZzQmcIiy3KcHLahuc2J8sRmCkOpv+YhoIFodAeg1qdsKadSq0WTzKR0GESVYbm4uzjvvvF7Xmc1mFBcXH3c9ESXOnlYXKuu72TqVBVL37I6Iht2hTjfWH+pCkVmfkuuGiWjwxIgEiycIky51P6Mx69SweELwhTjImIiIaChc/jBW7W1n61SWSN2zOyIaVq5AGO9XtSEYljC6wKh0OESUIHafCL8YRaFJp3Qo/TLrNeh0B2H1hGDW81SEKJNt2LBB6RCIMpYsy/hoXweabGydyhaswCHKQpIkY9Xedhyx+DC+2MTWKaIMYvOFEBBTcwNVjF6jQigsweIJKR1K0nS4Alj8WR3cwbDSoRARUYbY0+rC5iPdKGfrVNZgAocoC+1ocmDzkZ4Vgxo1XwaIMondJ0JGam6gihEEARAAiyd7BhnvbHTgUIcbtV0epUMhIqIMcGzrVD5bp7IG37kRZZlOVxAr97ZDq1axT5YoA1k9qb+BCuipwmmy+ZUOIyl8oQi2N9ph94k40O5WOhwiIkpzx7ZOVRSalA6HkogJHKIsIkYkrKhqQ5c7hDGFnHtDlIlSfQNVjFmnQYcrgFAkqnQow25fmwsWTwhjCk042OFmGxUREQ3J3lYXKo/Y2DqVhVL/DI+IEmZDjQVVzQ6MKzZBxbk3aWfTpk244YYbUF5eDkEQsGLFil6333XXXRAEodfl2muv7XWM3W7H7bffjry8PBQUFOCee+6B1+vtdczevXtxxRVXwGAwoKKiAk899dRxsbzzzjs4++yzYTAYcP7552P16tW9bpdlGQsWLMCoUaNgNBoxc+ZM1NbWJuYLQf1Khw1UMSadGr5QFNYMn4MjSTK2NtihUQsYkaOD0x9GncV78jsSERH1wRUIY+XedsiQ2TqVhZjAIcoSdRYP1h3oQqFJl9LDTal/Pp8PU6ZMweLFi/s95tprr0VHR0f88ve//73X7bfffjv279+PdevWYeXKldi0aRPuv//++O1utxvXXHMNxo0bh507d+IPf/gDFi5ciJdeeil+zObNm3Hbbbfhnnvuwe7du3HTTTfhpptuwr59++LHPPXUU/jf//1fLFmyBFu3boXZbMasWbMQDGbPzBMlOPxiyg8wjjHq1AiGoxk/yLi+24cjVi9Kcw3QqFWQARzsYBsVERENnizLWBNrnSpi61Q2Sv2P6IhoyLyhCN7b3Qa/GMXpI81Kh0OnaPbs2Zg9e/YJj9Hr9SgrK+vztoMHD2LNmjXYvn07LrroIgDAH//4R1x33XV4+umnUV5ejjfeeAOiKOLVV1+FTqfDueeei6qqKjz77LPxRM8LL7yAa6+9Fj/72c8AAE888QTWrVuHP/3pT1iyZAlkWcbzzz+PX/7yl7jxxhsBAMuWLUNpaSlWrFiB73//+4n6ktDXdHt7NlCNyk/9BI5KECDLyPgKnN3NDgTD0fi69EKTDgfb3fCGIsjhCnUiIhqE6jYXNh9tndKoWIuRjfhdJ8pwsixjdXUHaru8GMeV4Rlvw4YNKCkpwVlnnYUHHngANpstfltlZSUKCgriyRsAmDlzJlQqFbZu3Ro/5sorr4ROp4sfM2vWLNTU1MDhcMSPmTlzZq/nnTVrFiorKwEADQ0N6Ozs7HVMfn4+pk+fHj+mL6FQCG63u9eFBsfuEyEhtTdQHUurFtBiz9xBxg6fiF3NDhSb9fHrCk1a2Pwi26iIiGhQ4q1TMlunshkTOEQZblezE1/UWjEq3wAtV4ZntGuvvRbLli3D+vXr8fvf/x4bN27E7NmzEY32DInt7OxESUlJr/toNBoUFRWhs7MzfkxpaWmvY2L/Ptkxx95+7P36OqYvixYtQn5+fvxSUVExqP9/ArrTZANVjEmvQavDj0hUUjqUYbG3zQW7T0Sx+auEqEatAmTgENuoiIhogGRZxtr9nWjsZutUtmPtLlEGs3iC+HBPO1SCgAKT7uR3oLR2bGvS+eefj8mTJ+P000/Hhg0b8K1vfUvByAZm/vz5mDdvXvzfbrebSZxBanWmxwaqGLNODVcgDJtPRGmeQelwEioclbClvhtGrRqqr1VEFRi12N/uhi8UibdWERER9Wdfmxtf1nVjVL6BrVNZjt99ogwVjkp4f3c7OpwBVBQyU5+NTjvtNIwYMQJ1dXUAgLKyMlgsll7HRCIR2O32+NycsrIydHV19Tom9u+THXPs7cfer69j+qLX65GXl9frQgMnRiRY3OmxgSrGpNPAL2bmJqqaTg9a7IE+E1OFZh3svhCOWNlGRUREJ+YKhPHh3jbIsswPZIkJHKJM9flhK3Y1OzC22HTcp7+UHVpbW2Gz2TBq1CgAwIwZM+B0OrFz5874MZ9++ikkScL06dPjx2zatAnhcDh+zLp163DWWWehsLAwfsz69et7Pde6deswY8YMAMCECRNQVlbW6xi3242tW7fGj6HEc/hF+NNkA1WMWiVARk+1YCaRZRk7Gu2QJBmGPr4fWrUKkgwc6vQoEB0REaULtk7R1zGBQ5SBGrp9WLu/E3kGbVp9Gk8n5vV6UVVVhaqqKgA9w4KrqqrQ3NwMr9eLn/3sZ9iyZQsaGxuxfv163HjjjZg4cSJmzZoFADjnnHNw7bXX4r777sO2bdvw5ZdfYu7cufj+97+P8vJyAMAPfvAD6HQ63HPPPdi/fz+WL1+OF154oVdr00MPPYQ1a9bgmWeewaFDh7Bw4ULs2LEDc+fOBQAIgoCHH34Yv/nNb/DBBx+guroad9xxB8rLy3HTTTcl9WuWTWzeoyvEdemTwAEAlQC0OzMrgdPlDmF/uxsjcvX9HpNv1GJfmwsBMZrEyIiIKJ2wdYq+jj8FRBnGL0bw3u5WeIIRlOb1/+aB0s+OHTswdepUTJ06FQAwb948TJ06FQsWLIBarcbevXvxb//2bzjzzDNxzz33YNq0afj888+h13/1c/DGG2/g7LPPxre+9S1cd911uPzyy/HSSy/Fb8/Pz8fHH3+MhoYGTJs2DT/5yU+wYMGC+ApxALj00kvx5ptv4qWXXsKUKVPw7rvvYsWKFTjvvPPix/z85z/Hgw8+iPvvvx8XX3wxvF4v1qxZA4Mhs+acpBK7T4SM9NlAFWPWadBk80GSZKVDSZg9LQ64AmEUnGBLSKFJB5tXZBsVERH1yR0MY2V1OyS2TtEx+NE8UQaRZRlr9nWiptOD00bkcGV4hrnqqqsgy/2/yV27du1JH6OoqAhvvvnmCY+ZPHkyPv/88xMec8stt+CWW27p93ZBEPD444/j8ccfP2lMlBjWNG1DMus1cAXCcPhFFOekf9I5IEaxtcGOPKP2hK/BOo0KkizjUKcb543OT2KERESU6mRZxtp9nWiw+nBGSY7S4VAKOaUKnMWLF2P8+PEwGAyYPn06tm3bdsLjnU4n5syZg1GjRkGv1+PMM8/E6tWrTylgIurf3lYXNh62ojTPAF0abaIhoqFLtw1UMWadGr5QBFZvZgwyPtDhQqcriJITtE/F5Bm0qG51IRhmGxUREX1lf/sxrVPq9PvbTsNn0D8Ny5cvx7x58/DYY49h165dmDJlCmbNmnXcZpMYURTx7W9/G42NjXj33XdRU1ODl19+GaNHjx5y8ET0FZs3hA/2tAHoKc0nouwRjkqwukNpN/8GADTqnkoUizv9EziyLGNrvR0qlQDtAE64i8w6dHu5jYqIiL7iDobx4d52RCW2TtHxBt1C9eyzz+K+++7D3XffDQBYsmQJVq1ahVdffRW/+MUvjjv+1Vdfhd1ux+bNm6HV9vSCjx8/fmhRE1EvkaiED/a0o9UewBmluUqHQ0RJ5vCJ8IkRFBjT80RPgIBOd3q2gB2ryeZHrcU7oOoboKeNKioBhzs9OLecbVRERNlOlmV8vJ+tU9S/QVXgiKKInTt3YubMmV89gEqFmTNnorKyss/7fPDBB5gxYwbmzJmD0tJSnHfeeXjyyScRjfZfLhwKheB2u3tdiKh/m4/YsL3RgYoiU9oNMCWioev2igiEozDo0rPM2qhTo7Hbd8IZT+lgd4sTfjGCHP3APx/LM2qwl21URESEntapL2q7UcbWKerHoH4quru7EY1GUVpa2uv60tJSdHZ29nmf+vp6vPvuu4hGo1i9ejV+9atf4ZlnnsFvfvObfp9n0aJFyM/Pj18qKioGEyZRVmm2+bG6ugNmnRrmQbxpIKLMYfeJkGU5bVeMmnUa2H0iPKGI0qGcMlcgjJ2NdhSadIMaIF9k1sHqDaGh2zeM0RERUapzB8NYebR1iuMQqD/DfqYnSRJKSkrw0ksvYdq0abj11lvxP//zP1iyZEm/95k/fz5cLlf80tLSMtxhEqWlgBjFe7tb4fSLGJXP9cxE2arbG4KM9K2+M+l7Bhmn8xycfW0udHtDGDHITVp6jRqRqIyaTs8wRUZERKku1jpVb/VhbJFJ6XAohQ3q4/oRI0ZArVajq6ur1/VdXV0oKyvr8z6jRo2CVquFWv3VYMVzzjkHnZ2dEEUROt3x2UW9Xg+9Pv1XiRINJ1mWse5AFw50eDBhhJkrw4myWJszAEMabqCK0alVCEsyrJ4QJqZhz38kKmFLvQ16jfqU2lhzDRrsbXVi9vll0GvSbxA1ERENDVunaKAG9dOh0+kwbdo0rF+/Pn6dJElYv349ZsyY0ed9LrvsMtTV1UGSpPh1hw8fxqhRo/pM3hDRwOxvd+OzGgtG5uh4wk+UxcJRCV3uYFpuoIoRBAGCDHSl6SDjOqsXjd0+lOadWiVkkVkHqyeExm5/giMjIqJU5wmGsaq6HRG2TtEADDq9N2/ePLz88st4/fXXcfDgQTzwwAPw+XzxrVR33HEH5s+fHz/+gQcegN1ux0MPPYTDhw9j1apVePLJJzFnzpzE/V8QZRmHT8T7VW2IRCUUD7Jcn4gyi8MnwheKwKhN3wQOAOi1KjTa0nMOzM4mByKSfMpJNINWjXBUxmG2URERZZVY69QRiw/j2DpFAzDoiae33norrFYrFixYgM7OTlxwwQVYs2ZNfLBxc3MzVMcMUayoqMDatWvxyCOPYPLkyRg9ejQeeughPProo4n7vyDKIlFJxod729Fk8+NMrgwnyno2X88GqrI0n4Nl1mtgcYcQEKNpVU1k8QSxt8WJYvPQPjXNMWiwp9WJWeeVQZfG7XBERDRwBzrc+KKOrVM0cKe0smbu3LmYO3dun7dt2LDhuOtmzJiBLVu2nMpTEdHXbK23YWu9HRWFXBlORLENVEjbDVQxZp0GFk8QFk8Q44rNSoczYNWtLjgD4SEn1IvMOnS6Amiy+XAGk/NERBnPc3TrVCTK1ikauPQ+2yPKMq0OP1ZVd8CoVSPHwJXhRARYPem7uelYBq0KwbCUVv8/wXAUW+ptyNFroBriIHmjVo1QRMLhLrZRERFlutgyEm6dosFiAocoTQTDUazY3Q6bV0R5QXq3ShBR4rQ5A9BnQMuNIAiAkF6DjA91etDuDKAkNzGvybl6LapanAhHpZMfTEREaetghwef13ajNJetUzQ4/GkhShPrD3ZhX5sT44tNXBlORACO2UCV5gOMY3RqFVrsAaXDGBBZlrG9wQ4ZQsJm1hSZdbC4Q2iycRsVEVGm8oYiR1unJBQOcX4aZR8mcIjSwMEONz49ZEFxjh76DHmjRkRD5/CL8IciaTX090TMejXanQGIkdSvQGl1BHCo042S3MRtAjTq1AhGoqhlGxURUUaKbZ2qs3rZOkWnhAkcohTnCoTxflUbQmEJI7gynIiOYfP2bKDKlAocs04DbyiCbm/qz8HZ0+KENxRBXoLnkeXoNahqdSLCNioioowTa50qY+sUnSL+1BClMEmSsXJvO+qtPowrZpaeiHqz+0REZWTMSaBRp0YgHIUlxQcZe0MRbGu0o8CoS3hLa882qiCa7WyjIiLKJLHWqTBbp2gIMuOMjyhDbW+0o/KIDaMLjBnzBo2IEqfbE4IgKx1F4qgEAbIMWFJ8kPG+NhcsnhBG5CT+BNyoVSMYZhsVEVEmkWUZ6/Z34ojVi3FsnaIh4DtCohTV6Qpi5d4O6NQq5Bm1SodDRCmozRmAXptZf8o1agFtjtQdZCxJMrY12KFVCcOSWBcEAWZdTxtVVMqg7BwRURY71NnTOlXC1ikaIv70EKUgMSLhvd2tsHiCGF1oVDocIkpBkaiEzgzaQBVj1mnQ4vCnbPKivtuLI1YvSvMSszq8L0VmHTqcQbSwjYqIKO3FWqfEiIQitk7REDGBQ5SCPquxYE+LC+OKzVBxZTgR9cGeYRuoYkx6NdzBCGy+1JyDs6vZiVAkCrM+scOLj2U6Oguo1uIdtucgIqLhJ8sy1h3oQl2XF2M5z5ISgAkcohRT2+XBJwe6UGjWZtwn60SUOHZfZm2gijHp1PCLEVjcqZfAsftE7G5yoMg0vBsBBUGASadBVYsjZSuRiIjo5A51evD5YStK8gzQsnWKEoA/RUQpxBMMY0VVG/xiFCO5MpyITsDuFSFl0AaqGI1KBUkGrCm4SnxvqxN2v4jiJJTAF5l1aHcGU3oeEBER9c8TDOPDPWydosTKrLM+ojQmyzJWV3egtsuLccWmhK+mJaLMYvWEgAwtzlALQLsztRIXYkTC1gYbTDoNVKrhf302H61EqrVwGxURUbqRZRlr93eiztJzXk+UKEzgEKWIXc0OfFHbjfICI0ssieik2pwB6DJsA1WMUadBk80HWU6dDNXhLg9a7AGU5CanOlIQBBi1alS1OCGxjYqIKK1Ut7nweW03yvK5dYoSiz9NRCnA4gniwz0dUKsE5HNlOBGdRKZuoIox69Rw+sNw+sNKhwKg55PUHY12SJIMQxK/5kVmHdocAbSlWDUSERH1z+kX8eGedsiyjEITW6cosZjAIVJYOCrh/d3t6HAFUFHIEksiOjmHPwy/GIUpwzZQxZj1GvjFKCye1JiD0+kOYn+7GyOSVH0Tk6PXwCdGUMdtVEREaUGSekYiNNn8qCjieT0lHhM4RArbdNiKXc0OjC0yJWWuAhGlP5svhIAYydgKHK1ahYgk98z5SQF7WpxwB8IoSHKFpCAIMBxto0qldjIiIurb7hYHKuvtGF1ghEbFt9qUePypIlJQvdWLtfs7kWfUwqTTKB0OEaUJu1dEVMq8DVTHEgB0uJRvHQqIUWxrsCPPqFVkuHyRWYcWhx/trmDSn5uIiAbO5g1h1d4OqAUgjyMRaJhk7pkfUYrzhSJYsbsN3mAEpUkuyyei9GbzhZDpi+qMWjWa7H7FK0/2t7vQ6Q5ipEKv07l6DXyhCGq7uI2KiChVRSUZK/d2oM0RwBiORKBhxAQOkQJkWcaafR2o6fRg/AgzV4YT0aC0OQLQaTL7T7hZr4HNE4I3FFEsBlmWsa3BDpUgKLYdUBAE6DVq7GEbFRFRytreaMf2RjvGFJqg5kgEGkaZffZHlKL2tLqwqbYbpfkGrgwnokGJRCV0ZPAGqhizTg2fGFF0Dk6jzY9aizdpq8P7U2zWodnuR6ebbVRERKmmyx3E6uoO6NQq5Bg4EoGGF985EiVZlzuID6raIMvgakEiGjSHPwxfKApjhm6gitFpVBAjsqKbqHY3OxAQI8jRK3tCnmvQwBuKoLaL26iIiFJJJCrhwz3t6HIHMbrQqHQ4lAWYwCFKIlcgjDe3NqPNGcBYrhYkolNg94kIiBGYMrwCp6e1VIbVo0zViSsQxq4mBwpNOsXbXAVBgE6jwt5WtlEREaWSynobdjUd3SbLkQiUBEzgECVJMBzF29tbcLDDjdNH5rA/lohOic0XgiRn9gaqGINWjcZuvyLPXd3qQrcvhOKc1BgyX2zWo9HmV7QiiehkXnzxRUyePBl5eXnIy8vDjBkz8NFHHykdFtGwaHMGsGZfJ8x6DbfJUtJk/tkfUQqIRCWs2N2GHU12jC82c+4NEZ0ymzd73sCbdBp0uoMIhqNJfd5IVMKWBhv0GnXKJNvzDBp4gmG2UVFKGzNmDH73u99h586d2LFjB775zW/ixhtvxP79+5UOjSihxIiED6ra0O0NYVS+QelwKIvwXSTRMJNlGWv3d2LTYSvKC4wZP7eCiIZXmyMAXZYkgc16NXyh5A8yrrV40dTtQ2lu6pyUC4IAnZptVJTabrjhBlx33XU444wzcOaZZ+K3v/0tcnJysGXLFqVDI0qoz2ut2NvqwvhibpOl5MqOM0AiBW0+YsPa/Z0oMuuQZ9AqHQ4RpbH4BqosSQQbtWqEIhIsSZ6Ds7PJgYgkp9zXucisQ0O3D9YsqsKi9BWNRvHWW2/B5/NhxowZSodDlDBNNh8+PtCFPIMWhgyfR0eph816RMOoutWFFbvboNeoU2aOAhGlL2cgDH8omjVrSgVBgCwjqRU4Fk8Q1a1OjEjB1+w8oxZd7hDqurwoSaHqIKJjVVdXY8aMGQgGg8jJycF7772HSZMm9Xt8KBRCKPTV77jb7U5GmESnJBiO4v2qdrgDYZxRkqN0OJSFWIFDNEwaun14e0czxKjE3lgiSgibV4RfjGb8BqpjaTUCmmzJG2S8t8UFhz+MQlPqVUyqBAEatYC9bS62UVHKOuuss1BVVYWtW7figQcewJ133okDBw70e/yiRYuQn58fv1RUVCQxWqLB+eyQBQfaXRhXbGLrFCmCCRyiYWBxB/H3bU2weUWMK+ILPBElhs0XQlSWs2IDVYxZp0GbM4BwVBr25wqGo9jaYEOuQZOyr9tFZh3qrV7YfKLSoRD1SafTYeLEiZg2bRoWLVqEKVOm4IUXXuj3+Pnz58PlcsUvLS0tSYyWaODqLF58esiCIrMeek32fJBCqSV7zgCJksQdDOPv25rRZAvgtJE5KfsmgIjSj80rAllWeWHWa+ANRdCdhLkvBzvcaHcGUro9Kd+ghTvAbVSUPiRJ6tUi9XV6vT6+djx2IUo1fjGCD6ra4AtFMCJHp3Q4lMWyo4meKEmC4Sje3t6C/e1unD4yJ2XWzxJRZmh3BrLuUz+TVo12MQqrJ4RR+cZhex5ZlrG90Q5AgE6Tup9vqVQCNGoV9re7MOP0YqXDIepl/vz5mD17NsaOHQuPx4M333wTGzZswNq1a5UOjeiUybKMdQe6UNPlwWkj+OEsKYsJHKIEiUoy3q9qw/YGO8YVm1L6DQARpZ+oJKPDFUi5zUjDTXU0EW5xD28FTqsjgJpOD0pyU2948dcVmnSo7fLA5g1xQD6lFIvFgjvuuAMdHR3Iz8/H5MmTsXbtWnz7299WOjSiU3ao04ONNVaMzNHz/J4UxwQOUQLIsoyP93diY40V5QVGmHT81SKixHL4RfhCUeTos+/1RSUIaHMGhvU5qpqd8AYjGF0wfFU+iZJv1KLOEkKdxcsEDqWUv/71r0qHQJRQnmAYH+5phxiRUFFkUjocIs7AIUqEynobPtrXgUKzDnnG1NtcQkTpz+7r2UCVbRU4AGDWq9Fs9yEqDc/8H28ogu1NdhSYdGlRGq9WCVCrgP3tXLdMRDRcZFnG2v2dqLN4Ma6YyRtKDUzgEA3RvjYXVuxug06jxgh+EkpEw8TmFSHJMrRZtIEqxqzTwB2IwD5Mm5eqW12wekJpNZiy0KTD4S4PHNxGRUQ0LKrbXPi8thtl+Yas2v5IqY0/iURD0GTz4e0dLQiGoyjPT92tJUSU/pKxhSlVmXRq+MQIrJ7Efw2ikoxtDTZo1EJanaAXmHRwBsKos3IbFRFRorn8Pa1Tsiyj0JQ+yX3KfOlzpkKUYiyeIN7c1oxuTwjji81pUXZPROmr3RnIyuobANCoVZAkGRZPMOGPXW/1or7bh9IUXh3eF7VKgEoQcIBtVERECSVJMlZXd6DJ5ufcG0o52XkmSDREnmAYb21rQWO3D6eN5DpBIhpe2bqB6lgqlYBOV+ITODubHAhFJJjTcDh0oUmLQx1uuPxhpUMhIsoYu1ucqKy3YXSBERoV3y5TauFPJNEghSJRvLOjBfvaXDhtRA7UKiZviGh4OY9uoDJpszeBY9Jq0GjzQZYTN8jY5g1hT4sTxeb0LI8vMGmPtlF5lA6FiCgj2LwhrNrbDpUALiahlMQEDtEgRCUZH1S1Y1uDHeOKTdBp+CtERMPP5hMRCGfnBqoYk14Nhz8MdyCSsMfc2+aC3S+iKE3nG2hUKggA26iIiBIgKslYubcDrY4AxhSydYpSE999Eg2QLMv45GAXPquxoizfCJMu/crtiSg92bwiItHs3EAVY9Zp4AtFEjYHR4xI2Fpvg0mngSqNKykLTDoc6HDDHWQbFRHRUGxvtGN7ox0VhSZW2FPKyt4zQaJB2tpgx+rqDhQYtchnSSURJZHNF0K2j9rSaVSISHLCNlHVdHrQ6gigNFefkMdTSqFJC6c/jNoubqMiIjpVXe4gVld3QKdWIcfAD2kpdTGBQzQA+9td+OeuVmhVKoxM85N9Iko/2byB6lgCgE730CtwZFnG9iY7JEmGPs3nCsVWnx/sYBsVEdGpiEQlfLinHV3uIEYXGpUOh+iEeDZIdBLNNj/e3t6CQDiK8oL0WjNLROmvZwNVMKvn38QYtGo02nxDfpwOVxAH290Zk5AvNOlwoN0ND9uoiIgGrbLehl1NDlQUmqDK9nJXSnlM4BCdQLc3hDe3NcHqCWF8sZnrwoko6Zx+Ed5gJKs3UMWYdWpYPSH4QkMbZLynxQlXIJwx7bA9bVQi6ixsoyIiGow2ZwBr9nXCpNfArGfrFKU+JnCI+uENRfD3bc1o6PZhwkgzM/JEpAg7N1DFmfUa+ENRWIYwB8cvRrCtwY58ozZjkvJsoyIiGjwxIuGDqjZ0e0Moz2eVPaUHJnCI+hCKRPHOjhZUt7owYYQZGhV/VYhIGTafiKiU3RuoYvQaFUIRaUiDjPe3u9HlDmZM+1RMvkmLAx3uIVcnERFli89rrdjb6sI4VtlTGuHZINHXRCUZH+5px9Z6G8YWmaDX8FNvIlJOtzcxW5cygSAIEISebSGnQpJkbKu3Q6USMi4hVmjSwe5jGxUR0UA02Xz4+EAX8gxaGNmiTGkks85eiIZIlmWsP9iFzw5ZUJZvZC8sESmOG6h602lUaLb7T+m+jTYf6qwelOZmXqm8Vq2CLLONiojoZILhKN6vaoc7EEZpXmZVY1Lm4xkh0TG2NzqwuroD+UZdxgy3JKL0Fd9AxU8H48w6DTqcAQTD0UHfd3ezAwFRglmfmV/PfKMW+9vd8ItsoyIi6s9nhyw40O7CuGITW6co7TCBQ3TUwQ43/rGzBWqVkHGzEYgoPbkCYfhCEZg4wDjOpFPDJ0YH3Vrm8oexq9mJQnPmDC/+uiKzDjafiCOWoa9aJyLKRHUWLz49ZEGRWc8xCZSWmMAhAtBi92P59hb4xChGFxiVDoeICABg84bgF7mB6lhGnRrB8OA3UVW3uWDzhlBsztwEfU8blYxDnWyjIiL6Or8YwQd72uALRTAiR6d0OESnhAkcyno2bwhvbmtClzuICSM4hZ5S16ZNm3DDDTegvLwcgiBgxYoVvW6XZRkLFizAqFGjYDQaMXPmTNTW1vY6xm634/bbb0deXh4KCgpwzz33wOvtPfR07969uOKKK2AwGFBRUYGnnnrquFjeeecdnH322TAYDDj//POxevXqQcdCJ2fziYhwA1UvKkGALAMW98ATOJGohC31Nhi0aqhVmf0an2fUYl+bCwFx8C1mRESZSpZlrDvQhZpOD7dOUVrjGSFlNW8ogre2taDe4sNpI8xQ8cWcUpjP58OUKVOwePHiPm9/6qmn8L//+79YsmQJtm7dCrPZjFmzZiEY/Gpjz+233479+/dj3bp1WLlyJTZt2oT7778/frvb7cY111yDcePGYefOnfjDH/6AhQsX4qWXXoofs3nzZtx222245557sHv3btx000246aabsG/fvkHFQidn94lKh5CStGoBrY6BDzKutXjRZPOhJC/zhhd/XZFJh26viCNWbqMiIoo51OnBxhorRuboodPwLTClL/70UtYSIxLe3dGCPa1OTBhphoafcFOKmz17Nn7zm9/g3//934+7TZZlPP/88/jlL3+JG2+8EZMnT8ayZcvQ3t4er9Q5ePAg1qxZg1deeQXTp0/H5Zdfjj/+8Y9466230N7eDgB44403IIoiXn31VZx77rn4/ve/jx//+Md49tln48/1wgsv4Nprr8XPfvYznHPOOXjiiSdw4YUX4k9/+tOAYxlukaiUlOcZbm3OAHR8bTqOSa9Bi8M/4O/zziYHIpKcFcOgdRoVorKMGrZREREBADzBMD7c0w4xIqE4J3PbaCk78KyQspIkyVi5tx1b6u0YW2TiEDNKew0NDejs7MTMmTPj1+Xn52P69OmorKwEAFRWVqKgoAAXXXRR/JiZM2dCpVJh69at8WOuvPJK6HRf9YbPmjULNTU1cDgc8WOOfZ7YMbHnGUgsfQmFQnC73b0up0KSZPx5wxFsrbed0v1ThSTJaHcGsiLpMFhmnRreYAS2AVQoWdxB7G11YkQWnbTnG7SobnOf0qYuIqJMIssy1u7vRJ3Fi3HFJqXDIRoyJnAo68iyjE8PdWH9QQtK8/Qw6zVKh0Q0ZJ2dnQCA0tLSXteXlpbGb+vs7ERJSUmv2zUaDYqKinod09djHPsc/R1z7O0ni6UvixYtQn5+fvxSUVFxkv/rvkmyDIsniBW729K6jcR5dAMVBxgfz6TTwC9GBzQHZ0+rE05/GIUmbRIiSw2FZi2snhDqrdxGRUTZrbrNhc9ru1GWb2C1PWUE/hRT1tnR5MCq6g7kGTQoMHECPVGqmD9/PlwuV/zS0tIypMdrcQTwzo6WtJ0jY/cd3UDFCpzjqFUCZABW74lnKgXDUWyttyPPkLmrw/ui16gRlSXUdHmUDoWISDEuf0/rlCzLKOQ5P2UIJnAoq9R0evCPna0QIGTFMEvKHmVlZQCArq6uXtd3dXXFbysrK4PFYul1eyQSgd1u73VMX49x7HP0d8yxt58slr7o9Xrk5eX1ugzF6AIj6q0+vLuzBaFI+rWS2LwiopIMrTp7Eg+DoRYEtDkCJzzmYIcb7a4ARuZmT/tUTJ5Bi+pWZ1r+7BMRDZUkyVhd3YEmmx8VRWydosxxSgmcxYsXY/z48TAYDJg+fTq2bds2oPu99dZbEAQBN91006k8LdGQtDr8+Pu2ZvhCEYwpNCodDlFCTZgwAWVlZVi/fn38Orfbja1bt2LGjBkAgBkzZsDpdGLnzp3xYz799FNIkoTp06fHj9m0aRPC4XD8mHXr1uGss85CYWFh/Jhjnyd2TOx5BhJLMqhVAsYXm7GryYHV1Z2QZTlpz50INp8IGciqypHBMOnUaLb7IUl9f19lWca2BjsECFm5caTIpIPFE0JDN9uoiCj77G5xorLehtEFRmhU2fc3gDLXoH+aly9fjnnz5uGxxx7Drl27MGXKFMyaNeu4T3W/rrGxET/96U9xxRVXnHKwRKfK7hPx923N6HQFMH6EmW+IKC15vV5UVVWhqqoKQM+w4KqqKjQ3N0MQBDz88MP4zW9+gw8++ADV1dW44447UF5eHk+an3POObj22mtx3333Ydu2bfjyyy8xd+5cfP/730d5eTkA4Ac/+AF0Oh3uuece7N+/H8uXL8cLL7yAefPmxeN46KGHsGbNGjzzzDM4dOgQFi5ciB07dmDu3LkAMKBYksWoU6Mkz4DPDlmwpd6e1OceqjZngNU3J2DWa+AKhOHw990i1+oIoKbLg5IsrL4BAL1WjYgk43An26iIKLvYvCGs2tsOlQDkGbNn/hllh0EncJ599lncd999uPvuuzFp0iQsWbIEJpMJr776ar/3iUajuP322/HrX/8ap5122pACJhosXyiCv29rRp3Fi9NH5kDF5A2lqR07dmDq1KmYOnUqAGDevHmYOnUqFixYAAD4+c9/jgcffBD3338/Lr74Yni9XqxZswYGw1ftgm+88QbOPvtsfOtb38J1112Hyy+/HC+99FL89vz8fHz88cdoaGjAtGnT8JOf/AQLFizA/fffHz/m0ksvxZtvvomXXnoJU6ZMwbvvvosVK1bgvPPOix8zkFiSpdCkg1Yt4P2q9BlqLEkyOpwBmLQcst4fs04NXygCi6fvQca7m53whSLINWTv1zBXr8GeVifEyMDWrRMRpbuoJGPl3g60OgIYU8jWKco8gzqrEUURO3fuxPz58+PXqVQqzJw584SrYR9//HGUlJTgnnvuweeff37q0RINkhiR8I9drdjT4sRpI82cPk9p7aqrrjphG5AgCHj88cfx+OOP93tMUVER3nzzzRM+z+TJk0/6Wn3LLbfglltuGVIsyTS6wIg6qxdv72jB/7vydBSZU3uYoSsQhjcUgUmXvcmHk9GoVYjKgNUTwjmjet/mCYaxo8mOApMuqysui8w6tDsDaLT5cGZprtLhEBENu+2NdmxvtKOi0AS1Kntf/ylzDerdbHd3N6LR6KBWw37xxRf461//ipdffnnAzxMKheB2u3tdiAZLkmSs2tuOzXU2jC0yQa/hJheibCUIAiaMMKPB6sM7O1oQDKf2YFcbN1ANiApAh+v4Qcb72tywuEMYkZPaibrhZtCqEY5KbKMioqxgcQexuroDOrUKOVlcfUmZbVjLETweD374wx/i5ZdfxogRIwZ8v0WLFiE/Pz9+qaioGMYoKRPJsowNNRasP2RBSZ4eZj1fxImynUalwvgRZuxuduCj6o6UHmps84qIRLmB6mSMOjWabP5e38uoJGNrgw06jYqDKwHk6LXY0+pEOMo2KiLKXJGohA/2tKPLHcRoLiuhDDaod7UjRoyAWq0e8GrYI0eOoLGxETfccEP8OknqOYHQaDSoqanB6aefftz95s+f32tgptvtZhKHBmVXswMf7u1Ajl6DQlN2fwJLRF8xanuGGn9aY0VZvhEzTi9WOqQ+2X09g3mzuf1nIMw6Dew+Ee5gBPlHB1XWW71osPqydnjx1xXl6NDpCqDJ5sPEErZREVFmqqy3YVeTAxWFJs67pIw2qI+mdDodpk2b1ms1rCRJWL9+fZ+rYc8++2xUV1fHt6ZUVVXh3/7t33D11Vejqqqq36SMXq9HXl5erwvRQB3u8uCdHa0AgNK85A9MJaLUVmjSQa9W4f2qNtRZUnOocbszAK2GJ6AnY9L3DDK2HjPIeGeTA6GIxMrLo4xaNcSIjMNdbKMioszU5gxgzb5OmPQavvZTxht0bfG8efPw8ssv4/XXX8fBgwfxwAMPwOfz4e677wYA3HHHHfEhxwaDAeedd16vS0FBAXJzc3HeeedBp2NlBCVWmzOAt7Y1wxuMoILlk0TUj/ICAzzBCN7e0QKbt+8tRkqRJBlt3EA1IDq1CuGoDIsnCKBndWxVixPFWT775uvMejX2tLgQYRsVEWUYMSLhg6o2dHtDKM/nB7eU+QZ9dnjrrbfCarViwYIF6OzsxAUXXIA1a9bEBxs3NzdDxZ5zUkC7M4BllY3ocAUxcWQOWw+IqF+CIGD8CBNqu7x4Z2cr7rp0PAwpMjCYG6gGThAECAAs7p4k3N42Fxx+EWeyVaiXIrMOne4gmux+nD4yR+lwMo4YkeD0i3D4w3D4RTj9IrrcQdh9Im6YUs7WNaJh9HmtFXtbXRhXbOa5P2WFUzo7nDt3LubOndvnbRs2bDjhfZcuXXoqT0l0Qu3OAF6vbESTzY+JI3Og4tpAIjqJY4cal+Tq8e9TR6fEyZ/NJyIgRlFs5gyXgTDo1Gi0+SBGJGypt8Gk0/BvwNeYdBqEwn7UdnmYwDlFUUmGK/BVgsbhC6PbG0KHKwCbV0QgHEUwHIV0dJ62WiUgFJFw+RlhZQMnymBNNh8+PtCFPIOWWxspa/DjPUp7bc4AXt/cgGZ7ABNH5kDNE3ciGiCjVo3SPAM+O2RBWb4Bl54+8I2Jw8XuExGRuIFqoEw6NSzuEHY3O9BqD7B9th8mnQZVLU58e1IZ/072Q5ZluIOReDWN0y/C7hPR7gzA4gkhGI4iIEYRjsoQBEBAz6p2g1aNAqMOhjwVNOqvqtA5d4ho+NR0evCPXS1wB8I4o4SJacoeTOBQWoslb1qYvCGiU1Ro0sEfiuKDqnaU5OoVb3eweUOQwQ1UA2XWa9DlDuLLI92QZRl6fgrbpyKzDp2uIJrtfkwYYVY6HMXIsoxAONrT7uQT4fSH4fCH0OEKossdhDfUU0kjRiTIMiAIgF6jgkGrhlmnQbFZD61a4O8nkUKikoxNtVas3tsBvxjF6RybQFmGCRxKW8cmb05n8oaIhqC8wIAjVh/e3tGC/3fl6SjOUa59qd0ZgJavZwNm0KgQCktodwYxkqvD+2XSqREQo6jt8mRFAicUicLlDx83l6bDFYQrEEYwLCEYjvYcLANajQpGrRp6rQoFRi30GhXfFBKlGHcwjPd3t6Gy3o5cgwanj+TcG8o+TOBQWmp1+PH65ka0Opi8IaKhEwQBE0aYUWvxKDrUWJJktLsCHGA8CLGTd08wzA0kJyAIAkz6njaqb51TmhF/NyNR6ehcmjBcgZ65NFZvT5LG5hURPDqXJioBEACNSoBBq4ZRq8aIHA30GnVGfB2IskFjtw/v7mzF4S4PKgpNyDHw7yRlJ/7kU9qJJW9a7H5MLMnlyRcRJYRaJWB8sbJDjd3BMDxBbqAarDFH597wk9gTKzbr0OEKoNXhx7ji9KzCiUoyqloc2FpvR6c7iIDYk6QJR2VAkKGCcMK5NESUXiRJxpYGG1bu6YDTL2JiSQ60/J2mLMYzREorLXY/llUyeUNEw8OgVaMsNtQ4z4BLJyZ3qHG3lxuoToVZz9OZgTDp1GixR1Hb5U3LBE6rw481+zpR1eIEAOTqNcjRazAih3NpiDKRX4xg1d4ObDxshUGjxsQSzrsh4hkPpY1Y8qbVEWDyhoiGTYFJB18oivf3tKMkL7lDje0+EWFJ4gYqGhaCIMCoU2NPqxPfPLskbdat+0IRbKyxYuNhC5yBMCoKTUzaEWW4dmcA7+5sxf52F0blG5Fv1CodElFKYP0ZpYUWO2feEFHylBcY4A1G8PaOFti8oaQ9r90XAsBKAho+xWY92hwBtDkDSodyUpIkY3ezA3/8tBbv72mDShBwVmkukzdEGUyWZexqdmDJxiM40O7GhBFmJm+IjsG/gJTyYsmbNieTN0SUHLGhxoe7kjvUuM0Z5AYqGlZmvRqtjghqLR5UFJmUDqdfHa4A1uzrxK5mJwTIOH0k514QZbpQJIq1+7qw/lAXBABnlOZAxQ80iHphAodSWrOtp22KyRsiSja1qieJs7vJgZE5Ovz71DHD2nIiSTLanX4YdcnffkXZI9ZGVdXiwlVnpl4bVUCM4vNaKz47ZIHdH8aYAiO3zRBlAasnhH/sakVVswMjcw0oMuuUDokoJfEvIqWsZpsfr1c2oN0ZxMSROSl3kklEmc+gVaMs34DPaqwYlW8c1qHGsQ1URgXWl1N2KTLr0Orwo90VwJjC1KjCkWUZ1W0urN3fiTqLFwUmHc4q5cBSomxwoN2Nf+5qRYvdj3EjzPw7SHQCTOBQSmLyhohSRYFJB58YxftVbcM61Njm4wYqSo4cvQZtzgBqLd6USOB0uYNYu78TOxrtkGSwXYooS0SiEj6rsWDNvk6IEQlnlHJJCdHJ8K8jpZwmmw9LNzegg8kbIkoR5fkGeENRLN/egu5hGmps84qISDI3UNGwEwQBBo0ae1qckGVZsTiC4SjWH+zC/66vxZe13SjO0TN5Q5QlXP4w/ralCf/c1QadRoXTOCqBaED4F5JSSpPNh9c3N6LTFcTpTN4QUYqIDTVutvnxzo4WBMPRhD+H3ReCfPS5iIZbkVmHFrsfHa5g0p9blmXsb3fhz5/V4Z0drQhHJZxVlos8AzfNpLtFixbh4osvRm5uLkpKSnDTTTehpqZG6bAoxRyxevGXTUew+YgNowuMKMk1KB0SUdpgAodSRmM3kzdElLrUKgHjR5hR1eLCqr3tkKTEVi60cwMVJVGuQQNvKIpaizepz2v1hPDmtma8tKke9VYfJowwY1S+kYnLDLFx40bMmTMHW7Zswbp16xAOh3HNNdfA5/MpHRqlAEmS8XmtFS9tqkejzYczSnJg1nOiB9Fg8DeGUkJjtw/LKpm8IaLUZtCqUZanx2c1VpTlG3FZgoYaS5KMNmeAG6goaQRBgF6jwt4WJ648Y8SwJ1BCkSgqj9iw/mAXLO4QRhUYkW9kxU2mWbNmTa9/L126FCUlJdi5cyeuvPJKhaKiVOANRfBhVTu+PNINo1aNiSM5pJzoVDCBQ4prOJq86WLyhojSQGyo8QdVbSjJ1eOM0qEPNXYHw/AGw9y8QUlVZNahye5HlzuEsvzhaWGQZRk1XR58VN2Jmi4PcvUanFmWCxXfuGUFl8sFACgqKur3mFAohFDoq9librd72OOi5Gqx+/HuzlYc7HBjdIEReUzeEp0ytlCRohq6fVi2+WjypoTJGyJKD7Ghxm/vSMxQY5tPhF+MsgKHkirPoIE3GEatxTMsj2/zhrB8ewv+svEI6ixejC82obzAyORNlpAkCQ8//DAuu+wynHfeef0et2jRIuTn58cvFRUVSYyShpMsy9jeaMdfNh7B4S4PTh+Zw+QN0RAxgUOKqbd68frmRnR5jiZveEJHRGki0UON7T4R4agMHbfvUBIJggCtWoXqVldCt1GJEQmf11rxwvpafHbIgjyDFhNLcqDXMEGZTebMmYN9+/bhrbfeOuFx8+fPh8vlil9aWlqSFCENp2A4ihW72/B/lY3wiVGcUZIDnYZ/44iGii1UpIh6qxfLKptg8Rxtm2LyhojSzLFDjVfubcd3po455SpCm1cEBG6gouQrMuvQ0O2D1RNCSd7Q2qhkWUadxYuP9nXiYIcbZp0GZ5bmsro2C82dOxcrV67Epk2bMGbMmBMeq9frodfrkxQZJUOXO4h3d7Zib6sLpXl6FJp0SodElDGYwKGkO2L14v8qm2D1hJi8IaK0FhtqvKHGirI8Iy4/49SGGnc4A9xARYrIM2rR5Q6h1uIdUgLH4RPxycEuVB6xIRiOYmyRCQbOdMo6sizjwQcfxHvvvYcNGzZgwoQJSodESSTLMva1ufHPXa1odwUxodgEPV8HiBKKCRxKqmOTN6eNNDN5Q0Rpr8Ckg1+M4oM9bSjJ0+PMQQ41lmVuoCLlqAQBGrWAva1OXHp68aCrwMJRCdsb7Pj4QBfanQGU5RlQUWQapmgp1c2ZMwdvvvkm3n//feTm5qKzsxMAkJ+fD6PRqHB0NJzEiIT1B7uw7kAXorKMMznbkmhYsBGRkqbO4sX/VTYyeUNEGWdUvgG+UBTv7GiB1TO4ocbuQAQebqAiBcXaqLq94qDud8TqxUsb6/G3LU1wB8I4szQXhWa2SmSzF198ES6XC1dddRVGjRoVvyxfvlzp0GgY2X0illU24v097TBo1RhfbGbyhmiYsAKHkqLO4sXftjTC6hGZvCGijBMbalzb5cE7O1vwn5dNGHD7iM0XQiAc5RtfUky+UQuLJ4haiwcjc08+i8TlD+PTQ134oq4bATGKMUUmJiAJABI6DJvSw+EuD97d2YLGbj/GFZtg0vHtJdFw4m8YDbs6iwfLKptg8zJ5Q0SZKzbUeE+LEx/uacfNFw5sqLHNJ0LkBipSkEoQoFGpsK/NhUtP73+OUyQqYUeTAx/v70SrI4CSXD1GFxg5fJsoC0UlGZtqrVi9twN+MYozSnOgUfHvGNFwYwKHhtWxyZvTR5p5kkdEGc2gVWNUvhEbD1sxKn9gQ41tXhGQuYGKlFVk0uGIxQubN4TinOOrcBq7ffhoXweq21zQqVU4szQXarZIEGUldzCM93e3obLejly9huf4REnEBA4Nm9ouD/5vC5M3RJRd8o1a+EKRAQ817nAFoFHz9ZGUlW/Uotbas43q2ASOOxjGhkNWfF5rhTcUwZhCI1skiLJYk82Hd3a24nCnB2MKjcg1aJUOiSirsM6NhgWTN0SUzUblG+AfwFBjWZbR7gzAxA1UpDCVSoBaAPa3uQD0tEfsaLTjj+trsaq6HTqNCmeU5DB5Q5SlJElG5REb/rKxHkcsXkwsyWHyhkgB/CtMCXe4y4P/q2yCw8fkDRFlJ0HomYdTa/HgnR0t+M/L+x5q7A5E4A5GOACWUkKRWY9aixf72lyoPGLDnlYn1CoBE0s424IomwXEKFbubcemw9Z4Mpfn90TK4F9jSqhjkzenMXlDRFlMrRIwvtiMPa09Q40l6fjtLDZfCAExAiMrcCgF5Bu1cPrDWFbZiJ1NDpTlGTC+2MzkDVEW63AF8PLn9Vh3sAvFOXqMKTTx/J5IQazAoYSp6fTgb1sa4fCHmbwhIsJXQ4031FhRlm/AFWeM7HW7nRuoKIWoVQKKjq6zP7OUn7ATZTNZllHV4sR7u9vQ5Q7itBFm6DX8sIFIaUzgUEL0St6MYPKGiCgmNtT4wz3tKMk14Kyyr4Ya23wiBHADFaWOkbnHb6AiouwSlWR8VN2BTw52AQDOLM2Fin+niFICP/KjITvU6cb/VTbCyeQNEVGfjh1qbPEE49d3uAJcxUxERCllb6sTa/Z3IkevwbhiM5M3RCmECRwakkOdbvytsgmuQAQTmLwhIupTbKhxi8OPd3e0IiBGIcsy2hwBDjAmIqKUEY5K2HjYCgAozmFFHlGqYQKHTtnBDjf+r7IJzkAYE0ZwoBkR0YmoVQImHB1qvHJvO1yBcM8GKg4wJiKiFFHd5kKdxYvRBUalQyGiPnAGDp2Sgx1u/G1LE9wBtk0REQ2U/pihxlFJRkCMoNDEk2QiIlJeOCphY40VAnqG8BNR6mEFDg3agfavkjdsmyIiGpx8oxZmvRq7mh0QI9xARUREqWFva0/1TTmrb4hSFs8aaVAOtLvxxtYmuINM3hARnaqyPAOCogS1ihuoiIhIeWJEwsYaC1QqVt8QpTK2UNGA7W934Y0tzfCEwphQzOQNEdGp6hlqbFI6DCIiIgA9m6fqrF6MLeTfJqJUxgQODYjVE8LybS3wMnlDRJQQfB0lIqJUIEYkbDhshUYlQM/qG6KUxhYqGpBNhy3ocgcxjskbIiIiIqKMsafViXqrj7NviNIAEzh0Ui12P7Y22DEyVw8VkzdERERERBkhFIliY40VahWg17D6hijVMYFDJyTLMjbUWOAKRFBk1ikdDhERERERJcieFhfqrV6MZvUNUVpgAodO6IjVi13NTozKN7B1ioiIiIgoQ4QiUWw8bIFGrWL1DVGaYAKH+iVJMj49ZEEwHEW+Uat0OERERERElCBVzU40dPtQXmBQOhQiGiAmcKhfBzrcqG51saSSiIiIiCiDBMNRbDxshVbF6huidMIEDvUpHJWw/mAXJBkw67ltnoiIiIgoU+yOV9/wg1qidMIEDvWpqsWJw10ejCnkizoRERERUaYIhqPYVGuBTqOCTsO3g0TphL+xdJxgOIpPD3VBrVLBoGVJJRERERFRptjV7EBjtx/l+fyglijdMIFDx9neaEeD1c/ZN0REREREGSQ2+0bP6huitMTfWurFHQzjs0MWmHRqvqgTEREREWWQXU0ONNv8GMXqG6K0xHfo1EvlERvanAGM4jpBIiIiIqKMERCj2HDYwuobojTG31yKs3lD+PywFQVGHTQq/mgQEREREWWKXc0OtNgD3DxFlMb4Lp3iPq/thsUTQkmuXulQiIiIiIgoQQJiFBtqLDBo1dCq+RaQKF3xt5cAAO3OACqPdGNEjh4qlaB0OERERERElCA7muxosQcwKp9jEojSGRM4BFmWsaHGAmcgjBE5OqXDISIiIiKiBPGLEWw6bIVRx+obonTH32BCQ7cPO5ocKMszQBBYfUNERERElCl2NB6dfcPqG6K0xwROlpMkGZ/VWBAQo8g3apUOh4iIiIiIEsQX6qm+MenU0LD6hijt8bc4yx3sdGNviwuj8ll9Q5TuFi5cCEEQel3OPvvs+O3BYBBz5sxBcXExcnJycPPNN6Orq6vXYzQ3N+P666+HyWRCSUkJfvaznyESifQ6ZsOGDbjwwguh1+sxceJELF269LhYFi9ejPHjx8NgMGD69OnYtm3bsPw/ExERUf92NDnQ6vBz9g1RhmACJ4tFohI+PWRBRJKRa2D1DVEmOPfcc9HR0RG/fPHFF/HbHnnkEXz44Yd45513sHHjRrS3t+M73/lO/PZoNIrrr78eoihi8+bNeP3117F06VIsWLAgfkxDQwOuv/56XH311aiqqsLDDz+Me++9F2vXro0fs3z5csybNw+PPfYYdu3ahSlTpmDWrFmwWCzJ+SIQERERvKEINtZYYNZrWH1DlCH4m5zF9rS6UNPpwegCo9KhEFGCaDQalJWVxS8jRowAALhcLvz1r3/Fs88+i29+85uYNm0aXnvtNWzevBlbtmwBAHz88cc4cOAA/va3v+GCCy7A7Nmz8cQTT2Dx4sUQRREAsGTJEkyYMAHPPPMMzjnnHMydOxff/e538dxzz8VjePbZZ3Hffffh7rvvxqRJk7BkyRKYTCa8+uqryf+CEBERZakdjXa0OwMoy2P1DVGmOKUEzmBK419++WVcccUVKCwsRGFhIWbOnMlS+hQQDEfx6aEuqATAqFMrHQ4RJUhtbS3Ky8tx2mmn4fbbb0dzczMAYOfOnQiHw5g5c2b82LPPPhtjx45FZWUlAKCyshLnn38+SktL48fMmjULbrcb+/fvjx9z7GPEjok9hiiK2LlzZ69jVCoVZs6cGT+mP6FQCG63u9eFiIiIBs97dPYNq2+IMsugf5sHWxq/YcMG3Hbbbfjss89QWVmJiooKXHPNNWhraxty8HTqdjU5UG/1YXSBSelQiChBpk+fjqVLl2LNmjV48cUX0dDQgCuuuAIejwednZ3Q6XQoKCjodZ/S0lJ0dnYCADo7O3slb2K3x2470TFutxuBQADd3d2IRqN9HhN7jP4sWrQI+fn58UtFRcWgvwZEREQEbG+wo90ZRBln3xBllEEncAZbGv/GG2/gv/7rv3DBBRfg7LPPxiuvvAJJkrB+/fohB0+nxhuK4NNDFhi0aug0zMgTZYrZs2fjlltuweTJkzFr1iysXr0aTqcTb7/9ttKhDcj8+fPhcrnil5aWFqVDIiIiSjueYBibDluRo9dAo+K5PlEmGdRv9FBK42P8fj/C4TCKior6PYZl9MNry5FutDgCKGdGniijFRQU4Mwzz0RdXR3KysogiiKcTmevY7q6ulBWVgYAKCsrO24rVezfJzsmLy8PRqMRI0aMgFqt7vOY2GP0R6/XIy8vr9eFiIiIBmd7ox3triBK8/VKh0JECTaoBM5QSuNjHn30UZSXlx83Q+FYLKMfPg6fiE213cgzsB+WKNN5vV4cOXIEo0aNwrRp06DVantVP9bU1KC5uRkzZswAAMyYMQPV1dW9WmLXrVuHvLw8TJo0KX7M1yso161bF38MnU6HadOm9TomVnUZO4aIiIiGhzsYxqbD3cg1sPqGKBMl9bf6d7/7Hd566y289957MBj6r/5gGf3w+bKuG12uIKfRE2Wgn/70p9i4cSMaGxuxefNm/Pu//zvUajVuu+025Ofn45577sG8efPw2WefYefOnbj77rsxY8YM/Mu//AsA4JprrsGkSZPwwx/+EHv27MHatWvxy1/+EnPmzIFe3/Mp3o9+9CPU19fj5z//OQ4dOoQ///nPePvtt/HII4/E45g3bx5efvllvP766zh48CAeeOAB+Hw+3H333Yp8XYiIiLLFtnobOlzcPEWUqTSDOXgopfFPP/00fve73+GTTz7B5MmTT3isXq+Pv1mgxOl0BfFFXTeKcnRQqQSlwyGiBGttbcVtt90Gm82GkSNH4vLLL8eWLVswcuRIAMBzzz0HlUqFm2++GaFQCLNmzcKf//zn+P3VajVWrlyJBx54ADNmzIDZbMadd96Jxx9/PH7MhAkTsGrVKjzyyCN44YUXMGbMGLzyyiuYNWtW/Jhbb70VVqsVCxYsQGdnJy644AKsWbPmuOpNIiIiShxXIIwv6rqRZ9BCzXN9oow0qATOsaXxN910E4CvSuPnzp3b7/2eeuop/Pa3v8XatWtx0UUXDSlgOjWyLGNDjQV2n4izy3KVDoeIhsFbb711wtsNBgMWL16MxYsX93vMuHHjsHr16hM+zlVXXYXdu3ef8Ji5c+ee8O8CERERJda2Bhs6XEGcUcJzfaJMNagEDtBTGn/nnXfioosuwiWXXILnn3++V2n8HXfcgdGjR2PRokUAgN///vdYsGAB3nzzTYwfPz4+KycnJwc5OTkJ/F+hE2m2+7Gj0Y6yPAMEgRl5IiIiIqJM4fKH8Xktq2+IMt2gEzgnK41vbm6G6piBWS+++CJEUcR3v/vdXo/z2GOPYeHChUOLngZElmV8esgCbyiK8gKj0uEQEREREVECbWmwocvN6huiTDfoBA5w4tL4DRs29Pp3Y2PjqTwFJVBNlwd7WpwYVcDqGyIiIiKiTOL0i/iyrhv5RlbfEGU67pbLcFFJxqcHLRAjEvIMWqXDISIiIiKiBNpab0OnO4iSXG6eIsp0TOBkuOo2Fw50uDG6kK1TRERERDS8Nm3ahBtuuAHl5eUQBAErVqxQOqSM5vCJ+KKuG4VGHatviLIAEzgZLBSJ4tODPSvfTbpT6pYjIiIiIhown8+HKVOmnHDjISXO1gYbutwhlOTqlQ6FiJKA7+oz2K4mJ+qsXowtMikdChERERFlgdmzZ2P27NlKh5EV7D4RX9R2o9Ckg4rVN0RZgQmcDOUXI/ispgs6tQp6jVrpcIiIiIiIjhMKhRAKheL/drvdCkaTXrYcscHiCeGsUm6eIsoWbKHKUFsb7Gi2+bk2nIiIiIhS1qJFi5Cfnx+/VFRUKB1SWrB5Q/jySDcKzay+IcomTOBkIJc/jI01VuTotdCq+S0mIiIiotQ0f/58uFyu+KWlpUXpkNJC5REbrJ4QSnI4+4Yom7CFKgN9WdeNDlcAZ5SwnJKIiIiIUpder4dezyTEYHR7Q6ist6GI1TdEWYflGRnG4gni8zorCk1cJUhERERElGm2HK2+GcnNU0RZhxU4GWbTYSvsXhFnlrH6hoiIiIiSy+v1oq6uLv7vhoYGVFVVoaioCGPHjlUwssxg9YSw+YgNxWYdVAI/rCXKNkzgZJAWux9b6+0YmavnCzoRERERJd2OHTtw9dVXx/89b948AMCdd96JpUuXKhRV5qg8YkO3N4Sz+GEtUVZiAidDyLKMz2oscAcjOKs0R+lwiIiIiCgLXXXVVZBlWekwMpLFE0TlkW4U57D6hihbcQZOhqizeLG72YFR+QYIfEEnIiIiIsoolUdssPtFjODmKaKsxQROBpAkGesPWRAKS8g3apUOh4iIiIiIEsjiDqLyiA3FZo5KIMpmTOBkgP3tbuxvc6G8wKh0KERERERElGBfHrHB4RMxIkendChEpCAmcNJcOCrh00NdkGXArOdIIyIiIiKiTNLlDmJrvQ3FOXqOSiDKckzgpLndzU4c7vJidCGrb4jo/7d357FRnff+xz/jbWzwCgbbrKEXEpKyhAClDu1NFbjwi6IotP2lKEpTSqtKoYRCqX4qVCm0umqgrVI1UXKhSW/bSF1IaQVtokKCwHEaQgAbE3az2NgOeLfHY4/3mef3h+OJlzHYZuw5c+b9kpzY55w583xnmM/Y33nmGQAAYDdHr9aovpnZNwBo4IS1lnavcgorFRPlUHxsdKiHAwAAACCIKhq6Zt+kM/sGgGjghLWT1+tUXN3M7BsAAADAho5erZaruUPjxzL7BgANnLDlbu3Qu4VVGuuMVmw0dyMAAABgJ+UNLTpeXKf0JGbfAOjCX/5h6tjVGt1wtSgzJT7UQwEAAAAQZEev1qihhdk3AD5FAycM1TS16b0rNUpNiFNMFHchAAAAYCc3XS06UVynCax9A6AH/voPQ/++XK3qxjZNTHaGeigAAAAAguz9qzVqaO7QOGbfAOiBBk6YueFq0bGiWk1IciqKbjwAAABgKzdcLcq7XqcJrH0DoA8aOGHEGKN3C6t4LywAAABgU/++XK2GFmbfAOiPBk4YKarxKP96vTKT4+nGAwAAADZTVtes/JJ6TUzi930A/dHACRM+n1HOpSq1dHiVkhAb6uEAAAAACLKjV2vkbu1Q2hh+3wfQHw2cMHGxwq0zH7s0KSWBbjwAAABgM2V1zcorqVcGs28ADIAGThjo9Pp05FKVOn1SYnxMqIcDAAAAIIiMMfr3lWo1tnYqldk3AAZAAycMfPSxS4UVjZqSlhDqoQAAAAAIsrK6Fp0qqVdGMp88BWBgNHAsrrXDqyOXqhTlkBJio0M9HAAAAABBZIzRe1eq1djmVSprXQK4BRo4FpdfUq+iao8mp44J9VAAAAAABFlpXbMKSuuVyewbALdBA8fCmto6lXOpSvGx0YqL4a4CAAAA7MQYo/cuV6uprZNPmgVwW3QFLOzYtRqV1TdrUkp8qIcCAAAAIMiu1zaroMylzGQ+eQrA7dHAsag6T7veu1yjlIRYxURzNwEAAAB20v3JUx5m3wAYJDoDFvX+lRpVuluVkcTsGwAAAMBuims8Ol3qUlZKArNvAAwKDRwLKm9o0QfXapSe6FRUFGEOAAAA2EnX7JsaNXd4lRwfE+rhAAgTNHAsxhij3MJq1Te3Kz0xLtTDAQAAABBkRTUefcTaNwCGiAaOxZTUNuvk9TplJBHmAAAAgN0YY/Tvy9Vq6fCy9g2AIaGBYyHGGOUUVsnT5lXqGMIcAAAAsJtr1R599HGDMpNZ6xLA0NDAsZBLFY06XebSpFRm3wAAAAB2Y4zRe1eq1drhVTKzbwAMEQ0ci+j0+nTkUpU6On1KiifMAQAAADsxxuj8TbfOlLmUmcLsGwBDx5LnFnH2RoMulrs1OS0h1EMBAAAAECQdXp8KKxp18nqdLtx0q9PrUzIv2AIYBho4FtDW6VXOpSo5JI2J4y4BAAAAwl29p11nbjTow6IaldW1yOczSk9yKovZNwCGiW5BCLW0e3W5slEFZfW6XNmku9LHhHpIAAAAAIbJ5zMqrvWooLRe+SX1qvd0KD42SpNTExQfGx3q4QEIczRwRlmn16frtR6du+HW6TKXqhtbZYyUmRIvZwyhDgAAAISb5vZOnb/p1vGiWl2talJLh0/jx8Zp5sRERUfx4SQAgoMGzigwxqi8oVUXy93KL6nXjfoWtXX6lJwQo2njxiouhrWkAQAAgHBijFGFu1Uflbl0vLhOlQ2tiopyKCMpXonx/JkFIPhIlhHkam7XxfKut0gVVTWpsbVTY5wxmpjsZK0bAAAAIAx1L0qcX1Kvczca1NDSoZSEWN2VPlax0bwwC2Dk0EUIstaOrnVtznzcoPM3GlTf0qHYKIfGJzo1KTVBDgdTKAEAAIBw09DcoY8+dul4ca1Kapt7LUrM7/gARgMNnCDoXtfm/E23Ckpdqm5skzFGaWPjNHMC73sFAAAAwpExRtdrm3WqpE6nSl2qbWpnUWIAIUMDZ5i617W5VOFW3vWudW1aO71KSYjVtHFjWNcGAAAACFOtHV6dv9mg40V1ulLVqOZ2r8axKDGAEKOBM0QNzR26UO7+dF2btk6NiWNdGwAAACDcVbpbdbrMpeNFtar4ZFHiiUlOTU2L4W1SAEKOjsMgdK9rc/ZGg87daFC9p0Mx0Q6ls64NAAAAENY6vT5drmxSXkmdzt1okKu5Q8nxLEoMwHpo4AzA6zMqrvHows0GFZS6VPnJujZMnQQAAADCX0NLh85+3KAPi2pVUutRp89oQqJTszNZlBiANdHA6cEYowp3qy6Wu3WqxKWy+ma1dXiVnBCr6axrAwAAAIQ1Y4xKaptVUOZS/vU61Xja5IyJVlZqghJYlBiAxdHAUde6Nhcr3Dpd5tLVqiY1tnYoITZaE5NY1wYAAAAId12LErt1orhWVyqb5GnvVNqYOM2ckMTMegBhI2K7E60dXl2pbNKZG67+69qkMG0SAAAACHdVnyxKfKK4TjcbWhUlaUKyU1PSWMcSQPiJqAaO12d0vdajCzfcOlVWryp317o2qWNY1wYAAACwg06vT1eqmpRfUq8zH7v8ixKzJAKAcGf7Bo4xRpXuNl0sdyu/pF5l9c1q7fAqOT5W0whxAAAAwBbcrV2LEh8vqlVxTdeixOksSgzARmzfwPnz8VKdLnPJ/cm6NhMSnRrrtH3ZAAAAQMRo7/TplZyrKqlpljMmSlkpCUqIY1FiAPZi+05GUU2TOrw+3ZORROcdAAAAsKFOn0/ulg5NSHJq3Ni4UA8HAEbEsN4/9Morr+iuu+5SfHy8lixZohMnTtzy+L1792r27NmKj4/X3Llz9a9//WtYgx0uZ0w0zRsACIGhPl8AAMJfKLOf3/gB2NmQGzhvvPGGNm/erO3bt+vUqVOaP3++Vq5cqaqqqoDHf/DBB3ryySf17W9/WwUFBVq1apVWrVqlc+fO3fHgAQDWNdTnCwBA+CP7AWDkOIwxZigXWLJkiRYvXqyXX35ZkuTz+TR16lRt2LBBW7Zs6Xf86tWr5fF49NZbb/m3ff7zn9f999+v3bt3D+o63W63UlJS1NDQoOTk5MEN1BipuVk7D1xQU6tXGcnxg7scAATZtaom/d//vEdfuHvCkC43rOyzkKE+X/Q13Po7vT795M3z8vmkCUnOYY8fiHg9f0Xs8b2j16+OA2zvdbwCHt99zICXC3DsQOfznyPAufznCXSOQNcXaFz+feq/b4DrKa7x6Csr79fCe6doKMj+4dXf3N6p/37rgmKjopTGW6gAhMjlykY989B/aP7U1CFdbrDZN6Q1cNrb25Wfn6+tW7f6t0VFRWn58uU6duxYwMscO3ZMmzdv7rVt5cqV2r9//4DX09bWpra2Nv/Pbrd7KMPs0twsJSbq9k8TADDyPjh9PdRDGFXDeb4ISvZLilq+XBsvF0mSoqOCM5neMbTXOgbH+P8T4PoG3ncrtxznLfbdur7++wIeH2Bb4PMO9jgFvI0C3qN9L9/n5/7nH8QYzG329z1giNfZqwkxiObIp992NxcCn3ugZkhfjgGvE8F09X/+V7r3W6EexqgJZfbHf26R/l95jeSQooe4dMJtHwEDnm54zzFmJJZ2CPI5R2SMIyL44wx67eFyW1p9nGHyXNXe6VPT//xGmvpfI3L+ITVwampq5PV6lZGR0Wt7RkaGLl26FPAyFRUVAY+vqKgY8Hp27Nihn/70p0MZGgBYWlL9BUnTQz2MUTOc54tgZb+juEgTbpbc8XkARCbj/xvGcctt3d/2+pOi+w+gT/4X11IZ9PFZWUizv6RE41yuOz4PANyp0trrI3ZuS34K1datW3vN2nG73Zo6derQTjJmjNTUpPKiC+osOxnkEUao8Gh6ApbjdSZrxgPZoR6G5QUl+yU59u5V5eUzUvWFYY4k8CtQ5nav8g3nhSuH49YXdNz+xLd9pdBxm+XuBnEdAV+VC7DNBLquQOcPVPcA4whUn4kKVNNtzuf/w9rRY7Ojz/8/+b77D/Oel+l73Cfbeo/P0b+EPvtNrx971NGvph7X2fe6eoy/1/UPVLP61PHJbWB61d/jcj3H4uhzPT2uw/Sq99Nx9r58z/F8ut3nCHCMw9F/zH0up6hPj+0e/6f/HnrU0T3OHuc0AcfX87K9x2P63m59/530+7bP5aJiNGPGfwi3FrTsf+cdVV07I9VdvbMBDTAJLmhGYhaBzxfc8w1zFuhtTxrs2sNhRkY4jFGSTJD/DUUwb/w4Tfw/j4zY+YfUwElPT1d0dLQqK3u/mlBZWanMzMyAl8nMzBzS8ZLkdDrldN7hugUOhzR2rLLmLpbmLr6zcwEAhmQ4zxdByX5JWrxYGYvJfQAYbaHO/olkPwCbG9KnUMXFxWnhwoU6fPiwf5vP59Phw4eVnR341eXs7Oxex0vSoUOHBjweABD+hvN8AQAIb2Q/AIysIb+FavPmzVqzZo0WLVqkz33uc/r1r38tj8ejtWvXSpK+8Y1vaPLkydqxY4ckaePGjXrooYf0wgsv6NFHH9WePXuUl5enV199NbiVAAAs5XbPFwAA+yH7AWDkDLmBs3r1alVXV2vbtm2qqKjQ/fffr4MHD/oXKystLVVUj/cWP/jgg/rzn/+s5557Tj/60Y80a9Ys7d+/X3PmzAleFQAAy7nd8wUAwH7IfgAYOQ5jrL+y0mA/Ex0A7CTSsy/S6wcQmSI9+yK9fgCRabDZN6Q1cAAAAAAAADD6aOAAAAAAAABYHA0cAAAAAAAAi6OBAwAAAAAAYHE0cAAAAAAAACyOBg4AAAAAAIDF0cABAAAAAACwOBo4AAAAAAAAFkcDBwAAAAAAwOJo4AAAAAAAAFhcTKgHMBjGGEmS2+0O8UgAYPR0Z153BkYash9AJCL7yX4AkWew2R8WDZzGxkZJ0tSpU0M8EgAYfY2NjUpJSQn1MEYd2Q8gkpH9ZD+AyHO77HeYMGjv+3w+3bx5U0lJSXI4HIO+nNvt1tSpU1VWVqbk5OQRHGFoUae9UKe93Emdxhg1NjZq0qRJioqKvHe8kv23Rp32Qp32QvYPH9l/a9RpL9RpL6OR/WExAycqKkpTpkwZ9uWTk5Nt/Q+lG3XaC3Xay3DrjMRXX7uR/YNDnfZCnfZC9g8d2T841Gkv1GkvI5n9kdfWBwAAAAAACDM0cAAAAAAAACzO1g0cp9Op7du3y+l0hnooI4o67YU67SVS6rSSSLnNqdNeqNNeIqVOK4mU25w67YU67WU06gyLRYwBAAAAAAAima1n4AAAAAAAANgBDRwAAAAAAACLo4EDAAAAAABgcTRwAAAAAAAALM4WDZz33ntPjz32mCZNmiSHw6H9+/f32m+M0bZt25SVlaWEhAQtX75cV65cCc1gh2nHjh1avHixkpKSNHHiRK1atUqFhYW9jmltbdX69es1fvx4JSYm6qtf/aoqKytDNOLh27Vrl+bNm6fk5GQlJycrOztbBw4c8O+3S5097dy5Uw6HQ5s2bfJvs0udP/nJT+RwOHp9zZ4927/fLnVK0o0bN/T1r39d48ePV0JCgubOnau8vDz/fjtkkZWQ/V3s8hgi+7vYpc5IyX5yf/SR/V3s8BiKxNyXyH471BnK7LdFA8fj8Wj+/Pl65ZVXAu7/xS9+oZdeekm7d+/W8ePHNXbsWK1cuVKtra2jPNLhy83N1fr16/Xhhx/q0KFD6ujo0IoVK+TxePzHfP/739ebb76pvXv3Kjc3Vzdv3tRXvvKVEI56eKZMmaKdO3cqPz9feXl5evjhh/X444/r/PnzkuxTZ7eTJ0/qN7/5jebNm9dru53q/OxnP6vy8nL/1/vvv+/fZ5c66+vrtXTpUsXGxurAgQO6cOGCXnjhBaWlpfmPsUMWWQnZ38UujyGyv4ud6rR79pP7oUH2d7HDYyjScl8i++1QZ8iz39iMJLNv3z7/zz6fz2RmZppf/vKX/m0ul8s4nU7zl7/8JQQjDI6qqiojyeTm5hpjumqKjY01e/fu9R9z8eJFI8kcO3YsVMMMmrS0NPPb3/7WdnU2NjaaWbNmmUOHDpmHHnrIbNy40Rhjr/tz+/btZv78+QH32anOH/7wh+YLX/jCgPvtmkVWQfaH/2MoELI/fOuMhOwn90OP7A/vx1Agds19Y8h+u9QZ6uy3xQycWykuLlZFRYWWL1/u35aSkqIlS5bo2LFjIRzZnWloaJAkjRs3TpKUn5+vjo6OXnXOnj1b06ZNC+s6vV6v9uzZI4/Ho+zsbNvVuX79ej366KO96pHsd39euXJFkyZN0mc+8xk99dRTKi0tlWSvOv/5z39q0aJFeuKJJzRx4kQtWLBAr732mn+/XbPIqux6e5P99qiT7LdHneS+9dj1No+E7Ld77ktkv13qDHX2276BU1FRIUnKyMjotT0jI8O/L9z4fD5t2rRJS5cu1Zw5cyR11RkXF6fU1NRex4ZrnWfPnlViYqKcTqeeeeYZ7du3T/fdd5+t6tyzZ49OnTqlHTt29NtnpzqXLFmiP/zhDzp48KB27dql4uJiffGLX1RjY6Ot6iwqKtKuXbs0a9Ysvf3221q3bp2+973v6fXXX5dkzyyyMjve3mS/Peok++2T/eS+9djxNrd79kdC7ktkP9kfvDpj7vgMGHXr16/XuXPner2f0G7uuecenT59Wg0NDfrb3/6mNWvWKDc3N9TDCpqysjJt3LhRhw4dUnx8fKiHM6IeeeQR//fz5s3TkiVLNH36dP31r39VQkJCCEcWXD6fT4sWLdLzzz8vSVqwYIHOnTun3bt3a82aNSEeHeyA7A9/ZL+9sp/cx2iwe/bbPfclsp/sDy7bz8DJzMyUpH6rW1dWVvr3hZNnn31Wb731lnJycjRlyhT/9szMTLW3t8vlcvU6PlzrjIuL08yZM7Vw4ULt2LFD8+fP14svvmibOvPz81VVVaUHHnhAMTExiomJUW5url566SXFxMQoIyPDFnUGkpqaqrvvvltXr161zf0pSVlZWbrvvvt6bbv33nv900btlkVWZ7fbm+y3R51kv72yn9y3Hrvd5pGQ/XbPfYnsJ/vl/zkYddq+gTNjxgxlZmbq8OHD/m1ut1vHjx9XdnZ2CEc2NMYYPfvss9q3b5+OHDmiGTNm9Nq/cOFCxcbG9qqzsLBQpaWlYVXnQHw+n9ra2mxT57Jly3T27FmdPn3a/7Vo0SI99dRT/u/tUGcgTU1NunbtmrKysmxzf0rS0qVL+33E5+XLlzV9+nRJ9smicGGX25vsJ/vDsc5A7Jj95L712OU2j+Tst1vuS2Q/2R/kHLrjZZAtoLGx0RQUFJiCggIjyfzqV78yBQUFpqSkxBhjzM6dO01qaqr5xz/+Yc6cOWMef/xxM2PGDNPS0hLikQ/eunXrTEpKinn33XdNeXm5/6u5udl/zDPPPGOmTZtmjhw5YvLy8kx2drbJzs4O4aiHZ8uWLSY3N9cUFxebM2fOmC1bthiHw2HeeecdY4x96uyr52r0xtinzh/84Afm3XffNcXFxebo0aNm+fLlJj093VRVVRlj7FPniRMnTExMjPnZz35mrly5Yv70pz+ZMWPGmD/+8Y/+Y+yQRVZC9nexy2OI7O9ilzojIfvJ/dAg+7vY4TEUqblvDNkfznWGOvtt0cDJyckxkvp9rVmzxhjT9VFeP/7xj01GRoZxOp1m2bJlprCwMLSDHqJA9Ukyv//97/3HtLS0mO9+97smLS3NjBkzxnz5y1825eXloRv0MH3rW98y06dPN3FxcWbChAlm2bJl/iA3xj519tU3yO1S5+rVq01WVpaJi4szkydPNqtXrzZXr17177dLncYY8+abb5o5c+YYp9NpZs+ebV599dVe++2QRVZC9nexy2OI7O9ilzojJfvJ/dFH9nexw2MoUnPfGLI/3OsMZfY7jDHmzufxAAAAAAAAYKTYfg0cAAAAAACAcEcDBwAAAAAAwOJo4AAAAAAAAFgcDRwAAAAAAACLo4EDAAAAAABgcTRwAAAAAAAALI4GDgAAAAAAgMXRwEHE++Y3v6lVq1aFehgAgFFE9gNA5CH7Ee5iQj0AYCQ5HI5b7t++fbtefPFFGWNGaUQAgJFG9gNA5CH7EQkchn/BsLGKigr/92+88Ya2bdumwsJC/7bExEQlJiaGYmgAgBFC9gNA5CH7EQl4CxVsLTMz0/+VkpIih8PRa1tiYmK/qZRf+tKXtGHDBm3atElpaWnKyMjQa6+9Jo/Ho7Vr1yopKUkzZ87UgQMHel3XuXPn9MgjjygxMVEZGRl6+umnVVNTM8oVAwDIfgCIPGQ/IgENHCCA119/Xenp6Tpx4oQ2bNigdevW6YknntCDDz6oU6dOacWKFXr66afV3NwsSXK5XHr44Ye1YMEC5eXl6eDBg6qsrNTXvva1EFcCABgssh8AIg/Zj3BCAwcIYP78+Xruuec0a9Ysbd26VfHx8UpPT9d3vvMdzZo1S9u2bVNtba3OnDkjSXr55Ze1YMECPf/885o9e7YWLFig3/3ud8rJydHly5dDXA0AYDDIfgCIPGQ/wgmLGAMBzJs3z/99dHS0xo8fr7lz5/q3ZWRkSJKqqqokSR999JFycnICvq/22rVruvvuu0d4xACAO0X2A0DkIfsRTmjgAAHExsb2+tnhcPTa1r3Kvc/nkyQ1NTXpscce089//vN+58rKyhrBkQIAgoXsB4DIQ/YjnNDAAYLggQce0N///nfdddddionhYQUAkYDsB4DIQ/YjlFgDBwiC9evXq66uTk8++aROnjypa9eu6e2339batWvl9XpDPTwAwAgg+wEg8pD9CCUaOEAQTJo0SUePHpXX69WKFSs0d+5cbdq0SampqYqK4mEGAHZE9gNA5CH7EUoOY4wJ9SAAAAAAAAAwMFqEAAAAAAAAFkcDBwAAAAAAwOJo4AAAAAAAAFgcDRwAAAAAAACLo4EDAAAAAABgcTRwAAAAAAAALI4GDgAAAAAAgMXRwAEAAAAAALA4GjgAAAAAAAAWRwMHAAAAAADA4mjgAAAAAAAAWBwNHAAAAAAAAIv7/z1xXWcPhb2FAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAH1CAYAAAB/dN4CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACqu0lEQVR4nOzdeXhU5dk/8O/sa2aybxAgArIJKmp5catWXgGplVZpUVptXypvLahoq5b+lOJKRVFwecWlilQoqFVKUREEMSwhQCBAFkJC9mVmksw+k9nP7w9kSoBAAklmJvP9XNe5LjLnnjn3ZMLMmfs8z/2IBEEQQEREREREREREdBbiSCdARERERERERETRi8UjIiIiIiIiIiLqFItHRERERERERETUKRaPiIiIiIiIiIioUyweERERERERERFRp6SRToCIiOhCBINB+P3+SKdBRNQtEokEUqkUIpEo0qkQERF1GYtHREQUc5xOJxoaGiAIQqRTISLqNrVajaysLMjl8kinQkRE1CUigWfeREQUQ4LBICoqKqBWq5GWlsar90QUMwRBgM/nQ0tLC4LBIIYPHw6xmF0kiIgo+nHkERERxRS/3w9BEJCWlgaVShXpdIiIukWlUkEmk6G2thY+nw9KpTLSKREREZ0XL3UQEVFM4ogjIopVHG1ERESxhp9cRERERERERETUKU5bIyKifsHu8cPjC/bZ8ZRyCXRKWZ8dL6Z4bIC/ve+OJ1MBSn3fHY+IiIgozrB4REREMc/u8eP1rRUwu3x9dsxkjRwP3jK8VwtIQ4YMwfz58zF//vxeO0aP89iA75YA7ra+O6Y6Bfjh4/2ugLRo0SKsX78eRUVFkU6FiIiI4hynrRERUczz+IIwu3xQSCVIUst7fVNIJTC7fN0a6fTrX/8aIpEIIpEIcrkcw4YNwzPPPINAINDpffbt24c5c+b0xK+o7/jbTxSOpCpAldL7m1R14njdGOl0Ia9FV2zfvh0ikQhWq/WiHuekP/7xj9i6dWuPPBadcPJ172xbtGhRpFMkIiKKShx5RERE/YZaLoFG0Tcfbd5A96fITZkyBR988AG8Xi++/PJLzJ07FzKZDAsWLOgQ5/P5IJfLkZaWdlE5nnyciJCpAYW2b44V6P4Uua6+FpEgCAKCwSC0Wi202ov7Hfr9fshknF55UnNzc/jf69atw8KFC1FeXh6+7dTf98nXQSrl6TIRERFHHhEREfURhUKBzMxMDB48GA888AAmTZqEDRs24Ne//jWmT5+O559/HtnZ2RgxYgSAE9PWli1bFr5/XV0d7rjjDmi1Wuh0Ovz85z+H0WgM71+0aBGuuOIKvPfee8jNzeUS4OfQ2WthsVhw7733IikpCWq1GlOnTkVFRUX4frW1tbj99tuRlJQEjUaDMWPG4Msvv0RNTQ1uvvlmAEBSUhJEIhF+/etfAwBCoRAWL16M3NxcqFQqXH755fj000/Dj3lyxNJXX32Fq666CgqFAjt37gy/nieFQiE888wzGDhwIBQKBa644gps2rQpvL+mpgYikQjr1q3DD3/4QyiVSqxevbp3f5GnEgTA5YrMJghdSjEzMzO86fV6iESi8M9Hjx5FQkLCGa/Dyf+fp5o/fz5uuumm8M/ne42JiIhiHS+lEBERRYhKpUJb24neQFu3boVOp8OWLVvOGhsKhcKFo++++w6BQABz587FL37xC2zfvj0cV1lZiX/+85/47LPPIJFI+uJp9AsnX4tf//rXqKiowIYNG6DT6fDEE0/gtttuQ2lpKWQyGebOnQufz4e8vDxoNBqUlpZCq9UiJycH//znP3HnnXeivLwcOp0OKpUKALB48WJ89NFHWLFiBYYPH468vDz88pe/RFpaGn74wx+Gc/jTn/6El19+GZdccgmSkpI6vK4AsHz5cixduhRvv/02rrzySrz//vv4yU9+gpKSEgwfPrzD4yxduhRXXnll3xYQ3W7gIkdKXTCnE9BoeuShTn8duqKrrzEREVGsYvGIiIiojwmCgK1bt+Lrr7/Ggw8+iJaWFmg0Grz33nudTjPbunUrjhw5gurqauTk5AAAVq1ahTFjxmDfvn245pprAJyYqrZq1aqLnvIWL059LaZOnYr169dj165duPbaawEAq1evRk5ODtavX48ZM2agrq4Od955J8aOHQsAuOSSS8KPlZycDABIT09HYmIiAMDr9eKFF17AN998g4kTJ4bvs3PnTrz99tsdCgvPPPMM/vu//7vTXF9++WU88cQTmDlzJgDgxRdfxLfffotly5bhzTffDMfNnz8fP/vZz3rgtxOfzvc6nK47rzEREVGsYvGIiIioj2zcuBFarRZ+vx+hUAj33HMPFi1ahLlz52Ls2LHn7E9UVlaGnJyccOEIAEaPHo3ExESUlZWFi0eDBw9m4agLzvZa/OxnP8PGjRsxYcKEcFxKSgpGjBiBsrIyAMBDDz2EBx54AJs3b8akSZNw5513Yty4cZ0ep7KyEm63+4xihM/nw5VXXtnhtquvvrrTx7Hb7WhqasJ1113X4fbrrrsOhw4d6vLj9Cq1+sQIoEgdu4d09/fXndeYiIgoVrF4RERE1EduvvlmvPXWW5DL5cjOzu7QiFfTQ1Nueupx+ruzvRYbNmw47/1++9vfYvLkyfjiiy+wefNmLF68GEuXLsWDDz541njn98WUL774AgMGDOiwT6FQdPg55v8GRKIemzoWSaf//sRiMYTTeir5/f7wv7vzGhMREcUqNswmIiLqIxqNBsOGDcOgQYO6vYLTqFGjUF9fj/r6+vBtpaWlsFqtGD16dE+n2u+d7bUYNWoUAoEACgoKwnFtbW0oLy/v8DvOycnB7373O3z22Wf4wx/+gHfffRcAwiPHgsH/rMQ3evRoKBQK1NXVYdiwYR22U0eRnY9Op0N2djZ27drV4fZdu3bx9e9laWlpHVZpA4CioqLwv3vqNSYiIopmHHlERET9htsXPH9QDB3nVJMmTcLYsWMxa9YsLFu2DIFAAL///e/xwx/+MHLTlM7F74654wwfPhx33HEH7r//frz99ttISEjAn/70JwwYMAB33HEHgBP9hKZOnYpLL70UFosF3377LUaNGgXgxJRBkUiEjRs34rbbboNKpUJCQgL++Mc/4pFHHkEoFML1118Pm82GXbt2QafT4b777utyfo899hj+8pe/YOjQobjiiivwwQcfoKioqG9XVItDP/rRj/DSSy9h1apVmDhxIj766CMUFxeHp6T15GtMREQUrVg8IiKimKeUS5CskcPs8sEb6JvCTrJGDqW871YzE4lE+Ne//oUHH3wQN954I8RiMaZMmYLXX3+9z3LoEpkKUKcA7jYg0N43x1SnnDhuD/jggw/w8MMP48c//jF8Ph9uvPFGfPnll5DJZABOjCqaO3cuGhoaoNPpMGXKFLz66qsAgAEDBuDpp5/Gn/70J/zmN7/Bvffei5UrV+LZZ59FWloaFi9ejKqqKiQmJmL8+PH485//3K3cHnroIdhsNvzhD3+AyWTC6NGjsWHDhg4rrVHPmzx5Mp566ik8/vjj8Hg8+J//+R/ce++9OHLkSDimp15jIiKiaCUSTp/ETUREFMU8Hg+qq6uRm5vbYRlyu8cPTx+OCFLKJdApZX12vJjisQH+PiocAScKR0p93x2P6CJ19j5GREQUrTjyiIiI+gWdUsZiTrRQ6lnMISIiIupH2DCbiIiIiIiIiIg6xeIRERERERERERF1isUjIiIiIiIiIiLqFItHREQUk7jeAxHFKr5/ERFRrGHxiIiIYopEIgEA+Hy+CGdCRHRh3G43AEAmY5N/IiKKDVxtjYiIYopUKoVarUZLSwtkMhnEYl4HIaLYIAgC3G43TCYTEhMTw8VwIiKiaCcSOG6WiIhijM/nQ3V1NUKhUKRTISLqtsTERGRmZkIkEkU6FSIioi5h8YiIiGJSKBTi1DUiijkymYwjjoiIKOaweERERERERERERJ1iowgiIiIiIiIiIuoUi0dERERERERERNQpFo+IiIiIiIiIiKhTLB4REREREREREVGnWDwiIiIiIiIiIqJOsXhERERERERERESdYvGIiIiIKErs27cP1157LTQaDUQiEYqKiiKdEhERERGkkU6AiIiIiAC/348ZM2ZAqVTi1VdfhVqtxuDBgyOdFhERERGLR0RERETR4Pjx46itrcW7776L3/72t5FOh4iIiCiM09aIiIiIooDJZAIAJCYmRjYRIiIiotOweEQUZRwOB+bPn48hQ4ZAoVAgPT0d//3f/40DBw5EOjUiIuolv/71r/HDH/4QADBjxgyIRCLcdNNNkU2KiIh6xaeffgqRSITvvvvujH1vv/02RCIRiouLI5AZUec4bY0oyvzud7/Dp59+innz5mH06NFoa2vDzp07UVZWhvHjx0c6PSIi6gX/+7//iwEDBuCFF17AQw89hGuuuQYZGRmRTouIiHrBtGnToNVq8fHHH4cvHJy0bt06jBkzBpdddlmEsiM6O5EgCEKkkyCi/0hMTMQvf/lLvPHGG5FOhYiI+tD27dtx880345NPPsFdd90V6XSIiKgX3XPPPdi6dSuampogkUgAAAaDAQMGDMCiRYvw1FNPRThDoo44bY0oyiQmJqKgoABNTU2RToWIiIiIiHrBL37xC5hMJmzfvj1826effopQKIRf/OIXkUuMqBMsHhFFmSVLlqC4uBg5OTn4wQ9+gEWLFqGqqirSaRERERHFhby8PNx+++3Izs6GSCTC+vXru/0YgiDg5ZdfxqWXXgqFQoEBAwbg+eef7/lkKWZNmTIFer0e69atC9+2bt06XHHFFbj00ksjmBnR2bF4RBRlfv7zn6Oqqgqvv/46srOz8dJLL2HMmDH46quvIp0aERERUb/ncrlw+eWX480337zgx3j44Yfx3nvv4eWXX8bRo0exYcMG/OAHP+jBLCnWKRQKTJ8+HZ9//jkCgQAaGxuxa9cujjqiqMWeR0RRzmQyYfz48RgyZAh27twZ6XSIiKiXsOcRUfQRiUT4/PPPMX369PBtXq8X/+///T/84x//gNVqxWWXXYYXX3wxvEJiWVkZxo0bh+LiYowYMSIyiVNM+Oqrr3Dbbbdh06ZNKCsrwyOPPIKqqirk5uZGOjWiM3DkEVEUCQaDsNlsHW5LT09HdnY2vF5vhLIiIiIiopPmzZuH/Px8rF27FocPH8aMGTMwZcoUVFRUAAD+/e9/45JLLsHGjRuRm5uLIUOG4Le//S3MZnOEM6doM2nSJCQnJ2PdunVYt24dfvCDH7BwRFFLGukEiOg/HA4HBg4ciLvuuguXX345tFotvvnmG+zbtw9Lly6NdHpEREREca2urg4ffPAB6urqkJ2dDQD44x//iE2bNuGDDz7ACy+8gKqqKtTW1uKTTz7BqlWrEAwG8cgjj+Cuu+7Ctm3bIvwMKJrIZDL87Gc/w9q1a+FyufDyyy9HOiWiTrF4RBRF1Go1fv/732Pz5s347LPPEAqFMGzYMPzf//0fHnjggUinR0RERBTXjhw5gmAweEZDY6/Xi5SUFABAKBSC1+vFqlWrwnF/+9vfcNVVV6G8vJxT2aiDX/ziF3jvvfcgEonw85//PNLpEHWKxSOiKCKXy7FkyRIsWbIk0qkQEVEfu+mmm8BWlETRzel0QiKRoLCwEBKJpMM+rVYLAMjKyoJUKu1QYBo1ahSAEyOXWDyiU02aNInv/RQTWDwiIiIiIiLqgiuvvBLBYBAmkwk33HDDWWOuu+46BAIBHD9+HEOHDgUAHDt2DAAwePDgPsuViKgncbU1IiIiIiKi7zmdTlRWVgI4USx65ZVXcPPNNyM5ORmDBg3CL3/5S+zatQtLly7FlVdeiZaWFmzduhXjxo3DtGnTEAqFcM0110Cr1WLZsmUIhUKYO3cudDodNm/eHOFnR0R0YVg8IiIiIiIi+t727dtx8803n3H7fffdh5UrV8Lv9+O5557DqlWr0NjYiNTUVPzXf/0Xnn76aYwdOxYA0NTUhAcffBCbN2+GRqPB1KlTsXTpUiQnJ/f10yEi6hEsHhERERERERERUafEkU6AiIiIiIiIiIiiF4tHRERERERERETUKa62dg6hUAhNTU1ISEiASCSKdDpERH1CEAQ4HA5kZ2dDLI6/awx87yeieMT3fr73E1H86c57P4tH59DU1IScnJxIp0FEFBH19fUYOHBgpNPoc3zvJ6J4xvd+IqL405X3fhaPziEhIQHAiV+kTqeLcDZERH3DbrcjJycn/B4Yb/jeT0TxiO/9fO8novjTnfd+Fo/O4eSQVZ1Oxw8RIoo78Tpsn+/9RBTP+N7P934iij9dee+PvwnNRERERERERETUZSweERERERERERFRp1g8IiIiIiIiIiKiTrF4REREREREREREnWLxiIiIiIiIiIiIOsXiERERERERERERdYrFIyIiIiIiIiIi6hSLR0RERERERERE1CkWj4iIiIiIiIiIqFMsHhERERERERERUadYPCIiIiIiIiIiok6xeERERERERERERJ1i8YiIiIiIiIiIiDrF4hEREREREREREXWKxSMion6qydqOv+2shscfjHQqRET9wldHmvHvQ40IBEORToWIiCis3ODAyl3VCIWEXjsGi0dERP2QPxjChkNNqDQ64PaxeEREdLGsbh92Vrbi34ea8dnBRvgCLCBFm8bGRvzyl79ESkoKVCoVxo4di/3790c6LSKiXmV1+/DPAw043uJEUOi94pG01x6ZiIgipqDKjKI6CxKUskinQkTULxTVW9Hq9CJLr8S2MhP8wRDuumogFFJJpFMjABaLBddddx1uvvlmfPXVV0hLS0NFRQWSkpIinRoRUa8JhgRsONSEsmY7Biere/VYLB4REfUzJrsHX5c0oxcvPBARxRVfIIQ9VW1Qy6VIVMshEYuQd6wFwZCAn1+dA6WMBaRIe/HFF5GTk4MPPvggfFtubm4EMyIi6n27j7eioKoNyRp5rx+L09aIiPqRYEjAxiPNMDm8yEpURTodIqJ+oazZjnpzOzISFACABKUMOUlq7KpsxZqCWrh9gQhnSBs2bMDVV1+NGTNmID09HVdeeSXefffdTuO9Xi/sdnuHjYgoltS2ufDl4Wao5VJoFb0/LojFIyKifmR/jRkHai3ISVJDJIp0NkREsU8QBOytNgMAFKeMMNIopBiUrEZBtRkf7amFw+OPVIoEoKqqCm+99RaGDx+Or7/+Gg888AAeeughfPjhh2eNX7x4MfR6fXjLycnp44yJiC6c2xfAZwcaYW33I0uv7JNjsnhERNRPtDm9+KrYAJlEDE0fXH0gIooHDZZ2HDXYkfb9qKNTqeVSDEnRYH+NBX/Pr4WtnQWkSAmFQhg/fjxeeOEFXHnllZgzZw7uv/9+rFix4qzxCxYsgM1mC2/19fV9nDER0YURBAFfHWnGUYMdQ1I0EPXRFWMWj4iI+oFQSMCXR5rRZG3HQE5XIyLqMYW1Fji9AeiUZy/KK2USXJKqQVG9Fat218Di8vVxhgQAWVlZGD16dIfbRo0ahbq6urPGKxQK6HS6DhsRUSw4WG9F3rFWZOiUkEv7rqTD4hERUT9Q1GDF3hoLBiSpIBZzvhoRUU+wtfuxv9aMJLX8nFd2FTIJhqZpUdxow8rdNWh1evswSwKA6667DuXl5R1uO3bsGAYPHhyhjIiIep7J7sGGoiZABCSpe79J9qlYPCIiinE2tx9fHWmGGIBOKYt0OkRE/cbhBitanV6kas+csnY6uVSMoelaHDXYsXJXDUx2Tx9kSCc98sgj2LNnD1544QVUVlZizZo1eOeddzB37txIp0ZE1CN8gRA+P9iIZls7BiWp+/z4LB4REcUwQRCwqaQZtW1u5CT3/YcIEVF/5Q+GsKeqDUqpBJIujuiUScQYlqZFhcmBD3ZXo8na3stZ0knXXHMNPv/8c/zjH//AZZddhmeffRbLli3DrFmzIp0aEVGP+LbchIP1VgxO1kRkpgE7qhIRxbCSJjt2H29Dll7Z5S83RER0fuUGB2rb3BjQzT5yUokYw9K1ON7iwge7qnHvxCEs7veRH//4x/jxj38c6TSIiHpcucGBLaVGJKllUMkl579DL+DIIyKiGOXw+LHxcBNCIQGJfTznmYioPxMEAXtrzAiFBChl3T9Jl4pPjEBqsLTjg13VqGl19UKWREQUD2xuPz4/2IB2XxBpXZhG3VtYPCIiikGCIOCbUiOqWl0YxCvaREQ9qsnmQWmTHWkJF36SLhGLMCxNC4PNg5W7a1BpcvRghkREFA+CIQEbDjWiqsWFISnqcy7e0NtYPCIiikHHjE7sqGhFRoISUgnfyomIetLBWgsc7X7oVRe3CIFYLMLQdC1aHF58uLsGRw32HsqQiIjiQUFVGwqqzRiYpIr4OT+/cRARxRi3L4B/H26CNxBCsobT1YiIepLD48feGjMS1fIeucIrFokwNE0Di9uPVbtrUdxo64EsiYiov6s3u7HxcDOUUgkSomBFZRaPiIhizLdHTagwOjhdjYioFxxptMFk9yI1oeeK8yKRCJekauDyBfD3PbU4WGfpsccmIqL+p90XxGcHGmBx+5CdqIx0OgBYPCIiiinHW5zYXt6CFI0CcinfwomIelIgGMKe422QS8WQinv2PVYkEmFwshpefxBrCuqwr8bco49PRET9gyAI2FRiQGmzHYMj3OfoVPzmQUQUIzz+IDYeaoLLG0CqltPViIh6WoXJiepWFzJ1vXOVVyQSYVCyGiFBwD/21mH38VYIgtArxyIioth0qMGG7eUmZCQooZB2f8XP3sLiERFRjNhR0YKyZgcGReAKRF5eHm6//XZkZ2dDJBJh/fr1ncb+7ne/g0gkwrJlyzrcbjabMWvWLOh0OiQmJmL27NlwOp0dYg4fPowbbrgBSqUSOTk5WLJkyRmP/8knn2DkyJFQKpUYO3Ysvvzyyw77BUHAwoULkZWVBZVKhUmTJqGiouKCnzsRxY99NWYEQgJU8t47WReJRBiYpIZEJMLH++qxo4IFJCIiOqHF4cWGokYAQFKU9TZl8YiIKAbUm934psyERLUsIlcgXC4XLr/8crz55pvnjPv888+xZ88eZGdnn7Fv1qxZKCkpwZYtW7Bx40bk5eVhzpw54f12ux233norBg8ejMLCQrz00ktYtGgR3nnnnXDM7t27cffdd2P27Nk4ePAgpk+fjunTp6O4uDgcs2TJErz22mtYsWIFCgoKoNFoMHnyZHg8nh74TRBRf2WweVDcaEOaVtEnx8tOVEEhleDTwnpsLTOygEREFOf8wRDWH2xEo6Udg5Kir7cpi0dERFHOFwjh34eaYG/3Iz2hb77UnG7q1Kl47rnn8NOf/rTTmMbGRjz44INYvXo1ZLKOK0KUlZVh06ZNeO+99zBhwgRcf/31eP3117F27Vo0NTUBAFavXg2fz4f3338fY8aMwcyZM/HQQw/hlVdeCT/O8uXLMWXKFDz22GMYNWoUnn32WYwfPx5vvPEGgBOjjpYtW4Ynn3wSd9xxB8aNG4dVq1ahqanpnKOliIgO1llgdfuRqO67FW0y9UpoFFL8q6gJm0sMCIVYQCIiilfflZtwoM6CQSlqiMXR0efoVCweERFFufyqNhxptCEnOXoa5p0uFArhV7/6FR577DGMGTPmjP35+flITEzE1VdfHb5t0qRJEIvFKCgoCMfceOONkMv/M0R38uTJKC8vh8ViCcdMmjSpw2NPnjwZ+fn5AIDq6moYDIYOMXq9HhMmTAjHnM7r9cJut3fYiCi+uLwBFFSboVfJ+vx9Nj1BCZ1Khn8fbsaXR5oRZAGJiCjuVBgd+LrECL1KBrVcGul0zorFIyKiKNZsa8fmEgO0CilUsuhpmHe6F198EVKpFA899NBZ9xsMBqSnp3e4TSqVIjk5GQaDIRyTkZHRIebkz+eLOXX/qfc7W8zpFi9eDL1eH95ycnLO+3yJqH8pbrTBaPdEbHRnqlaBJLUcXxYbsKGoEYFgKCJ5EBFR37N7/Pj8YCPcvmDEPoe6gsUjIqIoFQiGsPFQM1qdPmTpe2fln55QWFiI5cuXY+XKlVE7MupcFixYAJvNFt7q6+sjnRIR9aFgSMCeqjZIJSJIJZE7NU7WyJGmlWNzqRGfH2yEnwUkIqJ+LxQS8O9DTag0OTEkAovidAeLR0REUWpvtRlF9VYMSlZF9QfJjh07YDKZMGjQIEilUkilUtTW1uIPf/gDhgwZAgDIzMyEyWTqcL9AIACz2YzMzMxwjNFo7BBz8ufzxZy6/9T7nS3mdAqFAjqdrsNGRPHjeIsTVS0uZCREvkifqJYjU6fE1jITPt3fAG8gGOmUiIioFxVUm5F/vA0DklQRvYDRFdGdHRFRnDI5PNhUYoBSJo7aec8n/epXv8Lhw4dRVFQU3rKzs/HYY4/h66+/BgBMnDgRVqsVhYWF4ftt27YNoVAIEyZMCMfk5eXB7/eHY7Zs2YIRI0YgKSkpHLN169YOx9+yZQsmTpwIAMjNzUVmZmaHGLvdjoKCgnAMEdGp9tWY4Q2GoFFEx3utTiVDdqIS3x0zYd2+enj8LCAREfVHDRY3Nh5ugkIqhk7Zd4s1XKjo+JQkIqKwUEjAV0cMMNo9uDQjIdLpAACcTicqKyvDP1dXV6OoqAjJyckYNGgQUlJSOsTLZDJkZmZixIgRAIBRo0ZhypQpuP/++7FixQr4/X7MmzcPM2fORHZ2NgDgnnvuwdNPP43Zs2fjiSeeQHFxMZYvX45XX301/LgPP/wwfvjDH2Lp0qWYNm0a1q5di/379+Odd94BAIhEIsyfPx/PPfcchg8fjtzcXDz11FPIzs7G9OnTe/m3RESxxuTw4HC9Faka+fmD+1CCUoaBSSLsqmxFICRg5jU5UX8hgYiIus7jD+Lzg41oc/lwabo20ul0CT+FiIiiTGGdBftqzBiYqIY4Sqar7d+/HzfffHP450cffRQAcN9992HlypVdeozVq1dj3rx5uOWWWyAWi3HnnXfitddeC+/X6/XYvHkz5s6di6uuugqpqalYuHAh5syZE4659tprsWbNGjz55JP485//jOHDh2P9+vW47LLLwjGPP/44XC4X5syZA6vViuuvvx6bNm2CUhn5KSlEFF2K6qywuP0YmRkdhfpTaRRSDEpWY09VGwLBEO6ZMBjaKBkdRUREF04QBHxdYkBJox1DUqO7z9GpRIIgcD3QTtjtduj1ethsNvbAIKI+YXb58Ma2CphdPgxO0VzUY9k9fjg9ASy4bRSSu3FVPd7f++L9+RPFi3ZfEC99fRT29gAGJKkinU6n2v1B1LS6cOWgRNwzYTD0qt6Z2hDv733x/vyJqO8cabDh/V1V0Cpk3TpHP5dWpxciAH/5yRjIutE7qTvvfex5REQUJQRBwFfFzWiwtGNgkjrS6RAR9WslTTYYbB6k66J3WWQAUMkkuCRVg4N1VqzKr4HF5Yt0SkREdIFanV6sL2pAMCT0WOGor7B4REQUJQ412FBQ1YYBiSpIxLExfJWIKBaFQgIKqswQi0XdukIbKQqZBJekaXCkwYaVu2vQ6vRGOiUiIuomfzCEDUWNqDe3Y1Dyxc0wiITo/7QkIooDtnY/vjjcBODESjtERNR7qlpdqDA5kKGLnV5oCqkEw9K1OGqwY+XuGpjsnkinRERE3bDjWAv211gwKFkdkxeKWTwiIoowQRCwpdSA2jY3cpI5XY2IqLcV1lrQ7g/GXANqmUSMYWlaVBgd+GB3NZqs7ZFOiYiIuuB4ixObSgxIUMmgibHPnpNYPCIiirDSZjt2VbYiU6+EVMy3ZSKi3tTm9OJgnQWp2ujuddQZqUSMYelaVLe6sXJ3NerN7kinRERE5+Dw+PHZgQY4vQFkJMTmZw/A4hERUUS5vAF8eaQZ/qCAJHVsNc0jIopFhxqssLh9Mdeo9FRS8YkRSPXmdqzcXY2aVlekUyIiorMIhQR8cbgZFUYnhqRoIBLF3nS1k1g8IiKKoG/KjKg0OTGI09WIiHqdxx9E/vE2aORSiGP4BB4AJGIRhqVp0Wz1YOXuGlSanJFOiYiITrOvxoxdla0YkKiKiQUaziW2syciimEVRgfyjrUgTauI+Q8TIqJYUNpsR6O1PaYaZZ+LWCzC0HQtWhxefLi7BkcN9kinRERE32uytmPj4WbIJOJ+sSAOv60QEUWAxx/ExsPNaPcHY3rqBBFRrBAEAQVVbRBBBLm0/5wCi0UiDE3TwOL24e/5tShutEU6JSKiuOfxB/H5gUa0OD0YmKSKdDo9ov98chIRxZBvj5pw1GDH4OTYnvtMRBQratrcOGZ0IkMXu81KOyMSiXBJqgYOjx8f7alFUb010ikREcUtQRDwTakRhxutGNKPzvVZPCIi6mPVrS58W25Cskber65+ExFFswO1Zrh9AWhjdInk8xGJRBiSooHbF8TnBxrg8QcjnRIRUVwqabJj21ETUrUKKGSSSKfTY7r1rSUYDOKpp55Cbm4uVCoVhg4dimeffRaCIIRjBEHAwoULkZWVBZVKhUmTJqGioqLD45jNZsyaNQs6nQ6JiYmYPXs2nM6OTf4OHz6MG264AUqlEjk5OViyZMkZ+XzyyScYOXIklEolxo4diy+//LLD/q7kQkTUl7yBIDYeboLDE0BajC4TTUQUaywuH/bXWpCskfebK8BnIxKJkKiWwRsIIRgSzn8HIiLqUWaXD/8qaoQ/FEJqPzvX71bx6MUXX8Rbb72FN954A2VlZXjxxRexZMkSvP766+GYJUuW4LXXXsOKFStQUFAAjUaDyZMnw+PxhGNmzZqFkpISbNmyBRs3bkReXh7mzJkT3m+323Hrrbdi8ODBKCwsxEsvvYRFixbhnXfeCcfs3r0bd999N2bPno2DBw9i+vTpmD59OoqLi7uVCxFRX9pZ0YqSRjsGJ6v79RcYIqJocqjBCrPLhxRN/zqRJyKi6BEIhvCvokbUtrkxOFkT6XR6XLeKR7t378Ydd9yBadOmYciQIbjrrrtw6623Yu/evQBOjPRZtmwZnnzySdxxxx0YN24cVq1ahaamJqxfvx4AUFZWhk2bNuG9997DhAkTcP311+P111/H2rVr0dTUBABYvXo1fD4f3n//fYwZMwYzZ87EQw89hFdeeSWcy/LlyzFlyhQ89thjGDVqFJ599lmMHz8eb7zxRpdzISLqSw0WN7aUGqFXyfrVEFYiomjmC4Swp6oNarkUEjGL9kRE1Dt2VrZiX7UZg5LV/fLzplvFo2uvvRZbt27FsWPHAACHDh3Czp07MXXqVABAdXU1DAYDJk2aFL6PXq/HhAkTkJ+fDwDIz89HYmIirr766nDMpEmTIBaLUVBQEI658cYbIZf/ZwWiyZMno7y8HBaLJRxz6nFOxpw8TldyOZ3X64Xdbu+wERH1BH8whI2Hm2F1+/tls1YiomhV1mxHvbmd771ERNRrqltd+KrYAK1SCk0/7a3XrWf1pz/9CXa7HSNHjoREIkEwGMTzzz+PWbNmAQAMBgMAICMjo8P9MjIywvsMBgPS09M7JiGVIjk5uUNMbm7uGY9xcl9SUhIMBsN5j3O+XE63ePFiPP300134TRARdc+eqjYcrrdiEKerERH1GUEQsLfaDABQSDnik4iIep7TG8DnBxrgaPdjWLo20un0mm6NPPr444+xevVqrFmzBgcOHMCHH36Il19+GR9++GFv5denFixYAJvNFt7q6+sjnRIR9QNGuwdfFxuglkuhkvPLCxFRX6k3t6PMYEdaAkcdERFRzxMEAV8eacZRowNDUjX9+iJxt0YePfbYY/jTn/6EmTNnAgDGjh2L2tpaLF68GPfddx8yMzMBAEajEVlZWeH7GY1GXHHFFQCAzMxMmEymDo8bCARgNpvD98/MzITRaOwQc/Ln88Wcuv98uZxOoVBAoeDJBRH1nGBIwBeHm9Di9OLSjIRIp0NEFFcO1Fng8gYwMFEV6VSIiKgfKqy1YGdFK7L1Ksgk3RqbE3O69ezcbjfE4o53kUgkCIVCAIDc3FxkZmZi69at4f12ux0FBQWYOHEiAGDixImwWq0oLCwMx2zbtg2hUAgTJkwIx+Tl5cHv94djtmzZghEjRiApKSkcc+pxTsacPE5XciEi6m37asworLUiJ0kNcT++EkFEFG1s7X7srzUjSS3v11eCiYgoMgw2DzYcaoJELIJeJYt0Or2uW8Wj22+/Hc8//zy++OIL1NTU4PPPP8crr7yCn/70pwAAkUiE+fPn47nnnsOGDRtw5MgR3HvvvcjOzsb06dMBAKNGjcKUKVNw//33Y+/evdi1axfmzZuHmTNnIjs7GwBwzz33QC6XY/bs2SgpKcG6deuwfPlyPProo+FcHn74YWzatAlLly7F0aNHsWjRIuzfvx/z5s3rci5ERL2p1enFpmID5FJxv22cR0QUrQ43WNHq8CJVy1HlRETUs7yBID4/2ACj3YuBSfExurVb32Zef/11PPXUU/j9738Pk8mE7Oxs/O///i8WLlwYjnn88cfhcrkwZ84cWK1WXH/99di0aROUSmU4ZvXq1Zg3bx5uueUWiMVi3HnnnXjttdfC+/V6PTZv3oy5c+fiqquuQmpqKhYuXIg5c+aEY6699lqsWbMGTz75JP785z9j+PDhWL9+PS677LJu5UJE1BtCIQFfHWlGk7UdIzhdjYioT/mDIeypaoNSJumXyyUTEVFkbS014VC9DUNS4md2gUgQBCHSSUQru90OvV4Pm80GnU4X6XSIKIYU1lqwclc10hIUSFBGZhir3eOH0xPAgttGIVkj7/r94vy9L96fP1F/UNxow4rvjmNAogpKWXwtVGBx++ALhPDUj0d3a9RrvL/3xfvzJ6KuK22y472dVVBKJVGzIEOr0wsRgL/8ZEy3ei91572vf3d0IiKKAKvbh6+ONEMsFkWscESR4QuEYLB5Ip0GUVwTBAF7a8wIhYS4KxwREVHvsrp9WF/UAH8gFDWFo77C4hERUQ8SBAGbig2oM7uRk6SOdDrUx44ZHfj7nho4PP7zBxNRr2i0tqO00RZ3J/VERNS7giEB/ypqQk2rG4NS4u88n8UjIqIeVNxoR35VG7ITVeyzEYdCgoBWhxdHDY5Ip0J9wBsIYndlK1oc3kinQqcoqrPC4QnExco3RETUd3Yfb8XeajNyktWQiuOvlBJ/z5iIqJc4PH58caQJIUHgl5Y4Zmv3o6jOCrYU7N9c3gD+UVCHVfk1eGt7JQ438DWPBg6PH3trzEhUyyGKkwamRETU+2rbXPjicDPUcgm0cbqKMotHREQ9QBAEbCk1oqrFhUGcrhbXBJyYvmbiaJR+y+r24cPdNdh9vA0DEtVoc/nw/s5q/PtQMzz+YKTTi2tHGmww2b1ITej6IgFERETn4vYF8NmBRtja/cjSx+/K7SweERH1gHKjAzsrWpGhU0LajRUOqP8RQQSHx4/SJnukU6FeYLR78P7OahTVW3FJqgZapRRDUjRIUMrwxZEm/G1HNZpt7ZFOMy4FgiHsqWqDXCqOy+kERETU84IhARsPN+OowY4hKZq4HtXKT1Yioovk9gWw8VAzvIEQkjW82k2AUiZBYa0FwRCnMfUnNa0uvLejCuVGB4ala6E4ZSWvZI0cuSkaHGmy4q3tx7GvxsxpbH3smNGJ6lYXMnXxe1U4ni1atAgikajDNnLkyEinRUQx7MRCOM3YftSELL0Kcml8l0/ic7IeEVEP2lZmQoXJgaFp2kinQlEiLUGBeosb1a0uDEvn30V/UNZsxz/21qHV4cXw9ISzNsRXyCQYnp6ABks7/p5fi5pWF24bmwVNnPZG6Gv7a80IhASo5JLzB1O/NGbMGHzzzTfhn6VS/t8jogsjCAK2H2vBpmIDkjVy9jMFi0dERBel0uTE9mMtSNUqION0NfqeWi6Fx+9GcaONxaMYJwgCDtRZ8PH+Bri9AQxL155zyLpYJMKgZDWsbh++KTWiwdKOO8cPjMslffuSweZBcaMNaVpFpFOhCJJKpcjMzIx0GkTUD+yrsWBDUSPUCilS+NkCgNPWiIgumMcfxBeHm+D2BpDC6Wp0mkSVHEX1VrT72EA5VgmCgLyKVqzeUwd/IITc1K73OkhUy3FJmhbHjA6s+O44dlW2chpjLzpYZ4HN7UeimleG41lFRQWys7NxySWXYNasWairq+s01uv1wm63d9iIiIATiy98WlgPsUjEqdCnYPGIiOgC5R1rQVmzHYNS1HHdPI/OLkUrh8nhQbnREelU6AIEgiF8cbgZn+6vh0wqRk5y9/+fy6ViDE/XwhcM4R976/CPvXWwtft7KeP45fIGUFBthk4l43txHJswYQJWrlyJTZs24a233kJ1dTVuuOEGOBxnfw9evHgx9Hp9eMvJyenjjIkoGlWaHFi7rw7eQAgDElWRTieqsHhERHQBalpd2FpmRKJaDoWU/TXoTDKJGBCAww3WSKdC3eQNBPHZwUZ8WdwMvUp2UVcdRSIRBiSqkJ6gQN6xFrz93XFUmlhQ7ElHGm0w2j1IT+C0gng2depUzJgxA+PGjcPkyZPx5Zdfwmq14uOPPz5r/IIFC2Cz2cJbfX19H2dMRNGm3uzG6j11sLr9GHwBF436O/Y8IiLqBlu7H/nHW7GjohUObwDD2CSbziFFq0BJkx1tTi/ny8cIlzeAj/fXo6CqDVl6FXQ91CAzQSnD8HQJatrceCevClPGZOLGS9MgZa+0ixIMCSioaoNULOLvkjpITEzEpZdeisrKyrPuVygUUCj4vkxEJ5jsHnxUUAuD3XPe/obxip+yRERd0O4L4rtjLXh1yzF8frARgZCAoWn8YKFzS1TJYHP7UdbMkSaxwOLy4cPdNcg/3oaBSeoeKxydJJWIMTTtRN+kTwsbsGpPLcwuX48eI94cb3GiqsWFDPakoNM4nU4cP34cWVlZkU6FiKKc1e3DRwW1qGl145I0DcQ8vz8rFo+IiM7BFwihoKoNy7cewz8K6uD0BDA8PQGZOmVcfbDk5eXh9ttvR3Z2NkQiEdavXx/e5/f78cQTT2Ds2LHQaDTIzs7Gvffei6ampg6PYTabMWvWLOh0OiQmJmL27NlwOp0dYg4fPowbbrgBSqUSOTk5WLJkyRm5fPLJJxg5ciSUSiXGjh2LL7/8ssN+QRCwcOFCZGVlQaVSYdKkSaioqOi5X0Y3iMUiyKViHKizIMRmyVHNYPPg/V3VKKq34pI0DTSK3hmcLfq++WZ2ogp7jrfhre2VKGmy9cqx4sG+GjN8wVCvvV4UO/74xz/iu+++Q01NDXbv3o2f/vSnkEgkuPvuuyOdGhFFMac3gDUFdTja7MDQNA2kYpZIOsPfDBHRWQRDAg43WPHmt5X4cHcNmm0eXJKmwYAkFSTi+CkaneRyuXD55ZfjzTffPGOf2+3GgQMH8NRTT+HAgQP47LPPUF5ejp/85Ccd4mbNmoWSkhJs2bIFGzduRF5eHubMmRPeb7fbceutt2Lw4MEoLCzESy+9hEWLFuGdd94Jx+zevRt33303Zs+ejYMHD2L69OmYPn06iouLwzFLlizBa6+9hhUrVqCgoAAajQaTJ0+Gx+Pphd/M+aVq5ahpdaHe4o7I8en8alpd+NvOKlSYHBiWru2TPmYahRSXZiSg2ebB33ZU46sjzfAGuDJfd5gcHhyut3K1SwIANDQ04O6778aIESPw85//HCkpKdizZw/S0tIinRoRRSmPP4iP99WduHCUqjnRr5I6xcs0RESnEAQBFSYnth01oaTxxGiAQclqKGTx3RR76tSpmDp16ln36fV6bNmypcNtb7zxBn7wgx+grq4OgwYNQllZGTZt2oR9+/bh6quvBgC8/vrruO222/Dyyy8jOzsbq1evhs/nw/vvvw+5XI4xY8agqKgIr7zySrjItHz5ckyZMgWPPfYYAODZZ5/Fli1b8MYbb2DFihUQBAHLli3Dk08+iTvuuAMAsGrVKmRkZGD9+vWYOXNmb/2KOqVVSNFobUdpkx2DUzR9fnw6t9ImO9buq0Orw4thaQl9WhyWiEUYmqZFi8OLfxU1odbsxs+uHIB0TsHqkoN1VljcfozMTIh0KhQF1q5dG+kUiCiG+IMhfH6gEQXVFgxO4bl+V7C0RkT0vbo2N1bl1+L/vq3E4XorMnRKXJKm5YfJBbDZbBCJREhMTAQA5OfnIzExMVw4AoBJkyZBLBajoKAgHHPjjTdCLv/PKILJkyejvLwcFoslHDNp0qQOx5o8eTLy8/MBANXV1TAYDB1i9Ho9JkyYEI45ndfrhd1u77D1JJFIhASFDIW1Fo4siSKCIGB/jRkf7q6Gxe3DsHRtxEYVpiUoMChFjYN1Fvzf9uM4WGeBIHCa47m0+4IoqGqDTilj7zkiIuqWUEjAxsPNyKtowYBEJdRyjqnpChaPiCjumewefLK/Hq9tq8Du461IUssxPCOBPTQukMfjwRNPPIG7774bOp0OAGAwGJCent4hTiqVIjk5GQaDIRyTkZHRIebkz+eLOXX/qfc7W8zpFi9eDL1eH95ycnK6/ZzPJzVBDoPdg0qT8/zB1OsEQcB3x1qwuqAO/qCA3BRNxAsQKpkEl6YnwOL2YeXuGqwvakK7j8XGzpQ02WCweZCu42pZRETUdYIgYEuZEd+UGpGWoECCsmcXx+jPWDwiorhldfuw8VATXt1yDFtKjVDJJBiRkdDjKyzFE7/fj5///OcQBAFvvfVWpNPpkgULFsBms4W3+vr6Hj+GQipBMCTgSAMbI0daIBjCF4eb8WlhA+RSMXKS1REvHJ0kFoswJEUDvVKGTcXNeG9HFRrYK+sMoZCAPVVtEItF7E9BRETdsquyDV8cboJeJUOSmj3zuoOX1Yko7ri8AeytNuPbchOMdg+S1XKMzEyImi+Qsepk4ai2thbbtm0LjzoCgMzMTJhMpg7xgUAAZrMZmZmZ4Rij0dgh5uTP54s5df/J205dntloNOKKK644a94KhQIKRe+PXkhSy3G4wYqpY7OgZ4EyIryBINYfbMR35S1I0SqQHKWNlpM0cqgVEpQ022Hc7sHtl2fjmiHJEMdhs/6zqWp1odLkRAZ7QxERUTcU1lrw+cEGKGUSpCVw5Gp38XINEcUNbyCI3cdbseybY1i7rw7tviCGpycgXadk4eginSwcVVRU4JtvvkFKSkqH/RMnToTVakVhYWH4tm3btiEUCmHChAnhmLy8PPj9/nDMli1bMGLECCQlJYVjtm7d2uGxt2zZgokTJwIAcnNzkZmZ2SHGbrejoKAgHBMpyRo5LG4/jjb3bE8l6pqTS/FuO2pChk4ZtYWjkxRSCS5N18LtC+Lve2rx8f56OL2BSKcVFfbXmNHuD0LLqcVERNRFpU12fLK/HiEByNKrIp1OTOKnLhH1e4FgCIcbbdh21ITjJicUUjGGpWkh5XSHLnM6naisrAz/XF1djaKiIiQnJyMrKwt33XUXDhw4gI0bNyIYDIb7CyUnJ0Mul2PUqFGYMmUK7r//fqxYsQJ+vx/z5s3DzJkzkZ2dDQC455578PTTT2P27Nl44oknUFxcjOXLl+PVV18NH/fhhx/GD3/4QyxduhTTpk3D2rVrsX//frzzzjsATjSnnj9/Pp577jkMHz4cubm5eOqpp5CdnY3p06f33S/sLCRiESRiEQ7WW/GD3GQWLPuQxeXDmr11OFRvxeAUdcw0xhSJRMhJVsPW7se2oyY0Wdvx0/EDkZsav6v2tTq9KKq3IlXLK8ZERNQ1VS1OrN1XB5c3ENefoRcrNs6eiIgugCAIOGpwYFuZCWUGO0QinFiKU8rV07pr//79uPnmm8M/P/roowCA++67D4sWLcKGDRsA4IypYd9++y1uuukmAMDq1asxb9483HLLLRCLxbjzzjvx2muvhWP1ej02b96MuXPn4qqrrkJqaioWLlyIOXPmhGOuvfZarFmzBk8++ST+/Oc/Y/jw4Vi/fj0uu+yycMzjjz8Ol8uFOXPmwGq14vrrr8emTZugVEZ+ikuqVoFKowPNNg+yE3nVqy8029qxuqAOFQYHLknTxOT/f71KBrVcgkqTE29/dxy3jc3CdcNSI7Y6XCQdqrfC4vbh0oyESKdCREQxoMnajjUFdWh1ejEsTcuLdxeBxSMi6ncEQUBNmxvfHjXiUIMNgaCAbC7DeVFuuummcy4d3pVlxZOTk7FmzZpzxowbNw47duw4Z8yMGTMwY8aMTveLRCI888wzeOaZZ86bU1/TKaVotrajrNnO4lEfqG51YU1BLerMbgxLj+3RhjKJGMPStWi2ebB2Xx1q2ly44/IB0Kvjp3+Wxx/Enqo2aBVSiHnyT0RE59Hq9OKjPbVosLazcNQD+E2KiPqVZls7vitvwb4aM1y+ILL1Si7BSVFDJBJBrZBif60ZP7w0LaaLGdGupMmGtXvr0eb0Ynh6Qr8YpSMSiZCdqILTE8DOilY0Wdvxs/ED42YUTmmzHY3WdgxO5pQDIiI6N1u7H6v31OJ4ixPD0rT94jwg0lg8IqJ+wezyYUdFC3Yfb4PV5UOGXokBiSpeYaCok6ZVoNHSjqpWV9x86e9LgiBgf60Fn+6vR7s/iGHp/e9Ko1YpxfB0LWra3HgnrwqTx2TgphHp/XrZekEQUFDVBjFEkEv77/MkIqKL5/YF8I+9dShpsmMo+5z2GBaPiCimOTx+5B9vQ15FC1ocXqRoFBiRmdDvvixS/6GSS+ALCChutLF41MNCIQHfHTNhw6EmiEUiDEnR9Nv3AqlEjKFpGrQ4vPjsQCNq29yYfuWAfttIuqbNjWNGJ9J1/fP5ERFRz/AGgvhkfwMO1lmQm6rhBYcexOIREcUkjz+I/TUWbDtqRKO1HXqVDJemJ0DMIakUA/RqGYrqrZg8JhMaLjfeIwLBEDYVG7CpxACtQooMXeQbpPc2kUiEdJ0SWqUU+2rMMNg8mH7lAIzJ1vW7ollhrRluXwA5SewVRkREZxcIhvCvoibkH29FTpIaSlnsLZIRzXjGSkQxxR8M4VC9FduOmlDV6oJaJsEwDkelGJOqkaO61YWjBgeuGpwU6XRinscfxPqDjfjuWAtStQoka+SRTqlPqeVSDE9PQJ3Zhb/trMYtI9MxaXRGvzlptrh8KKy1IEWj6HdFMSIi6hmhkIBNxQZsP2pCll7Fi3O9gL9RIooJoZCA0mY7th01odxgh0QsRm4Kh6JSbJJKxIBIhEMNVhaPLpLTG8DH++pQUG1GdqIKujhtkC8Ri5CbqkWr04uNh5tQZ3bjZ+MHIlMf+yOwDjVYYXb5cGk6p3kSEdGZBEHAt+UmbCoxIEWrgE4Vn+cCvY3FIyKKaoIg4HiLC98eNeFIoxXBEDCQw1CpH0jVyHG02Y4WhxdpCezjciHMLh/+UVCHQw1WDE5RQy3naU2qVgGtQopDDTYY7R785IpsjB+UFLMjdnyBEPKr2qCWSzktmYiIzmpPlRn/PtSEBIU07kYf9yWeZRFR1GqwuLG9vAUHai1o9weRnaiClkNQqZ/Qq2UwGj0oa7YjLSEt0unEnGZbO1bvqcMxowOXpGmgkLKgfJJSJsGlGVrUm934cHcNalpdmDo2KyaLa2XNdjSY25GTzF5HRER0pkP1Vnx2oAFSsRjpcdDvMJJi7yyCiPq9FocXOypasKeqDfb2ADL1SuQkqyOdFlGPEotEUEol2F9rwfXDUjmqohuqWpxYU1CHBks7hqez59nZiEUiDE7RwOL24etSI4402jEmW4dLMxKQm6aJiel9giBgb7UZggAWB4mI6AzHjA6s21cPXzCEwfyu0OtYPCKiqGJz+7Hiu+OoN7uRlqDApRnamJ1uQXQ+aQkK1LW5UGt2IzdVE+l0YkJxow3r9tWjzeXFsHQtJCy6nVOSWg6tQoo2pw/bjpqw7agJiWoZLs1IwMhMHYamaZCWEJ2NqOvN7Sgz2JGh47ROIiLqqK7NjTUFdbB7/LgkVROVn2P9DYtHRBRVjhrsaLS049KMBH4ppH5PLZeg3R9ESaONxaPzEAQB+2os+LSwHh5/EMPSWFjuKplEjEy9Epl6JQLBEKztfuyvMaOgug0JChkGJqkwdqAel6RqMTBJFTUjuQ7UWeDyBjAwkVPWiIjoP4x2Dz4qqIHR7sGwdJ4P9BUWj4goqhxptEEiBgtHFBdEIhF0ShkO1Fn61dLqPS0UErC93IQNh5ogEYswJIVXGC+UVCJGqlaBVK0CIUGAwxNAVasLpc12qGQSpCUoMG5AIoama5GbqoFKHpm/Sdv3Ba4ktZyvNRERhVlcPny0pxa1bW4MT0+AmJ8RfYbFIyKKGq1OL44ZHUjRcIoCxY9UrQJ1ZjcqjE6MHaiPdDpRJxAM4csjBmwuNUCrkCKDzTB7jFgkgl4lg14lgyAIaPcHYXH5sfFIM6RiIEWrwKisBFyacWJ6W6K671awOdxgRavTi2HpCX12TCIiim4Ojx9rCupQbnBw6noEsHhERFHjmMEBe7sfGen8ckjxQy4VIyQIONxgZfHoNB5/EOsPNuK7Yy1I1Sq4/G4vEolEUMul4RXZfIEQLG4f8o61Iu9YK3QqGYamaTA6S49L0jTI1Cl7rcm7PxhC/vE2KGUSfjEgIiIAJ84J1u2rx6EGKy5J00AWJVOs4wmLR0QUFQRBQFGDFVKJmKtOUdxJ1shR3GSD1e3r09Ed0czpDeDjfXUoqLYgO1EZE6uD9SdyqRgZOiUydEoEQwJs7X4cbrDhQK0FGoUU2YkqjB2gxyVpWgxKVkMu7bmT+HKDA3VmNwaw1xEREeHERYVPCxuwr8aMISkarsAZISweEVFUMDm8qG5xIYUjCygOJanlqDQ5Udpsx7VDUyOdTlT4urgZe6rMGJyiDo+GociQiEVI1siRrJFDEAQ4vQE0WNpRYXRALj3RQ2nsAD2GpScgN00DreLCXy9BELC3xoxgSGAPMCIiQjAk4N+HmrCzohUDE9UR68VHLB4RUZQoNzhg9/iRpeeUNYo/ErEIMqkIB2utmHhJStw3CK5tcyG/yoz0BAULR1FGJBIhQSlDwvcjwdr9QVjdPmwuNWJLmRGJKjlGZiVgZKYOl6RpkKLpXsPrRms7ShttSE9g7zsiongnCAI2lxiwtcyEDJ0CWiXPCSKJv30iijhBEFBUb4VCKon7L80Uv1I1ClS1OtFobcfAJHWk04mYUEjAllIjnN4AsvXaSKdD56GSSaDSq5ClPzGtwOr2Y0+VGbsr26BTSTE4RYMx2ToMTdMiO1F13h5GRXVWOLwBZHPKGhFRXBMEAXkVrfiq2IBEtYzT+qMAi0dEFHGN1nbUtLmQouWHAsWvBKUUTdZ2lDTZ47p4VNxkw6EGGwYkqlhMjjEyiRhpCQqkJSgQCgmwe/woNzhwuMEKtVyCDJ0S4wbqMTQtAYNT1GdMS3N4/NhbY0aiqnujlYiIqP8prLXgXwcboZJJkKrlaNRowOIREUXcMaMDLm8AA3mlmeKYSCSCVinFgVoLfjQyPS5XEfH4g9hSaoQgCBfVN4ciTywWIVEtR6L6RJ8kty+IFocXG4qaIJWIkaKRY8wAPYana3FJmhZ6lQxHGmww2b0Ymq6JdPpERBRBxY02fLy/HgCQyZYWUYNnZkQUUaGQgIN1VqhknLJGlKpVoMnajuMtTozM1EU6nT63r8aMCpMTuSksHvQnIpEIGoUUmu8Lgt5AEBa3H98eNWH7URP0KhmGpWthdvsgl4ohFcdf4ZSIiE443uLE2n118PiDGMLzgajC4hERRVS9xY0GixspHI5KBKVMAn9QQHGjLe6KRza3H1vLTNDIJT267DtFH4VUgkydBJk6JQKhEGxuPw7WW+ENhHBJKr8oEBHFqwaLG6v31MLi8mNomoYXlqMMz86IKKKOGhxw+4LQcNlNIgBAolqGonornN5ApFPpU98da0GTtR1Zek5fjSdSsRgpWgWGpmkxOkt3Rh8kIiKKDyaHB6sLatFkbcclqSwcRSMWj4goYgLBEA7WWaCRS/kBQfS9FI0cbU4fjjbbI51Kn2mwuLGzsgWpWsV5V+MiIiKi/sXm9mP1njpUmVwYmq6FmOcCUYnFIyKKmFqzG802D1dZIzqFVCKGWCRCUb0VgiBEOp1eJwgCtpaZYGsPIJXvBURERHHF5Q1gzd5alDXbMTRdy753UYyvDBFFTLnBDo8/CLWc7deITpWileOY0QGTwxvpVHpdabMdB+osyE5UcgQiERFRHPEFQvhkfz0O1lmRm6qJy5VmYwlfHSKKCF8ghIN1ViQoZJFOhSjqJKpksLX7UdrPp675AiF8U2pEIChAp+R7ARERUTwpqrdib7UZg5LV7HkXA1g8IqKIqG51wcApa0RnJRKJoJJJUFhjQTDUf6eu7a81o9zoQE4Sm2QTERHFE18ghLxjLZBKxNAoOAshFrB4REQRUdZshy8o8CoDUSdStQrUW9yoaXNFOpVe4fD4sa3MBIVUAgXfB4iIiOLKkUYrqlqdyNYrI50KdRGLR0TU5zz+IA7VW6FX8SoDUWc0Cik8/iBKGm2RTqVX7DjWinqzG9mJPGkkIiKKJ/5gCHnHWiERi3gBKYaweEREfe54ixMtTi+SNZyyRnQuepUMB+qs8PiDkU6lRxlsHuRVtCBJI+eqKkRERHGmuNGG4y1OZOs5bT2W8IyNiPpcWbMdgZAAhZRXGojOJUWjQIvDg3KDI9Kp9BhBELD1qBEWlw/pCYpIp0NERER9KBAMYUdFKwCwfUWMYfGIiPqU2xfA4QYbElVcWYnofORSMQQBONRgjXQqPabC5MT+GjOyElUQiUSRToeIiIj6UGmzHceMDo46ikEsHhFRn6o0OdHGKWtEXZaskaO0yQ6zyxfpVC5aIBjClhIjvP4Q9CwgExERxZVgSEDesRYIAqCSc9RRrGHxiIj6VHGjDSEBkEn49kPUFUlqOaxuH8qa7ZFO5aIdrLeitNmGgUnqSKdCREREfays2Y5yg4OLZcQofnsjoj7j8PhR0mRHkpqjjoi6SiwWQSYVo7DWAkEQIp3OBXN5A/im1AipWMyrjURERHEm9P2oo5AAqOVccTkWsXhERH3mmNEJs8uHJDWnq8SavLw83H777cjOzoZIJML69es77BcEAQsXLkRWVhZUKhUmTZqEioqKDjFmsxmzZs2CTqdDYmIiZs+eDafT2SHm8OHDuOGGG6BUKpGTk4MlS5ackcsnn3yCkSNHQqlUYuzYsfjyyy+7nUusSdMqUNPqQr25PdKpXLDdx1tR0+bGwCT2OCAiIoo3Rw0OHDXYkaXnqKNYxeIREfWZkiYbRCJAyilrMcflcuHyyy/Hm2++edb9S5YswWuvvYYVK1agoKAAGo0GkydPhsfjCcfMmjULJSUl2LJlCzZu3Ii8vDzMmTMnvN9ut+PWW2/F4MGDUVhYiJdeegmLFi3CO++8E47ZvXs37r77bsyePRsHDx7E9OnTMX36dBQXF3crl1ijVUjh8gZQ2myLdCoXpMXhxfbyFuhVUv7/JyIiijOhkIAdFS0IBAVoFBx1FKt4BkdEfcLq9qGMU9Zi1tSpU/Hcc8/hpz/96Rn7BEHAsmXL8OSTT+KOO+7AuHHjsGrVKjQ1NYVHKJWVlWHTpk147733MGHCBFx//fV4/fXXsXbtWjQ1NQEAVq9eDZ/Ph/fffx9jxozBzJkz8dBDD+GVV14JH2v58uWYMmUKHnvsMYwaNQrPPvssxo8fjzfeeKPLucQikUiEBKUMhbUW+AKhSKfTLYIg4NtyE1odXmToeLWRiIgo3lSYnChttiOLK6zFNBaPiKhPHDM6YWn3s3jUD1VXV8NgMGDSpEnh2/R6PSZMmID8/HwAQH5+PhITE3H11VeHYyZNmgSxWIyCgoJwzI033gi5/D9/I5MnT0Z5eTksFks45tTjnIw5eZyu5HI6r9cLu93eYYtGqVo5mm0eVJgckU6lW6paXSioakOGTgmxSBTpdIgoDvz1r3+FSCTC/PnzI50KUdwThBOjjvyBELRKjjqKZd0uHjU2NuKXv/wlUlJSoFKpMHbsWOzfvz+8n30viOhsjjRYIREBEjG/PPY3BoMBAJCRkdHh9oyMjPA+g8GA9PT0DvulUimSk5M7xJztMU49Rmcxp+4/Xy6nW7x4MfR6fXjLycnpwrPuewqZBMGQgCMNsTN1LRgSsKXUCLcviET2OiOiPrBv3z68/fbbGDduXKRTISIAx1ucKG60IYO9jmJet4pHFosF1113HWQyGb766iuUlpZi6dKlSEpKCsew7wURna7V6cUxowMpGkWkUyE6w4IFC2Cz2cJbfX19pFPqVJJajiONNtg9/kin0iWHGqwobrRhQKIKIo46IqJe5nQ6MWvWLLz77rsdvp8QUWQIgoCdFa3wBkLQKXkRKdZ1q3j04osvIicnBx988AF+8IMfIDc3F7feeiuGDh0KgH0viOjsjhkcsHn80Kv4odEfZWZmAgCMRmOH241GY3hfZmYmTCZTh/2BQABms7lDzNke49RjdBZz6v7z5XI6hUIBnU7XYYtWSRoZzC4fjjZH/9Q1jz+Ib0qNEIvA5phE1Cfmzp2LadOmnTG9+WxiZcoyUSyrbnXhcIMNmex52C90q3i0YcMGXH311ZgxYwbS09Nx5ZVX4t133w3vj/W+F0TU8wRBQFGDFTKxGGJOWeuXcnNzkZmZia1bt4Zvs9vtKCgowMSJEwEAEydOhNVqRWFhYThm27ZtCIVCmDBhQjgmLy8Pfv9/RtVs2bIFI0aMCF9BnjhxYofjnIw5eZyu5BLLpGIxJGIRDtRZIAhCpNM5p/yqNlS1uDAgUR3pVIgoDqxduxYHDhzA4sWLuxQfK1OWiWKVIAjYWdkKty+IBPY66he6VTyqqqrCW2+9heHDh+Prr7/GAw88gIceeggffvghgNjve8ErEEQ9z+TworrFhWQNG2XHMqfTiaKiIhQVFQE4UaAvKipCXV1duCnpc889hw0bNuDIkSO49957kZ2djenTpwMARo0ahSlTpuD+++/H3r17sWvXLsybNw8zZ85EdnY2AOCee+6BXC7H7NmzUVJSgnXr1mH58uV49NFHw3k8/PDD2LRpE5YuXYqjR49i0aJF2L9/P+bNmwcAXcol1qVqFag0OWGwR+8UbLPLh2+PmqBVSiGXcm0OIupd9fX1ePjhh7F69WoolV0b4RBLU5aJYlFtmxtF9VZk6BScut5PdKsEGAqFcPXVV+OFF14AAFx55ZUoLi7GihUrcN999/VKgn1p8eLFePrppyOdBlG/Um5wwO7xI4tN8mLa/v37cfPNN4d/PlnQue+++7By5Uo8/vjjcLlcmDNnDqxWK66//nps2rSpw0n86tWrMW/ePNxyyy0Qi8W488478dprr4X36/V6bN68GXPnzsVVV12F1NRULFy4sENPvGuvvRZr1qzBk08+iT//+c8YPnw41q9fj8suuywc05VcYplOKUWzrR1lUbzk7fZyEww2D0ZkJEQ6FSKKA4WFhTCZTBg/fnz4tmAwiLy8PLzxxhvwer2QSCQd7qNQKKBQsBcjUW8QBAG7jrfC5Q1gYGJ0nqtQ93WreJSVlYXRo0d3uG3UqFH45z//CaBjr4msrKxwjNFoxBVXXBGO6eu+F53lcroFCxZ0uMJtt9s5hJXoIgiCgKJ6KxRSCa84xLibbrrpnNOkRCIRnnnmGTzzzDOdxiQnJ2PNmjXnPM64ceOwY8eOc8bMmDEDM2bMuKhcYplIJIJaLsX+GgtuHJ4GqSS6RvbUtbmRf7wN6QkKTlUloj5xyy234MiRIx1u+81vfoORI0fiiSeeOKNwRES9q8HSjoO1FmTolPwO0I9064zzuuuuQ3l5eYfbjh07hsGDBwOI/b4XsdQ0lSgWNNk8qG1zIYVT1oh6VKpWjgaLG9Wtrkin0kEoJOCbMgMcngCnqhJRn0lISMBll13WYdNoNEhJSekwMpWI+sauylY4vAEkcrGcfqVbxaNHHnkEe/bswQsvvIDKykqsWbMG77zzDubOnQuga70m2PeCKH4cMzjg9AbYJI+oh6nlUngDAoqboqs3X0mTHQfrrBiQqOKVRiIiojjUaG1HYa0F6QkcddTfdOsb3TXXXIPPP/8cCxYswDPPPIPc3FwsW7YMs2bNCsew7wURASdGIByos0Al45Q1ot6QqJKhqM6CyWMyoJZHvkDrDQSxpdQAAYCWBWMiirDt27dHOgWiuLS7shW2dvY77Y9EQrSv9RtBdrsder0eNpuNU9iIuqmuzY1XvzmGZI0cWgW/SEaC3eOH0xPAgttGdWsKUby/913M8z/cYMX/fXscIzJ7v1G0PxhCTasLv73xEowflNTrxzufnRWtWF1Qi8Epaiik7C9CFCkWtw++QAhP/Xg0NN34/OV7f3w/f6KeYLB58MqWcsglYqRo2ZC+L7U6vRAB+MtPxkDWjX6Y3Xnvi64um0TUbxw12OH2BaCR80skUW+QScQQiUQ4XG+NdCqwuf3YWmaESiZh4YiIiChO7T7eCqvbz76H/RSLR0TU4wLBEA7UWaCRSzlljagXJWvkKGu2o9XpjWgeeRUtaLS2I5vL8RIREcUlk92DvdVmpGoVPP/vp1g8IqIeV2t2o9nmQYqWVx2IelOiWgZbewBlzZFrnN1obcfOihakahWQiHmySEREFI/yq9pgdvmQyvP/fovFIyLqceUGOzz+YFQ08SXqz8QiERRSMQprLQiF+r6FoSAI+KbUCGt7gCeLREREcarF4cWe421I0co56qgfY/GIiHqUPxjCwTorEhSySKdCFBdSExSobXOhzuzu82OXNTtwoM6CbD2X4yUiIopXBVVtaHP5kMom2f0ai0dE1KOqW10wcMoaUZ/RyCVwe4MoabL16XF9gRC+KTMiEBSgU7FYTEREFI/MLh/yq9qQrJFDzAtJ/RqLR0TUo8qa7fCHBChlXHGJqC+IRCIkqGQorLXA4w/22XELay042mzHwCQ2ySYiIopXe6vb0OLwIo2jjvo9Fo+IqMd4/EEcqrdCp2SvI6K+lKqVw2j3otLk7JPjOTx+bC0zQi4Vs1BMREQUp6xuH3ZWtiJJLYeYi2b0eyweEVGPOd7ihNHuRbKGU9aI+pJCKkFIEHC4wdonx9tV2Yp6ixsDEjnqiIiIKF4VVJthcniRlsBRR/GAxSMi6jFlzXYEBQEKKUciEPW1JLUcRxptsLn9vXoco92D78pbkKSWQyrhaQQREVE8srX7sauyFYkqGSQcdRQXeNZHRD2i3RfE4QYb9GycSxQRyRo5LC4/SpvtvXYMQRDwTZkRZrcP6bzKSEREFLf2VbfBaPcgPUEZ6VSoj7B4REQ9osLkQJvTixROWSOKCIlYBJlEhIN1FgiC0CvHqDQ5sb/GgkydEiKuqEJERBSXHB4/dla2IUHJUUfxhMUjIuoRpU12hARAxmksRBGTqlXgeIsTTTZPjz92IBjCllIjvP4gEtUsEhMREcWr/bUWNNs8yNBxFHI84bc8IrpoDo8fxY02JKo5ZY0okhKUUji9AZQ29fzUtaJ6K0qb7RiQxCbZRERE8crlDWDHsRZoFRJIxSwnxBO+2kR00SpMTphdPiRzNAJRRIlEImjkUuyvNcMfDPXY47p9AXxTZoRYJIJaLu2xxyUiIqLYUlhrQZO1HZk69jqKNyweEdFFK2m0ASJw5SWiKJCaoECTpR1VLa4ee8zdla2obnVhIEcdERERxS23L4C8Yy1Qy6U8749DfMWJ6KLY3CdWd0riqCOiqKCSSeAPhVDcaO2Rx2txeLG9vAV6lYw9zYiIiOLYgVorGiztyNRz1FE84lkgEV2UcqMDVrefxSOiKJKokqOo3ganN3BRjyMIAraXm9Di8CKDw9OJiIjilscfRF6FCUqZmBeT4hRfdSK6KEcarBCLwGU6iaJIikaONqcX5YaLa5xd3erCnqo2pOuUEIv4f5yIiCheHaizoN7cjuxETmGPVyweEdEFa3N6cczoQLKGy3QSRROpRAyRSISDdVYIgnBBjxEMCfimzAi3L4gkrqRIREQUtzz+IHZUtEAh5aijeMZXnoguWLnRAZvHj0QVv1gSRZsUrRzHjA60OLwXdP/DDVYcbrBhQKIKIo46IiIiiluH6q2obXUjS89RR/GMxSMiuiCCIOBwgw1SsRhiTlkjijqJKhls7Sca2neXxx/EN2VGiESARiHtheyIiIgoFngDQeRVtEAqEUMuZfkgnvHVJ6IL0uLw4rjJiRQNG2UTRSORSASVTILCWguCoe5NXdtT1YbjJhcGJqp7KTsiIiKKBUcabKhudSM7kQtnxDsWj4jogpQbHbB7/NBzyhpR1ErVKlBvdqO2zdXl+1hcPnx71AStQsorjERERHHMHwwh71gLpGJAIZVEOh2KMJ4VElG3CYKAojorFFIJe6EQRTGNQop2XxAljV2furb9WAuabR5k6nmFkYiIKJ4dabTheIuLvY4IAItHRHQBmmwe1LS5OGWNKAbo1TIcqLPA4w+eN7be7Eb+8VakJSggYS8zIiKiuBX4ftSRSAQoZRx1RCweEdEFOGZwwOkNIEHJRrpE0S5Fo4DJ4cUxo+OccaGQgC2lBtg9fhaGiYiI4lxxkx2VJieyEznqiE5g8YiIuiUUEnCgzgKVjFPWiGKBXCqGIAg4VG89Z1xpsx1F9VZk61X8v01ERBTHgiEBO461AABUHHVE32PxiIi6pcHSjgZLO1I0ikinQkRdlKyRo6TJDovLd9b93kAQW0qNCIWABCWb4BMREcWz0iY7yo0OZLH/IZ2CxSMi6pZyowNubwAaBa9CEMWKJLUc1nYfyprP3jh7f40Fx4wODEzm0HQiIqJ4FgwJ2FHRAkEA1HK2qKD/YPGIiLosGBJwoM4MtULKaS1EMUQsFkEmFqOw1gJBEDrss7X7sbXMCJVMwmV4iYiI4txRgx1lzXaOOqIzsHhERF1W2+ZCk9WDVC2b6VJHwWAQTz31FHJzc6FSqTB06FA8++yzHQoVgiBg4cKFyMrKgkqlwqRJk1BRUdHhccxmM2bNmgWdTofExETMnj0bTqezQ8zhw4dxww03QKlUIicnB0uWLDkjn08++QQjR46EUqnE2LFj8eWXX/bOE48hqQkKVLe60GBp73D7jmMtaLS2syEmERFRnAuFBOyoaEVQEKBRcNQRdcTiERF1WbnBAY8/yCGsdIYXX3wRb731Ft544w2UlZXhxRdfxJIlS/D666+HY5YsWYLXXnsNK1asQEFBATQaDSZPngyPxxOOmTVrFkpKSrBlyxZs3LgReXl5mDNnTni/3W7HrbfeisGDB6OwsBAvvfQSFi1ahHfeeSccs3v3btx9992YPXs2Dh48iOnTp2P69OkoLi7um19GlEpQSOHyBVDaZAvf1mRtx47KViRr5JCIOZqQiIgonh0zOVDWZEeWnheU6EwsHhFRl/iDIRyosyBBwWa6dKbdu3fjjjvuwLRp0zBkyBDcdddduPXWW7F3714AJ0YdLVu2DE8++STuuOMOjBs3DqtWrUJTUxPWr18PACgrK8OmTZvw3nvvYcKECbj++uvx+uuvY+3atWhqagIArF69Gj6fD++//z7GjBmDmTNn4qGHHsIrr7wSzmX58uWYMmUKHnvsMYwaNQrPPvssxo8fjzfeeKPPfy/RRCQSQauQYn+tBb5ACIIg4JsyI6xuH9K0bIBPREQUzwRBwI5jrfAHQ9By1BGdBYtHRNQl1a0uGO0eJHPKGp3Ftddei61bt+LYsWMAgEOHDmHnzp2YOnUqAKC6uhoGgwGTJk0K30ev12PChAnIz88HAOTn5yMxMRFXX311OGbSpEkQi8UoKCgIx9x4442Qy//zdzh58mSUl5fDYrGEY049zsmYk8eJZ2laBZptHlSanDhqcOBArQXZehV7mBEREcW5CpMTJU02ZLLXEXWCJUUi6pKjzXb4AgJUMjbUpTP96U9/gt1ux8iRIyGRSBAMBvH8889j1qxZAACDwQAAyMjI6HC/jIyM8D6DwYD09PQO+6VSKZKTkzvE5ObmnvEYJ/clJSXBYDCc8zin83q98Hq94Z/t9rOvSNYfKGQSBEMCiuotaHP64A8K0Kk4mpCIiCieCYKAnRUt8AZCSFDyvIDOjiOPiOi8vIEgiuqtSFCy3kxn9/HHH2P16tVYs2YNDhw4gA8//BAvv/wyPvzww0indl6LFy+GXq8Pbzk5OZFOqVclqmUoabKjzODAwCT2NCAiIop3x1tcONJoR6aOo46ocyweEdF5HTe5YLR7kcIpa9SJxx57DH/6058wc+ZMjB07Fr/61a/wyCOPYPHixQCAzMxMAIDRaOxwP6PRGN6XmZkJk8nUYX8gEIDZbO4Qc7bHOPUYncWc3H+6BQsWwGazhbf6+vpuP/9YkqyRo8nmgVwigpIjCYmIiOKaIAjYVdkKjz/I0ch0TiweEdF5lTXbEAwJUEj5RZPOzu12Qyzu+JEikUgQCoUAALm5ucjMzMTWrVvD++12OwoKCjBx4kQAwMSJE2G1WlFYWBiO2bZtG0KhECZMmBCOycvLg9/vD8ds2bIFI0aMQFJSUjjm1OOcjDl5nNMpFArodLoOW38mFYsxMiMBg5LVkU6FiIiIIqymzY1D9VZkcNQRnQeLR0R0Tu2+IA432KDnlQg6h9tvvx3PP/88vvjiC9TU1ODzzz/HK6+8gp/+9KcATqz0NX/+fDz33HPYsGEDjhw5gnvvvRfZ2dmYPn06AGDUqFGYMmUK7r//fuzduxe7du3CvHnzMHPmTGRnZwMA7rnnHsjlcsyePRslJSVYt24dli9fjkcffTScy8MPP4xNmzZh6dKlOHr0KBYtWoT9+/dj3rx5ff57iVZyqZhNsomIiOLcyV5Hbn8AOranoPPgXwgRnVOlyYkWpw9DUjhKgTr3+uuv46mnnsLvf/97mEwmZGdn43//93+xcOHCcMzjjz8Ol8uFOXPmwGq14vrrr8emTZugVP7nStfq1asxb9483HLLLRCLxbjzzjvx2muvhffr9Xps3rwZc+fOxVVXXYXU1FQsXLgQc+bMCcdce+21WLNmDZ588kn8+c9/xvDhw7F+/XpcdtllffPLICIiIooB9eZ2FNVbkZGg5EUlOi8Wj4jonEqabBAEATIJBypS5xISErBs2TIsW7as0xiRSIRnnnkGzzzzTKcxycnJWLNmzTmPNW7cOOzYseOcMTNmzMCMGTPOGUNEREQUz3ZWtsDpDWJAIhfQoPPjt0Ei6pTTG0Bxkw2Jak5ZIyIiIiLqLxosbhyssyIjQcFRR9QlLB4RUaeOGR0wO31IVnOVNSIiIiKi/mL38TbYPX5eJKYuY/GIiDpV0mgDAEg5ZY2IiIiIqF9osrZjf40ZaVqOOqKu4zdCIjorm9uP0mY7kjQcdURERETR7a233sK4ceOg0+mg0+kwceJEfPXVV5FOiygq5R9vhdXtRzLP86kbWDwiorM6ZnLA6vYjiVPWiIiIKMoNHDgQf/3rX1FYWIj9+/fjRz/6Ee644w6UlJREOjWiqGK0e7C32ow09jqibmLxiIjO6kiDDWKRCBIxP1SIiIgout1+++247bbbMHz4cFx66aV4/vnnodVqsWfPnkinRhRV8o+3wer2I4WjjqibpJFOgIiiT5vTi3Kjg0NZiYiIKOYEg0F88skncLlcmDhx4lljvF4vvF5v+Ge73d5X6RFFjMnhwZ6qNqSw1xFdAI48IqIzHDM6YXP7kaji6gtEREQUG44cOQKtVguFQoHf/e53+PzzzzF69Oizxi5evBh6vT685eTk9HG2RH2v4LgZZpcPKVpeIKbuY/GIiDoQBAGHGqyQSkQQc8oaERERxYgRI0agqKgIBQUFeOCBB3DfffehtLT0rLELFiyAzWYLb/X19X2cLVHfanN6kV/VhhSNHGKOOqILwGlrRNRBi8OLqhYn50ETERFRTJHL5Rg2bBgA4KqrrsK+ffuwfPlyvP3222fEKhQKKBSKvk6RKGL2VLWh1enFiMyESKdCMYojj4iog3KjA7Z2P3ScskZEREQxLBQKdehrRBSvLC4f8o+3IYmjjugicOQREYUJgoCiOivkUjE/WIiIiChmLFiwAFOnTsWgQYPgcDiwZs0abN++HV9//XWkUyOKuL3VbTA5vBiRwVFHdOFYPCKisGabBzVtLqRqOIybiIiIYofJZMK9996L5uZm6PV6jBs3Dl9//TX++7//O9KpEUWUze3HruNtSFTL2M+ULgqLR0QUVm50wOkNYECiKtKpEBEREXXZ3/72t0inQBSV9ta0wWj3YHg6Rx3RxWHPIyICAIRCAg7WWaGSSSDilDUiIiIiophm9/ixq7IVOqUMEo46oovE4hERAQAare1oMLuRwilrREREREQxb3+NGc02DzJ0ykinQv0Ai0dEBAAoNzjg8gagUUginQoREREREV0EpzeAHRWtSFBw1BH1DBaPiAjBkIADdRaoFVJOWSMiIiIiimGCIGB3ZSuare3I0HFWAfUMFo+ICLVtLjRa25GikUc6FSIiIiIiukCCIGBXZRu+PNKMRLUcUgm/8lPP4F8SEaHc4IDHF4RazilrRERERESxSBAE5B9vwz8P1EMuFbPXEfUoFo+I4pw/GMKBOgu0Sk5ZIyIiIiKKVXuqzPi0sAFSsRhZelWk06F+hsUjojhX0+qC0e5BipbzoYmIiIiIYtHeajM+LayHWCRCdiILR9TzWDwiinNHmx3wBkJQyThljYiIiIgo1uyvMePjfXUAgAFJLBxR72DxiCiOeQNBHKy3QKeURToVIiIiIiLqpsJaC9btq0dIAAZwxBH1oosqHv31r3+FSCTC/Pnzw7d5PB7MnTsXKSkp0Gq1uPPOO2E0Gjvcr66uDtOmTYNarUZ6ejoee+wxBAKBDjHbt2/H+PHjoVAoMGzYMKxcufKM47/55psYMmQIlEolJkyYgL1793bY35VciOJZVYsLJocXKVquskZEREREFEuK6q1Yt68OgZCAgUkq9i+lXnXBxaN9+/bh7bffxrhx4zrc/sgjj+Df//43PvnkE3z33XdoamrCz372s/D+YDCIadOmwefzYffu3fjwww+xcuVKLFy4MBxTXV2NadOm4eabb0ZRURHmz5+P3/72t/j666/DMevWrcOjjz6Kv/zlLzhw4AAuv/xyTJ48GSaTqcu5EMW70iYbAiEBCimnrBERERERxYrDDVb8o6AWvkAIOSwcUR+4oOKR0+nErFmz8O677yIpKSl8u81mw9/+9je88sor+NGPfoSrrroKH3zwAXbv3o09e/YAADZv3ozS0lJ89NFHuOKKKzB16lQ8++yzePPNN+Hz+QAAK1asQG5uLpYuXYpRo0Zh3rx5uOuuu/Dqq6+Gj/XKK6/g/vvvx29+8xuMHj0aK1asgFqtxvvvv9/lXIjiWbsviMMNNug5ZY2IiIiIKGYUN9qwpqAOHn8Ig5LVLBxRn7ig4tHcuXMxbdo0TJo0qcPthYWF8Pv9HW4fOXIkBg0ahPz8fABAfn4+xo4di4yMjHDM5MmTYbfbUVJSEo45/bEnT54cfgyfz4fCwsIOMWKxGJMmTQrHdCWX03m9Xtjt9g4bUX9VaXKixelDsoZT1oiIiIiIYkFJ04nCUbs/iMEpLBxR35F29w5r167FgQMHsG/fvjP2GQwGyOVyJCYmdrg9IyMDBoMhHHNq4ejk/pP7zhVjt9vR3t4Oi8WCYDB41pijR492OZfTLV68GE8//fQ5nj1R/1HSZIMgCJBL2TefiIiIiCjalTXbsaagDk6vH0NSNCwcUZ/q1rfG+vp6PPzww1i9ejWUSmVv5RQxCxYsgM1mC2/19fWRTomoVzi9ARQ32ZCo4pQ1IiIiIqJoV25wYPWeWtjbWTiiyOhW8aiwsBAmkwnjx4+HVCqFVCrFd999h9deew1SqRQZGRnw+XywWq0d7mc0GpGZmQkAyMzMPGPFs5M/ny9Gp9NBpVIhNTUVEonkrDGnPsb5cjmdQqGATqfrsBF1lT8YQigkRDqNLqkwOmDmlDUiIiIioqhXYXTgoz21sLX7kZvKwhFFRreKR7fccguOHDmCoqKi8Hb11Vdj1qxZ4X/LZDJs3bo1fJ/y8nLU1dVh4sSJAICJEyfiyJEjHVZF27JlC3Q6HUaPHh2OOfUxTsacfAy5XI6rrrqqQ0woFMLWrVvDMVddddV5cyHqKW5fAK9trcAzG0vx+rYKrNtXh80lBuypakNpkx0NFjfsHn/UFJdKmk7085JKOGWNiIiIiChaVZqc+PueWphdPhaOKKK61fMoISEBl112WYfbNBoNUlJSwrfPnj0bjz76KJKTk6HT6fDggw9i4sSJ+K//+i8AwK233orRo0fjV7/6FZYsWQKDwYAnn3wSc+fOhUKhAAD87ne/wxtvvIHHH38c//M//4Nt27bh448/xhdffBE+7qOPPor77rsPV199NX7wgx9g2bJlcLlc+M1vfgMA0Ov1582FqKcU1VlRYXJCr5ThuMmJsiY7TpaJRAAUMjEUUgnUcglStAqkJyiQqJZDp5RCp5Kd2JRSaBXSXv9AsLX7UdJkQxJHHRERERERRa2qFic+2lOLVqcPw9JYOKLI6nbD7PN59dVXIRaLceedd8Lr9WLy5Mn4v//7v/B+iUSCjRs34oEHHsDEiROh0Whw33334ZlnngnH5Obm4osvvsAjjzyC5cuXY+DAgXjvvfcwefLkcMwvfvELtLS0YOHChTAYDLjiiiuwadOmDk20z5cLUU/wBoLYUdkCpVSMTP2ZvcCCIQHeQBDeQAguXxBmo+P7ZtUn9otEgEIqgUIqhlouQapWgbQEBZLU8u8LS1LolCcKTBq55KI/NI4ZHbC6/Riapr2oxyEiIiIiot5R0+rC3/NrYXJ4MDRNy8IRRZxIEITomEcThex2O/R6PWw2G/sfUaf215jx/q4aDEpWQSGVdPv+pxaXvP4QvIEgfMFQuLgkPrW4pJAgRaNAuk6JJPXJEUv/KTCpu1Bcen9XNQprLBiWzuJRf2f3+OH0BLDgtlHd6m8V7+99F/P8DzdY8X/fHseIzIReyo6I6Nwsbh98gRCe+vFoaBRdv07M9/74fv4UXera3Fi5uxoGmwdD07UQs3BE59Hq9EIE4C8/GQNZN1qTdOe9r8dHHhHFk0AwhB0VrZCIcUGFIwCQiEVQy6VQd/LdPhA6UVTyBUJweoJoczpwpNEW3h8uLsnEUMulSNPKkZagRKJaBr2qY4HJ4w+h3OBgo2wiIiIioihUb3ZjVX7NicJRGgtHFD3YLZfoIpQ223G8xYksvarXjiEVi6FRSJGkkSNTr8TgFA0uzUgIb0NSNEjWyCEVi+Hw+FFmcOCbMiM+LWzAezursfybCiz5+iie3ViKN7ZVwOr2IVEl67V8KX41Njbil7/8JVJSUqBSqTB27Fjs378/vF8QBCxcuBBZWVlQqVSYNGkSKioqOjyG2WzGrFmzoNPpkJiYiNmzZ8PpdHaIOXz4MG644QYolUrk5ORgyZIlZ+TyySefYOTIkVAqlRg7diy+/PLL3nnSRERERD2kwXKicNRobT9ROBKzcETRg8UjogsUCgnYWdEKQQBUsgsbddQTpJITxaVkjRxZehWGnFJcGpGRgCEpaiSrTxSXnN4AMhKU/CCiHmexWHDddddBJpPhq6++QmlpKZYuXYqkpKRwzJIlS/Daa69hxYoVKCgogEajweTJk+HxeMIxs2bNQklJCbZs2YKNGzciLy8Pc+bMCe+32+249dZbMXjwYBQWFuKll17CokWL8M4774Rjdu/ejbvvvhuzZ8/GwYMHMX36dEyfPh3FxcV988sgIiIi6qYmaztW5degwcLCEUUnTlsjukDlRgeOGuzIOkuT7GgilYi/LzBFOhPqz1588UXk5OTggw8+CN+Wm5sb/rcgCFi2bBmefPJJ3HHHHQCAVatWISMjA+vXr8fMmTNRVlaGTZs2Yd++fbj66qsBAK+//jpuu+02vPzyy8jOzsbq1avh8/nw/vvvQy6XY8yYMSgqKsIrr7wSLjItX74cU6ZMwWOPPQYAePbZZ7Flyxa88cYbWLFiRV/9SoiIiIi6pNnWjg/za1BnbsewNC0kLBxRFOLII6ILIAgCdlW2IhAUutWMkqi/2rBhA66++mrMmDED6enpuPLKK/Huu++G91dXV8NgMGDSpEnh2/R6PSZMmID8/HwAQH5+PhITE8OFIwCYNGkSxGIxCgoKwjE33ngj5PL/9O2aPHkyysvLYbFYwjGnHudkzMnjnM7r9cJut3fYiIiIiPqC0e7Bqvwa1La6MTRNw8IRRS0Wj4guQFWrCyVNdmToonvUEVFfqaqqwltvvYXhw4fj66+/xgMPPICHHnoIH374IQDAYDAAADIyMjrcLyMjI7zPYDAgPT29w36pVIrk5OQOMWd7jFOP0VnMyf2nW7x4MfR6fXjLycnp9vMnIiIi6i7T94WjqhYXhqZrIBXz6zlFL/51EnWTIAjYXdmKdl8QOjaeJgIAhEIhjB8/Hi+88AKuvPJKzJkzB/fff39MTBNbsGABbDZbeKuvr490SkRERNTPtTi8WJVfi0qTC8PStCwcUdTjXyhRNzVY2nGo3op0HZsIEZ2UlZWF0aNHd7ht1KhRqKurAwBkZmYCAIxGY4cYo9EY3peZmQmTydRhfyAQgNls7hBztsc49RidxZzcfzqFQgGdTtdhIyIiIuotrU4vVuXXoMLkwLA0DaQSfi2n6Me/UqJu2lPVBoc3wOXuiU5x3XXXoby8vMNtx44dw+DBgwGcaJ6dmZmJrVu3hvfb7XYUFBRg4sSJAICJEyfCarWisLAwHLNt2zaEQiFMmDAhHJOXlwe/3x+O2bJlC0aMGBFe2W3ixIkdjnMy5uRxiIiIiCLF7PLh7/m1OGZwYGialoUjihn8SyXqBqPdg/01ZqRqFRCJ2MyO6KRHHnkEe/bswQsvvIDKykqsWbMG77zzDubOnQsAEIlEmD9/Pp577jls2LABR44cwb333ovs7GxMnz4dwImRSlOmTMH999+PvXv3YteuXZg3bx5mzpyJ7OxsAMA999wDuVyO2bNno6SkBOvWrcPy5cvx6KOPhnN5+OGHsWnTJixduhRHjx7FokWLsH//fsybN6/Pfy9EREREJ1lcPvw9vwZHDXYMTddCxsIRxRD+tRJ1Q0GVGRa3Hyka+fmDieLINddcg88//xz/+Mc/cNlll+HZZ5/FsmXLMGvWrHDM448/jgcffBBz5szBNddcA6fTiU2bNkGp/E/j+dWrV2PkyJG45ZZbcNttt+H666/HO++8E96v1+uxefNmVFdX46qrrsIf/vAHLFy4EHPmzAnHXHvtteHi1eWXX45PP/0U69evx2WXXdY3vwwiIiKi01jdPvx9Ty1Kmuy4JJWFI4o9XGOcqIvMLh8KqtuQrJFz1BHRWfz4xz/Gj3/84073i0QiPPPMM3jmmWc6jUlOTsaaNWvOeZxx48Zhx44d54yZMWMGZsyYce6EiYiIiPqAze0/UThqtGFomhZyKQtHFHv4V0vURfuq29Di8CJNy0bZRERERER0fnaPHx8V1OJIgw25aRoWjihm8S+XqAvsHj92HW9DoloGsZijjoiIiIiI6NwcHj8+2lOLQ/VWXJKmgUIqiXRKRBeMxSOiLiistcBo9yI9QXn+YCIiIiIiimtObwCrC+pQVGfFJaksHFHsY/GI6DzcvgB2VbRCq5BAwlFHRERERER0Di5vAGsKanGg1oLcVA0UMhaOKPaxeER0HkV1VjRY2pGp46gjIiIiIiLqnNsXwJqCOuyvsWBIqgZKFo6on2DxiOgcvIEgdlS2QCkTQ8rlNImIiIiIqBPtviDW7q3DvlozhqRooGLhiPoRfhsmOofDDTbUtrqRqeeoIyIiIiIiOjuPP4i1++pQUG3G4GQ1VHIWjqh/YfGIqBP+YAg7K1ohlYjY4I6IiIiIiM7K4w9i3b567KlqQ06SGmq5NNIpEfU4Fo+IOlHaZMfxFiey9KpIp0JERERERFHIGwjik/312H38ROFIo2DhiPonFo+IziIUErCzohWCADa5IyIiIiKiM5woHDVgZ2UrBiapWDiifo3FI6KzKDc6UG60I4u9joiIiIiI6DS+QAifFTZiZ0ULBiaqoWXhiPo5Fo+ITiMIJ0YdBYICrx4QEREREVEH/mAInx1owHfHWpCdqIJWye8M1P+xeER0muMtLpQ225DBUUdERERERHSKYEjA+oON2H6sBVl6JRKUskinRNQnWDwiOoUgCNh9vBXt/hB0/CAgIiIiIqJTFFS1YXt5CzJ1SuhU/L5A8YPFI6JTNFjacbjeivQERaRTISIiIqIuWrx4Ma655hokJCQgPT0d06dPR3l5eaTTon6m2daOL4uboZSJoWfhiOIMi0dEp8ivaoPDG0AiPwyIiIiIYsZ3332HuXPnYs+ePdiyZQv8fj9uvfVWuFyuSKdG/YQ/GMK/iprQ4vBhQKIq0ukQ9Tl29iL6nsHmwf4aM9K0CohEokinQ0RERERdtGnTpg4/r1y5Eunp6SgsLMSNN94YoayoP9lZ0YpD9VYMTlbzuwLFJRaPiL5XUN0Gm9uPEZkJkU6FiIiIiC6CzWYDACQnJ591v9frhdfrDf9st9v7JC+KTbVtLnxdYoBOKYNKLol0OkQRwWlrRADanF7sqWpDskbOKwlEREREMSwUCmH+/Pm47rrrcNlll501ZvHixdDr9eEtJyenj7OkWOHxB7GhqAlWtw8ZOvZFpfjF4hERgP01ZphdPqSyUTYRERFRTJs7dy6Ki4uxdu3aTmMWLFgAm80W3urr6/swQ4ol3x41oaTJhiGpGl5kprjGaWsU92ztfuw63ga9SgYxPxCIiIiIYta8efOwceNG5OXlYeDAgZ3GKRQKKBS8aEjnVmF0YOtRE5I1CiiknK5G8Y0jjyjuHai1wGj3ID1BGelUiIiIiOgCCIKAefPm4fPPP8e2bduQm5sb6ZQoxrm8AfzrUBPafUGkauWRToco4jjyiOKa2xfAjooWaBVSSMQcdUREREQUi+bOnYs1a9bgX//6FxISEmAwGAAAer0eKhWXVafuEQQBm0sMqDA6MDRNy+lqRODII4pzB+usaLJ6kKnjqCMiIiKiWPXWW2/BZrPhpptuQlZWVnhbt25dpFOjGFTSZEdeRQvSE5SQSfiVmQjgyCOKYx5/EDsqWqCUiSHlhwIRERFRzBIEIdIpUD9hc/ux4VATAkEByRpOVyM6id+YKW4dabShrs2NLD2HMhMRERERxTtBEPDlkWbUtLowKEUd6XSIogqLRxSX/MEQdhxrgVQiglzK/wZERERERPHuQJ0Vu4+3YkCiClIxvyMQnYr/IygulTTZcbzFxVFHRERERESEVqcXXxxugkQsgk4li3Q6RFGHxSOKO8GQgF0VrRABUMokkU6HiIiIiIgiKBgSsPFwExot7RiYxOlqRGfD4hHFnXKDA+VGOzL1XGGNiIiIiCjeFVS3YV+1BQOT1ZCIRZFOhygqsXhEcUUQBOyqbEUgKECj4GKDRERERETxzGDz4KsjzVDKxNDy+wFRp1g8orhyvMWFkiYbRx0REREREcU5fzCEDYcaYXL4kJ3IXqhE58LiEcUNQRCw+3grvIEQEpRsgkdEREREFM92VrbiYJ0Vg5JVEIs4XY3oXFg8orhRb27HoXor0hMUkU6FiIiIiIgiqK7Nja+LDUhQSqGWc7oa0fmweERxI7+qDU5vAHouvUlEREREFLc8/iD+VdQIW7sfmTq2syDqChaPKC4YbB4U1pqRplVAxCGpRERERERx69ujJpQ02TA4Rc3vBkRdxOIRxYU9VW2wuf1I1sgjnQpRXPjrX/8KkUiE+fPnh2/zeDyYO3cuUlJSoNVqceedd8JoNHa4X11dHaZNmwa1Wo309HQ89thjCAQCHWK2b9+O8ePHQ6FQYNiwYVi5cuUZx3/zzTcxZMgQKJVKTJgwAXv37u2Np0lEREQxptLkwNajJiRrFFBIJZFOhyhmsHhE/V6b04uC6jYka+W8skDUB/bt24e3334b48aN63D7I488gn//+9/45JNP8N1336GpqQk/+9nPwvuDwSCmTZsGn8+H3bt348MPP8TKlSuxcOHCcEx1dTWmTZuGm2++GUVFRZg/fz5++9vf4uuvvw7HrFu3Do8++ij+8pe/4MCBA7j88ssxefJkmEym3n/yREREFLVc3gDWFzXB7QsgVcuLykTdweIR9Xv7asxoc/qQqmWjbKLe5nQ6MWvWLLz77rtISkoK326z2fC3v/0Nr7zyCn70ox/hqquuwgcffIDdu3djz549AIDNmzejtLQUH330Ea644gpMnToVzz77LN588034fD4AwIoVK5Cbm4ulS5di1KhRmDdvHu666y68+uqr4WO98soruP/++/Gb3/wGo0ePxooVK6BWq/H+++/37S+DiIiIooYgCNhcakSF0YEhKRpeVCbqJhaPqF+ztfux+3gbEtUyLr9J1Afmzp2LadOmYdKkSR1uLywshN/v73D7yJEjMWjQIOTn5wMA8vPzMXbsWGRkZIRjJk+eDLvdjpKSknDM6Y89efLk8GP4fD4UFhZ2iBGLxZg0aVI45nRerxd2u73DRkRERP1LSZMdecdMSE9QQibh12Ci7uL/GurXCmvNMNo9SE/gKgpEvW3t2rU4cOAAFi9efMY+g8EAuVyOxMTEDrdnZGTAYDCEY04tHJ3cf3LfuWLsdjva29vR2tqKYDB41piTj3G6xYsXQ6/Xh7ecnJyuP2kiIiKKerZ2P/59uAn+oMAeqEQXiMUj6rdc3gB2VrQiQSGDRMxRR0S9qb6+Hg8//DBWr14NpTK2irULFiyAzWYLb/X/v727j46yvvP//5pJMpPbCSQhCciNtIBIVURQzLptsXLIcdHWlXbpHteDaHuObGAL2VOV77Gw9Zwtrnu23hxQ2/qt+PttXe+6eAOCpdxEkQASQAhKuAsmJOQ+mUkmd5OZz/cPmmkGEiSQZDLXPB/njGau6zPXvN9D5j2Z93Vdn6u8PNwhAQCAAWKM0eYj51Ra69WEtMRwhwNELJpHsKyDZU2qbGpXlou5joDBVlRUpJqaGt1yyy2KjY1VbGysCgoK9MILLyg2NlZZWVnq7OxUU1NTyOOqq6uVnZ0tScrOzr7o6mvd979ujMvlUkJCgjIyMhQTE9PrmO5tXMjpdMrlcoXcAACANRwsb9LuU3UaMyJBsZyuBlwx3j2wpHafX5+crFV8nJ0PCWAI3HXXXTpy5IgOHToUvM2aNUsPPPBA8Oe4uDht27Yt+JiSkhKVlZUpJydHkpSTk6MjR46EXBVt69atcrlcmjZtWnBMz210j+nehsPh0MyZM0PGBAIBbdu2LTgGAABEh/qWDm38vFI2m02pCXHhDgeIaLHhDgAYDIfPulXe0KoJaUnhDgWICikpKbrhhhtCliUlJSk9PT24/JFHHlF+fr7S0tLkcrm0bNky5eTk6Pbbb5ckzZs3T9OmTdODDz6oZ555RlVVVXryySeVl5cnp/P8EYSPPvqo1q5dq8cee0wPP/ywtm/frrfeekubNm0KPm9+fr4WLVqkWbNm6bbbbtNzzz0nr9erxYsXD9GrAQAAws0fMNp4+JzONrZpSlZKuMMBIh7NI1iOzx/QJydqFWO3yRHLUUfAcPHss8/KbrdrwYIF6ujoUG5url588cXg+piYGG3cuFFLlixRTk6OkpKStGjRIj311FPBMRMnTtSmTZu0YsUKPf/88xo7dqxeeeUV5ebmBscsXLhQtbW1WrVqlaqqqnTzzTdry5YtF02iDQAArGtfaYM+O9OgcSMTmf8UGAA0j2A5xRVuldZ5dc2IhHCHAkS1nTt3htyPj4/XunXrtG7duj4fM2HCBH344YeX3O6cOXN08ODBS45ZunSpli5detmxAgAA66hyt+vDI+fkjLUrOZ6vvMBA4LAMWIo/YLTrZJ0kKT4uJszRAAAAABhKPn9A739eoZrmDo1hZzIwYGgewVKOVXl0vKpZo1Mj61LhAAAAAK7epyfrdLCsSePTEmS3cboaMFBoHsEyjDH69GSd/AGjRAeHpwIAAADRpLyhVVuKq5QSH8v3AWCA0TyCZZyqbdEXlR5lc9QRAAAAEFXafX69e6hC7jafsl18HwAGGs0jWML5o47q1dEVUEp8XLjDAQAAADCECkpqdLTCrQlpibJxuhow4GgewRLKGlp1+GyTMlOc4Q4FAAAAwBA6WdOiP39Zo7Qkp5xcNAcYFP1qHq1Zs0a33nqrUlJSlJmZqfvuu08lJSUhY9rb25WXl6f09HQlJydrwYIFqq6uDhlTVlam+fPnKzExUZmZmfr5z3+urq6ukDE7d+7ULbfcIqfTqUmTJmn9+vUXxbNu3Tpde+21io+P1+zZs7Vv375+xwJrKDxVr5YOv1ITOOoIAAAAiBatnV16/1CFvJ1dykh2hDscwLL61TwqKChQXl6e9uzZo61bt8rn82nevHnyer3BMStWrNAHH3ygt99+WwUFBaqsrNT9998fXO/3+zV//nx1dnZq9+7deu2117R+/XqtWrUqOKa0tFTz58/XnXfeqUOHDmn58uX6yU9+oo8++ig45s0331R+fr5Wr16tAwcOaPr06crNzVVNTc1lxwJrOOdu04GyRo1KdnCIKgAAABAljDH609FqHatu1rXpSXwXAAaRzRhjrvTBtbW1yszMVEFBgb7zne/I7XZr1KhRev311/XDH/5QknTs2DFdf/31Kiws1O23367NmzfrnnvuUWVlpbKysiRJL7/8sh5//HHV1tbK4XDo8ccf16ZNm1RcXBx8rh//+MdqamrSli1bJEmzZ8/WrbfeqrVr10qSAoGAxo0bp2XLlumJJ564rFi+jsfjUWpqqtxut1wu15W+TBhkGw5WaEvxOV2XlcIHBtCDp92nlvYurfy765WWdPl74qK99l1N/ofPNunFHad0XXbKIEUHAJfW2Nqpzq6AfnHPNCU5L/9qU9T+6M4/Uh2tdOuVT0qV7Izt1986gNXUtXTIJmn197+luJjLP0aoP7XvquY8crvdkqS0tDRJUlFRkXw+n+bOnRscM3XqVI0fP16FhYWSpMLCQt14443BxpEk5ebmyuPx6OjRo8ExPbfRPaZ7G52dnSoqKgoZY7fbNXfu3OCYy4nlQh0dHfJ4PCE3DG91LR3aV1qv9CQnjSMAAAAgSrjbfPrg80r5/AEaR8AQuOLmUSAQ0PLly3XHHXfohhtukCRVVVXJ4XBoxIgRIWOzsrJUVVUVHNOzcdS9vnvdpcZ4PB61tbWprq5Ofr+/1zE9t/F1sVxozZo1Sk1NDd7GjRt3ma8GwmXf6QbVt3QqnfObAQAAgKhgjNHmI+d0utarCWmJ4Q4HiApX3DzKy8tTcXGx3njjjYGMJ6xWrlwpt9sdvJWXl4c7JFyCu9WnwtP1GpnokJ2jjgAAAICocLC8SbtP1WnMiATF9uMUHQBX7oreaUuXLtXGjRu1Y8cOjR07Nrg8OztbnZ2dampqChlfXV2t7Ozs4JgLr3jWff/rxrhcLiUkJCgjI0MxMTG9jum5ja+L5UJOp1MulyvkhuGrqKxBNc3tGpXiDHcoAAAAAIZAg7dTGz+vlE02rrQMDKF+NY+MMVq6dKk2bNig7du3a+LEiSHrZ86cqbi4OG3bti24rKSkRGVlZcrJyZEk5eTk6MiRIyFXRdu6datcLpemTZsWHNNzG91jurfhcDg0c+bMkDGBQEDbtm0LjrmcWBC5vB1d2nWiTinOOMXYOeoIAAAAsDp/wOiDzyt1trFN4zhdDRhSl38JBp0/Ve3111/Xe++9p5SUlODcQampqUpISFBqaqoeeeQR5efnKy0tTS6XS8uWLVNOTk7w6mbz5s3TtGnT9OCDD+qZZ55RVVWVnnzySeXl5cnpPH8EyaOPPqq1a9fqscce08MPP6zt27frrbfe0qZNm4Kx5Ofna9GiRZo1a5Zuu+02Pffcc/J6vVq8eHEwpq+LBZHrQFmjKpva9c1RSeEOBQAAAMAQ+OxMgz4706BxIxPZgQwMsX41j1566SVJ0pw5c0KWv/rqq3rooYckSc8++6zsdrsWLFigjo4O5ebm6sUXXwyOjYmJ0caNG7VkyRLl5OQoKSlJixYt0lNPPRUcM3HiRG3atEkrVqzQ888/r7Fjx+qVV15Rbm5ucMzChQtVW1urVatWqaqqSjfffLO2bNkSMon218WCyNTu82vXyTolOGI4xxkAAACIAtWedm06fE6OGLuS4/v1NRbAALAZY0y4gxiuPB6PUlNT5Xa7mf9oGNl7ul6v7T6jCelJcsTSPAL64mn3qaW9Syv/7vp+XcI22mvf1eR/+GyTXtxxStdlpwxSdABwaY2tnersCugX90xTkvPyv2BT+6M7/+HO5w9o/adntP9Mg6Zkp3CxHOACdS0dskla/f1vKa4fB1j0p/bxzRsRxecP6JOTdYqNsdM4AgAAAKLA7lP1OljWqPHpiTSOgDDh2zciSnGFW2fqvBqTGh/uUAAAAAAMsvKGVm0+ck7J8bFKdHC6GhAuNI8QMfwBo10n6iRJzriYMEcDAAAAYDB1dPn17qEKudt8ynax8xgIJ5pHiBhfnvPoeHWzRnPUEQAAAGB5O0tqdbTCowlpibJxuhoQVjSPEBECAaNPT9bJbwyHqwIAAAAWd7KmRX/+olojk+I46wAYBmgeISKcqm3Rl+c8HK4KAAAAWFxrZ5feP1Qhb0eXRiU7wx0OANE8QgQw5vxRRx1dAaXEx4U7HAAAAACDxBijrV9Uq6S6WRPSkzhdDRgmaB5h2Dte3aIjFW5lcdQRAAAAevHxxx/r3nvv1ZgxY2Sz2fTuu++GOyRcoS/PNaugpFajkp1yxPJ1FRgueDdi2DLGaM/per22+4zafQG54pnrCAAAABfzer2aPn261q1bF+5QcBU87T69/3mFfP6A0jldDRhW+DaOYand59eHR85pR0mtHDE2fXMUh6wCAACgd3fffbfuvvvucIeBq1DX0qG395frdK1XkzOTwx0OgAvQPMKwU+Np1ztFZ/X5WbeyXU6NSHSEOyQAAAAAg+RkTbPe/KxcZfWtmpiRpNgYTpABhhuaRxhWiivc+t8DZ1XR1K6J6YlclhMAAAADrqOjQx0dHcH7Ho8njNFEr0Dg/DQV7x2qUEuHX5OzUhRj52wDYDiipYthocsf0NYvqvTqp6WqbenQlMxkGkcAAAAYFGvWrFFqamrwNm7cuHCHFHXafX5tOHhWr+8rk99I3xyVROMIGMZoHiHs3G0+/WFvmTYcqJAj1q5vZCTLzgcHAAAABsnKlSvldruDt/Ly8nCHFFXqWzq0fvcZ/emLaqUnOXTNiATmNwWGOU5bQ1idqfPq7aJynahu0fi0RCU5+ZUEAADA4HI6nXI6uZpXOJysadFb+8t0pu78/EbxnG0ARAS+qSMsjDHaW9qg9w9Vqqm1U5Mzk5kYDwAAAFekpaVFJ0+eDN4vLS3VoUOHlJaWpvHjx4cxMnQzxqjwdL3eO1SplvYuTWF+IyCi0DzCkGv3+bXpcKV2Hq+TI8amSZnJHKYKAACAK7Z//37deeedwfv5+fmSpEWLFmn9+vVhigrd2n1+fXjknHYcq5EzNkbfHJXE3/9AhKF5hCFV42nX20Vndfhsk7Jd8RqR6Ah3SAAAAIhwc+bMkTEm3GGgFw3eTr29v1wHyxqV6YrXSP7+ByIS5wlhyBRXuPVywSkdPuvWxPQkGkeAhaxZs0a33nqrUlJSlJmZqfvuu08lJSUhY9rb25WXl6f09HQlJydrwYIFqq6uDhlTVlam+fPnKzExUZmZmfr5z3+urq6ukDE7d+7ULbfcIqfTqUmTJvW6R3ndunW69tprFR8fr9mzZ2vfvn0DnjMAALi0U7Ut+s3Hp1T0VaPGpyfROAIiGM0jDLouf0B/OlqlVz8tVV1Lh6ZkJsvJxHiApRQUFCgvL0979uzR1q1b5fP5NG/ePHm93uCYFStW6IMPPtDbb7+tgoICVVZW6v777w+u9/v9mj9/vjo7O7V792699tprWr9+vVatWhUcU1paqvnz5+vOO+/UoUOHtHz5cv3kJz/RRx99FBzz5ptvKj8/X6tXr9aBAwc0ffp05ebmqqamZmheDAAAopwxRoWn6vW7j0/rbEObJmclK4G//4GIZjMc39knj8ej1NRUud1uuVyucIcTkdxtPm04eFZ7TzdoRGKcMlPiwx0SEDU87T61tHdp5d9dr7Sky9/TNxC1r7a2VpmZmSooKNB3vvMdud1ujRo1Sq+//rp++MMfSpKOHTum66+/XoWFhbr99tu1efNm3XPPPaqsrFRWVpYk6eWXX9bjjz+u2tpaORwOPf7449q0aZOKi4uDz/XjH/9YTU1N2rJliyRp9uzZuvXWW7V27VpJUiAQ0Lhx47Rs2TI98cQTg5r/4bNNenHHKV2XndKvxwHAQGls7VRnV0C/uGdav65iG+1/90Z7/gOpo8uvD49UafuxGjlj7BozIp75jYBBVtfSIZuk1d//luL6cSGq/tQ+jjzCoCmt8+q3H5/S7pP1umZEAo0jIIq43W5JUlpamiSpqKhIPp9Pc+fODY6ZOnWqxo8fr8LCQklSYWGhbrzxxmDjSJJyc3Pl8Xh09OjR4Jie2+ge072Nzs5OFRUVhYyx2+2aO3ducAwAABgcDd5Ovbb7jD4qPqeRiXG6ZmQCjSPAIpgwGwPOGKM9pxv0weeVamrt1OTMZMX2o/sJILIFAgEtX75cd9xxh2644QZJUlVVlRwOh0aMGBEyNisrS1VVVcExPRtH3eu7111qjMfjUVtbmxobG+X3+3sdc+zYsV7j7ejoUEdHR/C+x+PpZ8YAAOB0bYve2l+u07VeXZuepAQHp6kBVkLzCAOq3efXxsOVKiiplTM2RpMyk9nbAESZvLw8FRcXa9euXeEO5bKsWbNGv/zlL8MdBgAAEckYo72lDXr/UKWa2jo1OStZsXZ2HANWw7saA6ba067/+0mptn5RrbQkB4epAlFo6dKl2rhxo3bs2KGxY8cGl2dnZ6uzs1NNTU0h46urq5WdnR0cc+HV17rvf90Yl8ulhIQEZWRkKCYmptcx3du40MqVK+V2u4O38vLy/icOAEAU6ujy671DlfrDnq/U0eXXpFE0jgCr4p2NAVFc4dZvCk7pcIVbE9OTNILLcAJRxRijpUuXasOGDdq+fbsmTpwYsn7mzJmKi4vTtm3bgstKSkpUVlamnJwcSVJOTo6OHDkSclW0rVu3yuVyadq0acExPbfRPaZ7Gw6HQzNnzgwZEwgEtG3btuCYCzmdTrlcrpAbAAC4tEZvp/6/3V9pS/E5jUx0aOzIRHYcAxbGaWu4Kj5/QNuP1eijo1Xq8gc0JTNZdjsfGkC0ycvL0+uvv6733ntPKSkpwTmKUlNTlZCQoNTUVD3yyCPKz89XWlqaXC6Xli1bppycHN1+++2SpHnz5mnatGl68MEH9cwzz6iqqkpPPvmk8vLy5HQ6JUmPPvqo1q5dq8cee0wPP/ywtm/frrfeekubNm0KxpKfn69FixZp1qxZuu222/Tcc8/J6/Vq8eLFQ//CAABgQaV1Xr21v0ynapjfCIgWNI9wxdytPm04eFZ7Sxs0MtGhUSMTwx0SgDB56aWXJElz5swJWf7qq6/qoYcekiQ9++yzstvtWrBggTo6OpSbm6sXX3wxODYmJkYbN27UkiVLlJOTo6SkJC1atEhPPfVUcMzEiRO1adMmrVixQs8//7zGjh2rV155Rbm5ucExCxcuVG1trVatWqWqqirdfPPN2rJly0WTaAMAgP4xxuizM41692CFGrkwDhBVaB7hipTWefVOUblOVLdofFqikpz8KgHRzBjztWPi4+O1bt06rVu3rs8xEyZM0IcffnjJ7cyZM0cHDx685JilS5dq6dKlXxsTAAC4PJ1dAW0prtKfv6xSrN2uyVwYB4gqfONHvwQCRntK67Xx83NqYm8DAAAAYHlNrZ16p+is9p9p1KgUp9KSmN8UiDY0j3DZ2jr92nSkUjtLahUfG6NJ7G0AAAAALO1MnVdv7S/XqZoWjU9PVKKDr5BANOKdj8tS7WnXO/vP6nBFk7Jd8VxNDQAAALAwY4z2f9WoDQcq1NTaqUmccQBENZpHuCRjjIorPPrfA2dV6W7TxIwkOWO5mgIAAABgVZ1dAf3paJW2flGtGLuNMw4A0DxC33z+gLYfq9FHxVXqCgQ0JTNFdjsfGgAAAIBVuVt9+uOBcu0rZX4jAH9F8wi9crf6tOHgWe0tbdDIRIdGpSSGOyQAAAAAg+ir+vPzG52obtEE5jcC0APVABc5Xduid4rO6mRNi8anJSrJya8JAAAAYFXGGBV91agNByvU6OWKygAuRlcAQYGA0Z7Ser1/qFKeNh8fGgAAAIDFBec3+rJadhvzGwHoHc0jSJLaOv3aeLhSBcdrFR8bw4cGAAAAYHF/nd+oQRnJTqUnO8MdEoBhiuYRVOVu1ztFZ3WkokmjUxOUmhAX7pAAAAAADKKy+la9ub9MJ6qZqgLA16NCRLFAwOhwhVvvHaxQpbtNEzOS5IyNCXdYAAAAAAaJMUYHyhq14UCF6pnfCMBlonkUhYwxOlHTop0lNSqucMtms2lKZorsdk5TAwAAAKzK5//L/EZfVMtms2kyU1UAuEw0j6KIMUZf1bdqZ0mNDpU3qbMroNEjEpTMIaoAAACApbnbfPrfA2e1t7RB6UkOZTC/EYB+oGsQJSqa2lRQUqOirxrl7fBrdGq8XMxtBAAAAFhaW6dfB8sb9fHxWp2u9TK/EYArQtWwuBpPuz45Uau9pQ1yt/mU5YrXNSMSODwVAAAAsDBPu08HvmrUrhN1qmhqkyPWrkmZyYpjfiMAV4DmkUU1eDu1+2SdPj1ZpwZvp0alOHVdVgpNIwAAAMDCGr2d2nemQYWn6nTO3a4kR6wmZiTRNAJwVWgeWYyn3ac9p+r1yYlaVXs6lJ7k0HXZNI0AAAAAK6vxtGvv6QbtKa1XbUuHUuPjNCkzWbF2mkYArh7NI4to7ezSvtIG7Syp1Tl3m1IT4nRdFldQAwAAAKzKGKOKpjbtOV2vz840qtHbqbQkh67jSsoABhjNowjX7vPrwFeN2lFSo/KGViU72cMAAAAAWJkxRqV1Xu0+Va9D5U1qbvMpI8WpqZxxAGCQ0DyKUD5/QIfKm7TjWI1K67yKj4vRN0clK5ZzmQEAAABLCgSMjtc0a/fJOhVXeNTq61JmSrzGpMbTNAIwqGgeRRh/wOhIhVs7jtXoeE2z4ux2XZueJEcsTSMAAADAirr8AX1xzqNdJ+pUUtUsnz+gLFe8xo7kKsoAhgbNowgRCBgdq2rWjmM1+rLKI0kaPzJR8XExYY4MAAAAwGDo6PKruMKtj4/X6VRti4yRRqfGK8nJ1zgAQ4uqM8wZY3SqtkU7jtXqSEWT/AFpzIh4JTr4pwMAAACsqK3Tr4Pljdp1ok6l9V7F2mwak5qgBAc7jgGEBx2IYcoYo7KGVu0sqdWh8ka1+wIak5qg5Hj+yQAAAAAram73qeir802jiqY2OWLtmpCWKGcsTSMA4UUnYhiqbGrTx8dr9dmZBnk7u5TtStD4tLhwhwUAAABgEDR6O7XvTIMKT9XrnLtNSY5YTcxIUhwXwwEwTNA8GkZqmzv0yYla7TldL3erT1mp8bpmBJPgAQAAAFZU42nXvtIGFZ6uV21Lh1Lj4zQpM1mxdppGAIYXmkfDQKO3U7tP1WnXyTrVt3RqVIpT12Wn0DQCAAAALMYYo4qmNu05Xa/PzjSq0duptCSHrstMkd3O3/8AhieaR2HU3O7TntP1+vh4nao97ec/NLJTZKdpBAAAAFiKMUaldV7tPlWvQ+VN8rT5NCrFqansNAYQAWgehUFrZ5c+O9OonSU1qmxqU2pCnKZkpSiGPQ0AAACApQQCRsdrmrX7ZJ2KKzxq9XUpMzleY1LjaRoBiBg0j4ZQu8+vA2Xnm0Zl9W1KcsZwTjMAAABgQV3+gL4459GuE3UqqWqWzx9QliteY0cypymAyEPzaAj4/AF9Xt6kHSU1Ol3rlTPWrm+M4uoJAAAAgNV0dPlVXOHWJyfqdLKmRQEjjU6NV7KTr14AIhcVbBD5A0ZHK93afqxGJ6qbFWO3aUJ6opyxMeEODQAAAMAAauv062B5o3adqFNpvVexNpvGpCYowcHf/gAiH82jQdLc7tP/v+crfVHpkSSNHZmo+Dg+OAAAAAAraff5ted0vXadqFNFU5scsXZNSGOHMQBroXk0SCqb2nW0wq3s1AQOUQUAAAAs6milR38sOqu4GLsmZjA1BQBroqsxyBI42ggAAACwLGOMugJG3xiVGO5QAGDQ0BYHAAAAAABAn6KiebRu3Tpde+21io+P1+zZs7Vv375whwQAGGTUfgCIPtR+ABgclm8evfnmm8rPz9fq1at14MABTZ8+Xbm5uaqpqQl3aACAQULtB4DoQ+0HgMFj+TmPfv3rX+unP/2pFi9eLEl6+eWXtWnTJv3+97/XE088MThPaoxsrV452tsU126X3WYbnOcBgEuI6/Aprt0vGRPuUIZcWGo/MNR6vrf/8rMt5P1+wbLgGF005qLHd99Xb89x6e33jMt20fYv2NYF2/9r/Cbkf33G1TPu4LrQ57jkY0LW970uJNfumHpsr+f4kOcJib+3WE3oa9Pj+UK22fM17RlbL9vJaPepQ3bpnmmKNtR+ABg8lm4edXZ2qqioSCtXrgwus9vtmjt3rgoLCy8a39HRoY6OjuB9j8dzZU/c2qop3xytZ6/s0QAwoBqqG6RkZ7jDGDJhq/179+q6hf+op9p8csQMzE6D0EbA1+jH2N63e/GyXsf1sqzvOK9im5cac8H43homvT5Xj6aH7aKn7KVJ0uvzXfjcF4+5uAFiLh7fW5yXeG379buAqNeRkKCu//NwuMMYUmGr/X/+s2545Kd6qt2nOPsA7jAepJ3PZqC3OwhxDniMknr5VLlqgxPnACPGgREBn8H+gFHzyAzp+xfXu4Fi6eZRXV2d/H6/srKyQpZnZWXp2LFjF41fs2aNfvnLXw5VeAAwJOz+9nCHMKTCVvvb2uT8qlSZV78lIKqYkO8Nth73bSH/C/7pbgtd3v1DyHb+Muaix1yw6Yu+/Nl6HAvVZxw97vdc1nN8XzF3P8flxnphPJcc+9fYTIJDTgUUTcJW+71exZedUfzVbwkArorLWzeoO5ss3Tzqr5UrVyo/Pz943+PxaNy4cf3fUGKiOuvrVXlkp2K81QMXYDQb/s1eYFjyp39TEzJpZ1zKgNX+GTPUsWO76o7vVUxHUz8f3MuX38t+6BVOX3jRnr6eX377GiOZC5/PFvzPBY+zXTAm9E6ve2x7/SLfx3Z6xmG74It78E5oTsZm6/EcoV/QQ2Pq/bUIaRr0HGC39xL/X+Kw2f663R6PM8GYL4zjLzH2eIzpmU8v6883XC64rwu2b+v5uB7r/pKX6bnc1uMxvT1vd0y2nvn1uNkUEmMwtuDrZO+x3dDXLbjdnusvaN4E8+vtNb/gsaaXx16Y28Xb6uN+d4whv989x/b2u32JN/Ulxl16Gxf/7l64PNERoynx0XPE6ZUYsNr/7W+rY8c2NZ78TPbOpisPqO8DHAfOQH+p7HHq5MBtM/ifAdzmIDRSI+BIlEiI0SYjEwlxmiv8G22IBcbcpOzYmEHbvqWbRxkZGYqJiVF1dWgDp7q6WtnZ2ReNdzqdcjoH4IPWZpMjLU3Xfvf+q98WAKBfwlb7U1PlnHOnrplz59VvCwDQL2Gr/Wlpcs75nrLnfO/qtwUAw5ilr7bmcDg0c+ZMbdu2LbgsEAho27ZtysnJCWNkAIDBQu0HgOhD7QeAwWXpI48kKT8/X4sWLdKsWbN022236bnnnpPX6w1ehQEAYD3UfgCIPtR+ABg8lm8eLVy4ULW1tVq1apWqqqp08803a8uWLRdNpgcAsA5qPwBEH2o/AAwem4mEGarCxOPxKDU1VW63Wy6XK9zhAMCQiPbaF+35A4hO0V77oj1/ANGpP7XP0nMeAQAAAAAA4OrQPAIAAAAAAECfaB4BAAAAAACgTzSPAAAAAAAA0CeaRwAAAAAAAOgTzSMAAAAAAAD0ieYRAAAAAAAA+kTzCAAAAAAAAH2ieQQAAAAAAIA+0TwCAAAAAABAn2LDHcBwZoyRJHk8njBHAgBDp7vmddfAaEPtBxCNqP3UfgDRpz+1n+bRJTQ3N0uSxo0bF+ZIAGDoNTc3KzU1NdxhDDlqP4BoRu2n9gOIPpdT+20mWncvXIZAIKDKykqlpKTIZrP167Eej0fjxo1TeXm5XC7XIEUYfuRpLeRpLVeapzFGzc3NGjNmjOz26Du7mdr/9cjTWsjTWqj9V4ba//XI01rI01qGovZz5NEl2O12jR079qq24XK5LP1L2o08rYU8reVK8ozGvc7dqP2XjzythTythdrfP9T+y0ee1kKe1jKYtT/6disAAAAAAADgstE8AgAAAAAAQJ9oHg0Sp9Op1atXy+l0hjuUQUWe1kKe1hIteQ4n0fKak6e1kKe1REuew0m0vObkaS3kaS1DkScTZgMAAAAAAKBPHHkEAAAAAACAPtE8AgAAAAAAQJ9oHgEAAAAAAKBPNI8AAAAAAADQJ5pHV+njjz/WvffeqzFjxshms+ndd98NWW+M0apVqzR69GglJCRo7ty5OnHiRHiCvUJr1qzRrbfeqpSUFGVmZuq+++5TSUlJyJj29nbl5eUpPT1dycnJWrBggaqrq8MU8ZV56aWXdNNNN8nlcsnlciknJ0ebN28OrrdCjr15+umnZbPZtHz58uAyK+T6b//2b7LZbCG3qVOnBtdbIcduFRUV+qd/+ielp6crISFBN954o/bv3x9cb4U6NNxQ+8+zwvuI2r88uMwKuVL7qf2DJRrqvkTt72aFHHtD7Y/cHLuFs/bTPLpKXq9X06dP17p163pd/8wzz+iFF17Qyy+/rL179yopKUm5ublqb28f4kivXEFBgfLy8rRnzx5t3bpVPp9P8+bNk9frDY5ZsWKFPvjgA7399tsqKChQZWWl7r///jBG3X9jx47V008/raKiIu3fv1/f+9739IMf/EBHjx6VZI0cL/TZZ5/pN7/5jW666aaQ5VbJ9Vvf+pbOnTsXvO3atSu4zio5NjY26o477lBcXJw2b96sL774Qv/1X/+lkSNHBsdYoQ4NN9T+86zwPqL2/5VVcqX2n2eFOjScREPdl6j91P7IzZXaf96g1iKDASPJbNiwIXg/EAiY7Oxs85//+Z/BZU1NTcbpdJr/+Z//CUOEA6OmpsZIMgUFBcaY8znFxcWZt99+Ozjmyy+/NJJMYWFhuMIcECNHjjSvvPKKJXNsbm42kydPNlu3bjXf/e53zc9+9jNjjHX+PVevXm2mT5/e6zqr5GiMMY8//rj527/92z7XW7UODSfU/sh/H12I2n9eJOZK7T/PqnVouIiWum8Mtb9bpOdI7Y/8HI0Jf+3nyKNBVFpaqqqqKs2dOze4LDU1VbNnz1ZhYWEYI7s6brdbkpSWliZJKioqks/nC8lz6tSpGj9+fMTm6ff79cYbb8jr9SonJ8eSOebl5Wn+/PkhOUnW+vc8ceKExowZo2984xt64IEHVFZWJslaOb7//vuaNWuWfvSjHykzM1MzZszQ7373u+B6q9ah4cyqrzm1/7xIz5Hab40cqf3Di5Vfb2r/eZGeI7XfGjmGu/bTPBpEVVVVkqSsrKyQ5VlZWcF1kSYQCGj58uW64447dMMNN0g6n6fD4dCIESNCxkZinkeOHFFycrKcTqceffRRbdiwQdOmTbNUjpL0xhtv6MCBA1qzZs1F66yS6+zZs7V+/Xpt2bJFL730kkpLS/Xtb39bzc3NlslRkk6fPq2XXnpJkydP1kcffaQlS5boX/7lX/Taa69JsmYdGu6s+JpT+0eEjI/EHCVqv1VylKj9w41VX29q/4iQ8ZGYo0Ttt0qOUvhrf+xVbwFRJS8vT8XFxSHnkFrJddddp0OHDsntduudd97RokWLVFBQEO6wBlR5ebl+9rOfaevWrYqPjw93OIPm7rvvDv580003afbs2ZowYYLeeustJSQkhDGygRUIBDRr1iz96le/kiTNmDFDxcXFevnll7Vo0aIwRweroPZHPmo/tR/oL2p/5KP2U/sHEkceDaLs7GxJumgm9+rq6uC6SLJ06VJt3LhRO3bs0NixY4PLs7Oz1dnZqaamppDxkZinw+HQpEmTNHPmTK1Zs0bTp0/X888/b6kci4qKVFNTo1tuuUWxsbGKjY1VQUGBXnjhBcXGxiorK8syufY0YsQITZkyRSdPnrTUv+fo0aM1bdq0kGXXX3998FBdq9WhSGC115zab40cqf3U/u77kZZrJLDi603tt0aO1H5qf/f9gciV5tEgmjhxorKzs7Vt27bgMo/Ho7179yonJyeMkfWPMUZLly7Vhg0btH37dk2cODFk/cyZMxUXFxeSZ0lJicrKyiIqz94EAgF1dHRYKse77rpLR44c0aFDh4K3WbNm6YEHHgj+bJVce2ppadGpU6c0evRoS/173nHHHRddQvf48eOaMGGCJOvUoUhildec2k/tj9Rce6L2R3YdihRWer2p/dT+SM21J2r/INWiq55yO8o1NzebgwcPmoMHDxpJ5te//rU5ePCg+eqrr4wxxjz99NNmxIgR5r333jOHDx82P/jBD8zEiRNNW1tbmCO/fEuWLDGpqalm586d5ty5c8Fba2trcMyjjz5qxo8fb7Zv3272799vcnJyTE5OThij7r8nnnjCFBQUmNLSUnP48GHzxBNPGJvNZv70pz8ZY6yRY196XnXBGGvk+q//+q9m586dprS01Hz66adm7ty5JiMjw9TU1BhjrJGjMcbs27fPxMbGmn//9383J06cMH/4wx9MYmKi+e///u/gGCvUoeGG2n+eFd5H1P6fBe9bIVdqP7V/sERD3TeG2k/tj8xcqf1DU/tpHl2lHTt2GEkX3RYtWmSMOX+5vF/84hcmKyvLOJ1Oc9ddd5mSkpLwBt1PveUnybz66qvBMW1tbeaf//mfzciRI01iYqL5+7//e3Pu3LnwBX0FHn74YTNhwgTjcDjMqFGjzF133RX8ADHGGjn25cIPESvkunDhQjN69GjjcDjMNddcYxYuXGhOnjwZXG+FHLt98MEH5oYbbjBOp9NMnTrV/Pa3vw1Zb4U6NNxQ+8+zwvuI2v+z4H0r5Ert/ysr1KHhJBrqvjHU/m5WyLEv1P7IzLFbOGu/zRhjrv74JQAAAAAAAFgRcx4BAAAAAACgTzSPAAAAAAAA0CeaRwAAAAAAAOgTzSMAAAAAAAD0ieYRAAAAAAAA+kTzCAAAAAAAAH2ieQQAAAAAAIA+0TwCwuihhx7SfffdF+4wAABDiNoPANGH2o9IFxvuAACrstlsl1y/evVqPf/88zLGDFFEAIDBRu0HgOhD7Uc0sBl+g4FBUVVVFfz5zTff1KpVq1RSUhJclpycrOTk5HCEBgAYJNR+AIg+1H5EA05bAwZJdnZ28JaamiqbzRayLDk5+aLDV+fMmaNly5Zp+fLlGjlypLKysvS73/1OXq9XixcvVkpKiiZNmqTNmzeHPFdxcbHuvvtuJScnKysrSw8++KDq6uqGOGMAALUfAKIPtR/RgOYRMMy89tprysjI0L59+7Rs2TItWbJEP/rRj/Q3f/M3OnDggObNm6cHH3xQra2tkqSmpiZ973vf04wZM7R//35t2bJF1dXV+od/+IcwZwIAuFzUfgCIPtR+RBKaR8AwM336dD355JOaPHmyVq5cqfj4eGVkZOinP/2pJk+erFWrVqm+vl6HDx+WJK1du1YzZszQr371K02dOlUzZszQ73//e+3YsUPHjx8PczYAgMtB7QeA6EPtRyRhwmxgmLnpppuCP8fExCg9PV033nhjcFlWVpYkqaamRpL0+eefa8eOHb2eR33q1ClNmTJlkCMGAFwtaj8ARB9qPyIJzSNgmImLiwu5b7PZQpZ1X80hEAhIklpaWnTvvffqP/7jPy7a1ujRowcxUgDAQKH2A0D0ofYjktA8AiLcLbfcoj/+8Y+69tprFRvLWxoAogG1HwCiD7Uf4cScR0CEy8vLU0NDg/7xH/9Rn332mU6dOqWPPvpIixcvlt/vD3d4AIBBQO0HgOhD7Uc40TwCItyYMWP06aefyu/3a968ebrxxhu1fPlyjRgxQnY7b3EAsCJqPwBEH2o/wslmjDHhDgIAAAAAAADDE+1JAAAAAAAA9InmEQAAAAAAAPpE8wgAAAAAAAB9onkEAAAAAACAPtE8AgAAAAAAQJ9oHgEAAAAAAKBPNI8AAAAAAADQJ5pHAAAAAAAA6BPNIwAAAAAAAPSJ5hEAAAAAAAD6RPMIAAAAAAAAfaJ5BAAAAAAAgD79Pww1DRxH3W1LAAAAAElFTkSuQmCC", "text/plain": [ "
    " ] @@ -3518,7 +3534,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 7, "id": "3872434c-9eee-41b6-be03-4762bfcd94ee", "metadata": { "tags": [] @@ -3526,7 +3542,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABZMAAAHyCAYAAACebVAcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hc5bX3/e9oJI16b5YtS7Zc5Y4bphcHA6ZjQgnNlDQTTgJvcuDJ89BSyElygHMSk4QklIQQCCV2aMEGHIjB4IarXOUmW1bvbaSZ2e8fy5ItS5ZsY0uW9Ptc11zS7Db3CLNnz9rrXsvlOI6DiIiIiIiIiIiIiEgngnp6ACIiIiIiIiIiIiJy6lMwWURERERERERERES6pGCyiIiIiIiIiIiIiHRJwWQRERERERERERER6ZKCySIiIiIiIiIiIiLSJQWTRURERERERERERKRLCiaLiIiIiIiIiIiISJcUTBYRERERERERERGRLimYLCIiIiIiIiIiIiJdUjBZREREcLlcPPLIIz09DDnBHnnkEVwuV08PQ0RERERE+ggFk0VERLrB+vXrmTNnDpmZmYSFhTFw4EC+8pWv8Ktf/aqnhybd4J133jlpwfr6+noeeeQR/vWvf52U44uIiIiIiLRwOY7j9PQgRERE+rJPP/2U888/n8GDB3PbbbeRlpZGfn4+n332GXl5eWzfvr2nh0hjYyPBwcEEBwf39FD6pHvuuYf58+dzMi67SktLSU5O5uGHH24XsPb5fPh8PsLCwk7464qIiIiISP+jb4wiIiIn2U9+8hNiY2NZsWIFcXFxbdYVFxf3zKAOo2DjqcPn8xEIBAgNDf3Sx9INAhEREREROZFU5kJEROQky8vLY8yYMe0CyQApKSltnrtcLu655x7+8pe/MHLkSMLCwpg8eTIff/xxu3337dvHHXfcQWpqKh6PhzFjxvDss8+2266xsZFHHnmEESNGEBYWxoABA7jmmmvIy8tr87qHZ7Ue7fF/9atfMWbMGCIiIoiPj2fKlCm89NJLXf5djmZcdXV13H///WRkZODxeBg5ciS//OUv22X4tvzdFixYwNixY1vH+89//rPDv9udd95Jeno6Ho+HIUOG8K1vfYumpqbWbSorK/nud7/b+rrDhg3jv/7rvwgEAq3b7Nq1C5fLxS9/+UueeeYZsrOz8Xg8TJ06lRUrVrRud/vttzN//vzWcbY8Dj/GU0891XqM3NxcmpqaeOihh5g8eTKxsbFERkZy9tlns2TJkjZjSE5OBuDRRx9tPXbLf8uOaib7fD5+9KMftb5WVlYW/+f//B+8Xm+b7bKysrjssstYunQp06ZNIywsjKFDh/KnP/2pzXbNzc08+uijDB8+nLCwMBITEznrrLNYvHjxEf7Li4iIiIhIb6VUFRERkZMsMzOTZcuWsWHDBsaOHdvl9h999BGvvPIK9957Lx6Ph6effpqLL76Y5cuXt+5fVFTE6aef3hpETU5O5t133+XOO++kurqa7373uwD4/X4uu+wyPvjgA2644Qb+4z/+g5qaGhYvXsyGDRvIzs7ucAxHe/zf//733HvvvcyZM4f/+I//oLGxkXXr1vH5559z0003HfE9Hs24HMfhiiuuYMmSJdx5551MnDiR9957j+9///vs27ePJ598ss0xly5dyhtvvMG3v/1toqOj+d///V+uvfZa9uzZQ2JiIgAFBQVMmzaNyspKvv71rzNq1Cj27dvHa6+9Rn19PaGhodTX13Puueeyb98+vvGNbzB48GA+/fRTHnzwQfbv389TTz3V5nVfeuklampq+MY3voHL5eLnP/8511xzDTt27CAkJIRvfOMbFBQUsHjxYv785z93+Pd47rnnaGxs5Otf/zoej4eEhASqq6v5wx/+wI033sjdd99NTU0Nf/zjH5k1axbLly9n4sSJJCcn85vf/IZvfetbXH311VxzzTUAjB8//oh/+7vuuosXXniBOXPmcP/99/P555/z+OOPs2nTJv7+97+32Xb79u3MmTOHO++8k9tuu41nn32W22+/ncmTJzNmzBjAAtaPP/44d911F9OmTaO6upqVK1eyevVqvvKVrxxxHCIiIiIi0gs5IiIiclItWrTIcbvdjtvtdmbMmOH84Ac/cN577z2nqamp3baAAzgrV65sXbZ7924nLCzMufrqq1uX3Xnnnc6AAQOc0tLSNvvfcMMNTmxsrFNfX+84juM8++yzDuA88cQT7V4rEAi0ed2HH374mI9/5ZVXOmPGjDmGv4Zz1ONasGCBAzg//vGP26yfM2eO43K5nO3bt7cZf2hoaJtla9eudQDnV7/6VeuyW2+91QkKCnJWrFhxxNf90Y9+5ERGRjpbt25ts/6BBx5w3G63s2fPHsdxHGfnzp0O4CQmJjrl5eWt2y1cuNABnDfffLN12bx585yOLrtajhETE+MUFxe3Wefz+Ryv19tmWUVFhZOamurccccdrctKSkra/fdr8fDDD7d53TVr1jiAc9ddd7XZ7v/7//4/B3A+/PDD1mWZmZkO4Hz88cety4qLix2Px+Pcf//9rcsmTJjgzJ49u91ri4iIiIhI36MyFyIiIifZV77yFZYtW8YVV1zB2rVr+fnPf86sWbMYOHAg//jHP9ptP2PGDCZPntz6fPDgwVx55ZW89957+P1+HMfh9ddf5/LLL8dxHEpLS1sfs2bNoqqqitWrVwPw+uuvk5SUxHe+8512r3N4+YMWx3L8uLg49u7d26asw9E4mnG98847uN1u7r333jbr77//fhzH4d13322zfObMmW0yrcePH09MTAw7duwAIBAIsGDBAi6//HKmTJlyxNd99dVXOfvss4mPj2/z3mfOnInf729XcuT6668nPj6+9fnZZ58N0Pq6R+Paa69tLVfRwu12t9ZNDgQClJeX4/P5mDJlSuvf/1i98847ANx3331tlt9///0AvP32222W5+TktL4fgOTkZEaOHNnmvcXFxbFx40a2bdt2XGMSEREREZHeQ2UuREREusHUqVN54403aGpqYu3atfz973/nySefZM6cOaxZs4acnJzWbYcPH95u/xEjRlBfX09JSQlBQUFUVlbyzDPP8Mwzz3T4ei2N/fLy8hg5cuQxNWErKSk56uP/53/+J++//z7Tpk1j2LBhXHTRRdx0002ceeaZnb7G0Yxr9+7dpKenEx0d3Wb56NGjW9cfavDgwe2OER8fT0VFRev7qq6u7rLUyLZt21i3bl274G6Lw5smHv66LYHlltc9GkOGDOlw+QsvvMB///d/s3nzZpqbm7vcviu7d+8mKCiIYcOGtVmelpZGXFzcMf9NAR577DGuvPJKRowYwdixY7n44ou55ZZbOi21ISIiIiIivZOCySIiIt0oNDSUqVOnMnXqVEaMGMHcuXN59dVXefjhh4/6GC1N4G6++WZuu+22Drf5MoG8Yzn+6NGj2bJlC2+99Rb//Oc/ef3113n66ad56KGHePTRR497DMfD7XZ3uNw5rFlfVwKBAF/5ylf4wQ9+0OH6ESNGnPDXDQ8Pb7fsxRdf5Pbbb+eqq67i+9//PikpKbjdbh5//PE2TQqPx5Gy0g93NO/tnHPOIS8vj4ULF7Jo0SL+8Ic/8OSTT/Lb3/6Wu+6660uNU0RERERETi0KJouIiPSQllIL+/fvb7O8o3IBW7duJSIiojVbNjo6Gr/fz8yZMzt9jezsbD7//HOam5sJCQk5qnElJycf9fEBIiMjuf7667n++utpamrimmuu4Sc/+QkPPvggYWFhxz2uzMxM3n//fWpqatpkJ2/evLl1/bFITk4mJiaGDRs2dLpddnY2tbW1R/Xej9bRBm8P9dprrzF06FDeeOONNvsffuPhWI6dmZlJIBBg27ZtrRneYA0XKysrj/lv2iIhIYG5c+cyd+5camtrOeecc3jkkUcUTBYRERER6WNUM1lEROQkW7JkSYdZqi31a0eOHNlm+bJly9rUxM3Pz2fhwoVcdNFFuN1u3G431157La+//nqHgdGSkpLW36+99lpKS0v59a9/3W67I2XOHsvxy8rK2qwLDQ0lJycHx3HalGU43NGM69JLL8Xv97fb5sknn8TlcnHJJZcc8fgdCQoK4qqrruLNN99k5cqVR3zdr371qyxbtoz33nuv3TaVlZX4fL5jel2wgHvL/kerJSv40P9On3/+OcuWLWuzXURExFEf+9JLLwXgqaeearP8iSeeAGD27NlHPb4Wh/8biIqKYtiwYXi93mM+loiIiIiInNqUmSwiInKSfec736G+vp6rr76aUaNG0dTUxKeffsorr7xCVlYWc+fObbP92LFjmTVrFvfeey8ej4enn34aoE3ZiJ/97GcsWbKE6dOnc/fdd5OTk0N5eTmrV6/m/fffp7y8HIBbb72VP/3pT9x3330sX76cs88+m7q6Ot5//32+/e1vc+WVV3Y45qM9/kUXXURaWhpnnnkmqampbNq0iV//+tfMnj27Xa3jQx3NuC6//HLOP/98fvjDH7Jr1y4mTJjAokWLWLhwId/97nfbNNs7Wj/96U9ZtGgR5557Ll//+tcZPXo0+/fv59VXX2Xp0qXExcXx/e9/n3/84x9cdtll3H777UyePJm6ujrWr1/Pa6+9xq5du0hKSjqm121pqHjvvfcya9Ys3G43N9xwQ6f7XHbZZbzxxhtcffXVzJ49m507d/Lb3/6WnJwcamtrW7cLDw8nJyeHV155hREjRpCQkMDYsWM7rA09YcIEbrvtNp555hkqKys599xzWb58OS+88AJXXXUV559//jG9L7Amfeeddx6TJ08mISGBlStX8tprr3HPPfcc87FEREREROQU54iIiMhJ9e677zp33HGHM2rUKCcqKsoJDQ11hg0b5nznO99xioqK2mwLOPPmzXNefPFFZ/jw4Y7H43EmTZrkLFmypN1xi4qKnHnz5jkZGRlOSEiIk5aW5lx44YXOM88802a7+vp654c//KEzZMiQ1u3mzJnj5OXltXndhx9++JiP/7vf/c4555xznMTERMfj8TjZ2dnO97//faeqqqrLv8vRjKumpsb53ve+56SnpzshISHO8OHDnV/84hdOIBDo8O92uMzMTOe2225rs2z37t3Orbfe6iQnJzsej8cZOnSoM2/ePMfr9bZ53QcffNAZNmyYExoa6iQlJTlnnHGG88tf/tJpampyHMdxdu7c6QDOL37xi3ave/jf0+fzOd/5znec5ORkx+VyOS2XYJ0dIxAIOD/96U+dzMzM1n8Hb731lnPbbbc5mZmZbbb99NNPncmTJzuhoaFtXvvhhx92Dr/ca25udh599NHWv3tGRobz4IMPOo2Nje3+drNnz243rnPPPdc599xzW5//+Mc/dqZNm+bExcU54eHhzqhRo5yf/OQnrX8nERERERHpO1yOc4xdaUREROSkcblczJs3r8PyDyIiIiIiIiI9STWTRURERERERERERKRLCiaLiIiIiIiIiIiISJcUTBYRERERERERERGRLgX39ABERETkILUyEBERERERkVOVMpNFREREREREREREpEsKJouIiIiIiIiIiIhIlxRMFhEREREREREREZEuKZgsIiIiIiIiIiIiIl1SMFlEREREREREREREuqRgsoiIiIiIiIiIiIh0ScFkEREREREREREREemSgskiIiIiIiIiIiIi0iUFk0VERERERERERESkSwomS5/kcrl45JFHenoYIiLSQx555BFcLldPD0NERPoAfbcQERE5SMFk6TWef/55XC5Xm0dKSgrnn38+7777bk8PT0REusHOnTu55557GDFiBBEREURERJCTk8O8efNYt25dTw9PREROgsO/B4SFhTFixAjuueceioqKenp4X9rTTz/N888/39PDEBEROSrBPT0AkWP12GOPMWTIEBzHoaioiOeff55LL72UN998k8suuwyAhoYGgoP1z1tEpC956623uP766wkODuZrX/saEyZMICgoiM2bN/PGG2/wm9/8hp07d5KZmdnTQxURkZOg5XtAY2MjS5cu5Te/+Q3vvPMOGzZsICIioqeHd9yefvppkpKSuP3223t6KCIiIl1StE16nUsuuYQpU6a0Pr/zzjtJTU3lr3/9a2swOSwsrKeGJyIiJ0FeXh433HADmZmZfPDBBwwYMKDN+v/6r//i6aefJihIk65ERPqqQ78H3HXXXSQmJvLEE0+wcOFCbrzxxnbb19XVERkZ2d3DFBER6dP0jUt6vbi4OMLDw9tkIndU1+yLL77gkksuISYmhqioKC688EI+++yzNtu0TKFbunQp9957L8nJycTFxfGNb3yDpqYmKisrufXWW4mPjyc+Pp4f/OAHOI7T5hi//OUvOeOMM0hMTCQ8PJzJkyfz2muvtRv34sWLOeuss4iLiyMqKoqRI0fyf/7P/2mzza9+9SvGjBlDREQE8fHxTJkyhZdeeulL/sVERHqfn//859TV1fHcc8+1CyQDBAcHc++995KRkdHh/rt27cLlcnU4jbijz4x9+/Zx5513kp6ejsfjYciQIXzrW9+iqampdZsdO3Zw3XXXkZCQQEREBKeffjpvv/12u+Mfzbl837593HHHHaSmpuLxeBgzZgzPPvvsUfxlRET6rwsuuACwEki33347UVFR5OXlcemllxIdHc3XvvY1wILK999/PxkZGXg8HkaOHMkvf/nLdtfxXq+X733veyQnJxMdHc0VV1zB3r17273u7bffTlZWVrvlR6rX/+KLLzJt2rTWz4FzzjmHRYsWAZCVlcXGjRv56KOPWst4nHfeeV/yLyMiInLyKDNZep2qqipKS0txHIfi4mJ+9atfUVtby80333zEfTZu3MjZZ59NTEwMP/jBDwgJCeF3v/sd5513Hh999BHTp09vs/13vvMd0tLSePTRR/nss8945plniIuL49NPP2Xw4MH89Kc/5Z133uEXv/gFY8eO5dZbb23d93/+53+44oor+NrXvkZTUxMvv/wy1113HW+99RazZ89uHc9ll13G+PHjeeyxx/B4PGzfvp1PPvmk9Ti///3vuffee5kzZw7/8R//QWNjI+vWrePzzz/npptuOsF/VRGRU9tbb73FsGHD2p2vT4aCggKmTZtGZWUlX//61xk1ahT79u3jtddeo76+ntDQUIqKijjjjDOor6/n3nvvJTExkRdeeIErrriC1157jauvvho4unN5UVERp59+Oi6Xi3vuuYfk5GTeffdd7rzzTqqrq/nud7970t+ziEhvlJeXB0BiYiIAPp+PWbNmcdZZZ/HLX/6SiIgIHMfhiiuuYMmSJdx5551MnDiR9957j+9///vs27ePJ598svV4d911Fy+++CI33XQTZ5xxBh9++GHr9fvxevTRR3nkkUc444wzeOyxxwgNDeXzzz/nww8/5KKLLuKpp57iO9/5DlFRUfzwhz8EIDU19Uu9poiIyEnliPQSzz33nAO0e3g8Huf5559vsy3gPPzww63Pr7rqKic0NNTJy8trXVZQUOBER0c755xzTrvXmDVrlhMIBFqXz5gxw3G5XM43v/nN1mU+n88ZNGiQc+6557Z57fr6+jbPm5qanLFjxzoXXHBB67Inn3zSAZySkpIjvt8rr7zSGTNmTOd/FBGRfqCqqsoBnKuuuqrduoqKCqekpKT10XIOfvjhh51DL3N27tzpAM5zzz3X7hiHf2bceuutTlBQkLNixYp227Z8Nnz3u991AOff//5367qamhpnyJAhTlZWluP3+x3HObpz+Z133ukMGDDAKS0tbbP8hhtucGJjY9t9roiI9Dct1+jvv/++U1JS4uTn5zsvv/yyk5iY6ISHhzt79+51brvtNgdwHnjggTb7LliwwAGcH//4x22Wz5kzx3G5XM727dsdx3GcNWvWOIDz7W9/u812N910U7vPidtuu83JzMxsN87DP3u2bdvmBAUFOVdffXXr50KLQ79rjBkzpt13ChERkVOVylxIrzN//nwWL17M4sWLefHFFzn//PO56667eOONNzrc3u/3s2jRIq666iqGDh3aunzAgAHcdNNNLF26lOrq6jb73HnnnW2mqE2fPh3Hcbjzzjtbl7ndbqZMmcKOHTva7BseHt76e0VFBVVVVZx99tmsXr26dXlcXBwACxcuJBAIdDjuuLg49u7dy4oVK7r4i4iI9G0t5+ioqKh268477zySk5NbH/Pnz/9SrxUIBFiwYAGXX355m/r8LVo+G9555x2mTZvGWWed1bouKiqKr3/96+zatYvc3Fyg63O54zi8/vrrXH755TiOQ2lpaetj1qxZVFVVtfn8EBHpz2bOnElycjIZGRnccMMNREVF8fe//52BAwe2bvOtb32rzT7vvPMObrebe++9t83y+++/H8dxePfdd1u3A9pt92VmhyxYsIBAIMBDDz3UrqZ/R+UwREREegMFk6XXmTZtGjNnzmTmzJl87Wtf4+233yYnJ4d77rmnTS3LFiUlJdTX1zNy5Mh260aPHk0gECA/P7/N8sGDB7d5HhsbC9CuFmdsbCwVFRVtlr311lucfvrphIWFkZCQQHJyMr/5zW+oqqpq3eb666/nzDPP5K677iI1NZUbbriBv/3tb20Cy//5n/9JVFQU06ZNY/jw4cybN69NGQwRkf4iOjoagNra2nbrfve737XeXDwRSkpKqK6uZuzYsZ1ut3v37iN+rrSsh67P5SUlJVRWVvLMM8+0CYonJyczd+5cAIqLi0/IexMR6e1akkqWLFlCbm4uO3bsYNasWa3rg4ODGTRoUJt9du/eTXp6eutnSYvDz9e7d+8mKCiI7OzsNtt1dK4/Wnl5eQQFBZGTk3PcxxARETnVKJgsvV5QUBDnn38++/fvZ9u2bSfkmG63+6iXO4c07vj3v//NFVdcQVhYGE8//TTvvPMOixcv5qabbmqzXXh4OB9//DHvv/8+t9xyC+vWreP666/nK1/5Cn6/H7AL3C1btvDyyy9z1lln8frrr3PWWWfx8MMPn5D3KCLSW8TGxjJgwAA2bNjQbt306dOZOXMmZ555ZqfHOFIGWMs592Tp6lzechPx5ptvbp11c/ijq/cmItJftCSVnHfeeYwePbpdtq/H42m37GToqc8UERGRU4GCydIn+Hw+oOOsteTkZCIiItiyZUu7dZs3byYoKKhdxvHxev311wkLC+O9997jjjvu4JJLLmHmzJkdbhsUFMSFF17IE088QW5uLj/5yU/48MMPWbJkSes2kZGRXH/99Tz33HPs2bOH2bNn85Of/ITGxsYTMl4Rkd5i9uzZbN++neXLlx/X/vHx8QBUVla2Wd6SkdYiOTmZmJiYDgPXh8rMzDzi50rL+hadncuTk5OJjo7G7/e3zro5/JGSknI8b1lERLDzcUFBATU1NW2WH36+zszMJBAItDb1a9HRuT4+Pr7d5wm0/0zJzs4mEAi0lj46EpW8EBGR3kTBZOn1mpubWbRoEaGhoa3T1Q7ldru56KKLWLhwIbt27WpdXlRUxEsvvcRZZ51FTEzMCRmL2+3G5XK1yUrYtWsXCxYsaLNdeXl5u30nTpwIgNfrBaCsrKzN+tDQUHJycnAch+bm5hMyXhGR3uIHP/gBERER3HHHHRQVFbVbf+jsj47ExMSQlJTExx9/3Gb5008/3eZ5UFAQV111FW+++SYrV6484utceumlLF++nGXLlrWuq6ur45lnniErK6t1SnNX53K32821117L66+/3mEAu6SkpNP3JSIinbv00kvx+/38+te/brP8ySefxOVycckllwC0/vzf//3fNts99dRT7Y6ZnZ1NVVUV69ata122f/9+/v73v7fZ7qqrriIoKIjHHnusXZ+UQz+3IiMjOwxOi4iInIqCe3oAIsfq3Xffbc0kKC4u5qWXXmLbtm088MADRwwK//jHP2bx4sWcddZZfPvb3yY4OJjf/e53eL1efv7zn5+wsc2ePZsnnniCiy++mJtuuoni4mLmz5/PsGHD2lxsPvbYY3z88cfMnj2bzMxMiouLefrppxk0aFBrM6eLLrqItLQ0zjzzTFJTU9m0aRO//vWvmT17druabyIifd3w4cN56aWXuPHGGxk5ciRf+9rXmDBhAo7jsHPnTl566SWCgoLa1co81F133cXPfvYz7rrrLqZMmcLHH3/M1q1b223305/+lEWLFnHuuefy9a9/ndGjR7N//35effVVli5dSlxcHA888AB//etfueSSS7j33ntJSEjghRdeYOfOnbz++uut06yP5lz+s5/9jCVLljB9+nTuvvtucnJyKC8vZ/Xq1bz//vsd3oAUEZGjc/nll3P++efzwx/+kF27djFhwgQWLVrEwoUL+e53v9taI3nixInceOONPP3001RVVXHGGWfwwQcfsH379nbHvOGGG/jP//xPrr76au69917q6+v5zW9+w4gRI9o0TR02bBg//OEP+dGPfsTZZ5/NNddcg8fjYcWKFaSnp/P4448DMHnyZH7zm9/w4x//mGHDhpGSksIFF1zQPX8gERGRY+WI9BLPPfecA7R5hIWFORMnTnR+85vfOIFAoHVbwHn44Yfb7L969Wpn1qxZTlRUlBMREeGcf/75zqefftrha6xYsaLN8ocfftgBnJKSkjbLb7vtNicyMrLNsj/+8Y/O8OHDHY/H44waNcp57rnnWvdv8cEHHzhXXnmlk56e7oSGhjrp6enOjTfe6GzdurV1m9/97nfOOeec4yQmJjoej8fJzs52vv/97ztVVVXH9fcTEekLtm/f7nzrW99yhg0b5oSFhTnh4eHOqFGjnG9+85vOmjVrWrc7/LzrOI5TX1/v3HnnnU5sbKwTHR3tfPWrX3WKi4s7/MzYvXu3c+uttzrJycmOx+Nxhg4d6sybN8/xer2t2+Tl5Tlz5sxx4uLinLCwMGfatGnOW2+91eY4R3suLyoqcubNm+dkZGQ4ISEhTlpamnPhhRc6zzzzzAn6y4mI9F5HukY/VEfX5S1qamqc733ve056eroTEhLiDB8+3PnFL37R5vuD4zhOQ0ODc++99zqJiYlOZGSkc/nllzv5+fkdfk4sWrTIGTt2rBMaGuqMHDnSefHFFzv87HEcx3n22WedSZMmOR6Px4mPj3fOPfdcZ/Hixa3rCwsLndmzZzvR0dEO4Jx77rlH/8cRERHpZi7H6WJeqIiIiIiIiIiIiIj0e6qZLCIiIiIiIiIiIiJdUjBZRERERERERERERLqkYLKIiIiIiIiIiIiIdEnBZBERERERERERERHpkoLJIiIiIiIiIiIiItIlBZNFREREREREREREpEvBPT2AYxUIBCgoKCA6OhqXy9XTwxER6RaO41BTU0N6ejpBQf3vPqDO/SLSH+ncr3O/iPQ//f3cLyKnvl4XTC4oKCAjI6OnhyEi0iPy8/MZNGhQTw+j2+ncLyL9mc79IiL9T38994vIqa/XBZOjo6MBO7HGxMT08GhERLpHdXU1GRkZrefA/kbnfhHpj3Tu17lfRPqf/n7uF5FTX68LJrdMcYuJidFFpYj0O/11mq/O/SLSn+ncr3O/iPQ//fXcLyKnPhXgEREREREREREREZEuKZgsIiIiIiIiIiIiIl1SMFlEREREREREREREuqRgsoiIiIiIiIiIiIh0ScFkEREREREREREREemSgskiIiIiIiIiIiIi0iUFk0VERERERERERESkSwomi4iIiIiIiIiIiEiXFEwWERERERERERERkS4pmCwiIiIiIqeM+fPnk5OTw9SpU3t6KCIiIiJyGAWTRUSkW8yfP5+srCzCwsKYPn06y5cv7+khiYjIKWjevHnk5uayYsWKnh6KiIiIiBxGwWQRETnpXnnlFe677z4efvhhVq9ezYQJE5g1axbFxcU9PTQREREREREROUrBPT0AERHp+5544gnuvvtu5s6dC8Bvf/tb3n77bZ599lkeeOCBk/KajuPQ0Ow/KccWETke4SFuXC5XTw9DREREROS4KZgsIiInVVNTE6tWreLBBx9sXRYUFMTMmTNZtmxZh/t4vV68Xm/r8+rq6mN+3YZmP796dB6Xu5dRSxi1Tji1hFPrhFNz4GctB5d1tK6OMBxN4hGREyT3sVlEhOryW0RERER6L13Nioh0F8eB7e+DtwbGXtPTo+k2paWl+P1+UlNT2yxPTU1l8+bNHe7z+OOP8+ijj37p185wFZMTtPtLHaPWCWsTcK5pDTQf/L3dupbnh6xrIuRLvx8RERER6QUCftjwd4iIh2EX9vRoREROKAWTRUS6S/7nsP5VSB3b0yM55T344IPcd999rc+rq6vJyMg4pmOEh7i5et7jlG5cRNXWj8HfTFCgGZcLXE6AICdAkOPD7TTjDngJ9jcSEmgk2N9AqL+OIMdKZES5GomiEVwVX+o9+V0hNAdH0uSOpCk4kubWn1E0BUfSGBJPnSeFWk8qdWGp1HlS8QbHgKbEi/R6nhA35wxPJjzE3dNDERGRk81xYNObsGkhjJrd06MRETnhFEwWEekOxZthzUtQU9jvgslJSUm43W6KioraLC8qKiItLa3DfTweDx6P50u9rsvlInzAKMLrCkhq3mcZIk4AcMDBfrb5nYPPnYB9EQj47PeAHxyf/Qz4INAMgYAFep3AgWU+8DVCcyP4GqCpHpoPPMCC1s2VhDVXHv2bCA6HmHSIHQgxA+33mMN+j0hQwFlERETkVNAyE3HTP2w2oohIH6RgsojIyVa1D1a/AI3VEJnS06PpdqGhoUyePJkPPviAq666CoBAIMAHH3zAPffcc/IHMOwCewQC4PeC78DD7wVfkwWAfY3grQZvrV34N9Xafy9f44FAsf/gT+ew5zj2xQHoMDiN65DgtB8cf8fHcfw2rsYqaCi3n74GKM+zx5EEh3UQZD7wvCUIHZGogLOIiIjIybb7U5uJGBoF/uaeHo2IyEmhYLKIyMnUUAmrXoCqfEgeDeU7e3pEPeK+++7jtttuY8qUKUybNo2nnnqKuro65s6d232DCAqCoHAICT/+YziOfTHwNYK/6UBguuX3RgtOtwSsm+osKN1QcSAw7O0gMH3I74FmO3ZMur2OK8jW+5sPvpa/2Y7fVAeNlQeO2wjlO+xxJG7PIQHnA8Hm2EGHBJ4HWcA5SM0GRURERI7LvtU2E9HlhugBdg0oItIHKZgsInKyNDfCFy9C8UZIGnEgOOh0vV8fdP3111NSUsJDDz1EYWEhEydO5J///Ge7pnynPJcLgkPt8WX4fe2zpJsbLCu6sdqCxLWFULX34Dat2dQHgtYuF7iCDymz0dTx8bw19rxipz2OxB1qX3xaM5o7KKkRmayAs4iIiMjhijfB6j/ZdVjCUFvWT6/7RaTvUzBZRORkCPhh/WuQ/5ldULpDrYzC9vcgNKKnR9cj7rnnnu4pa9EbuIPtERrZ9bb+Zgswe6sO/DwQbK4vh7piqCu1wHGbgPOBB9hNDJxDsp8PBJ0Pre3cVGvLK3fb40iCwyB9EmRMg4zpMGgaRCWfkD+JiIiISK9UvhNWPmfXZ4nD7YZ/fRns/AgGTurp0YmInHC9Jpg8f/585s+fj9/v7+mhiIh0znFg6z9h+2LL5gyJsODd+lctS3TbIgvsBbl7eqTSG7hDIDLRHh1xnIM1nlsCzY3VVgajrhhqSy0Q3VGGc+DAZ6oTOJDhfGiWc9PBDOfmegs6+xphzzJ7tEgYakHllgBzymj92xYREZH+oboAVvzRmmwnj7RAcmMVrHvFrsvWvwZn39/ToxQROaF6TTB53rx5zJs3j+rqamJjY3t6OCIiR7bnM9i4AMLjISzOgnS5C6GuxDI7J35NwTY5cVwu8ETbg4Edb+Pztg02e6vteX3ZgezmMstSbg02Nx14+A6+Bo5lMzfXHwhYV9rPlnrN6162bUOjYNAUCyxnTIOBUyA87uT/HURERES6U10ZrHgWKndB0iibDdZUZ9dE3mq7JppyZ0+PUkTkhOs1wWQRkV6heDOs/as13ohKtazRbYugYgcEhUDmWQqsSfcL9lg5iiOVpAgEoKnmkIDzgZ8NlVBbZKU0vDWWmdxcdyB7+UA2c2MVNJRbk5mGCsuS3vEvewDgguRRBzOXM6ZDYvaBALWIiIhIL9RYBSufhZJNkDTSEkWaGy0juaECwmJt5pYnqqdHKiJywimYLCJyolTtg9UvWNAtcbgt27sc9q+x30dfcaB+rcgpJijIvvSEdTLzp7nRvjjV7IeqfLtxUpVvZVyiku1mCUEWTK4thPpSqK+w4HPJJnusfsGOFRZnweXBp1twOf20fltLXERERHqZpnprtrd/jV3zu0NsRteGV23GV2gkjL/BrplERPogBZNFRE6EhgpY9bwF15JHW9ZlyWbYscTWZ8+EpOFQltejwxQ5biFh9ohOhfSJMPpyCy5X5tu/+9Kt1oAGB2IHQ8IQCI22BoI1hVC9zwLMjZX22LbIHmCZ/MmjIPOMgwHm2EHKXhYREZFTi68J1vzFytolZNvsr4APNv7drnWCw2Dc9VbuTsFkEemjFEwWEfmymhvhi79Aca5Nc3MF2cXk5rds/cDJVkNWpK8Ji4W0WEgbCyMvsTqBVXstwFy23R6+BpvimZoDnhgICbegcuUea1pTX2blM4o32mPF7+3YEUkw8DTIOtuCzGnjITi0Z9+viIiI9F8BvzXU3vkRxGXZNY0TgE1vQsVOm6U17jqISunpkYqInFQKJouIfBktF5V7lll2gjvE6sxueN2yFBKHQfaFPT1Kke4RGmmdzJNHwvCZ1syvaq9lLpftsOzlhnKbChqTbjdfPDHg+KB8l21XU2iZy/WlbbOXg0LsuIOmwtDzIXOGvqyJiIhI9wgEIPcfsPU9iB5oN8odB7a8C6VbbJbV2Gsh5gjNkEVE+hAFk0VEjlfLBeT2921Kfkg4NDfA+r9Bcz1EpalOsvRvwR5rtpeYDUPPs5IX1QUWYK7YBcWbLDO5qRZCPFY+wxNrU0RriyzLp3qf/e5vgqIN9lj1nB0/MgUGjIfBM+ymzYDx1gBHRERE5ERpaai96R8QmWzNtB0H8j6AovWAC3KuhPisHh6oiEj3UDBZROR47fkMchdaTbSwuAP10t6wzEtPDIydA25Nyxdp5Q6B+Ex7ZJ1pmf21RVYWo3K3BZdriw/UGAxAXKaVt/BEW2PLqr22XfU+y16uK7abOdvfhw9/ZP+/JQ23wPJZ34WIxB5+wyIiItLr7Vpqsw49MRCZZMt2fwL7Vtrvo2ZD0oieG5+ISDdTMFlE5HgUb4K1L9mUtqjUg1nKVfng9li9NE9UT49S5NQW5LZyFzHpMHi6/X9UVwpVeyzAXLzJMpnriq0mYWikNegLi7Xn1fvt/7mW8hj+JijaaI/lz1gd57Pug7RxauYnIiIix27vKlj7V7shHp12YNkK2L3Ufh/2FUgd23PjExHpAQomi4gcq6q9sPpP4K2FxOG2bPdSax7mCoKcq2wKnIgcG5cLopLtMXCyTRltqDhYd7lkszXuq9gFgWYICrU6yhnTrKZyfZllLu9bCY1V1lk99x9WZ3nGPBg2E0IjevpdioiISG9QtBG++JOV6YofYssK11l5C7AmwQMn99z4RER6iILJIiLHoqECVr1gga3k0Rb8KlxvU90Ahs+ChCE9O0aRvsLlgogEewwYb9NIvTWWtVyVD6XboDzPgs0+L7iDrX55So6t3/MZ1BZC/mf2SBgGk2+FMVdDbIaylUVERKRjZXmw6nlorLGG2i4XlGyxmYgAg6bB4DN6dIgiIj1FwWQRkaPV3ACr/wzFuZA00rKQK3bD1gMXlRkzYMCEnh2jSF/niYbUHHuMmGX/X1bttYzlsjwo22Y1lV0uq1teXwr5n1szv/LtsPghWDYfRlwME26yILWylUVERKRF1T5Y+az1cUgaYdcU5Tth00LAsX4OQ8/XTWkR6bcUTBYRORoBP6x71YJSCdlWN62u1BruOQHLUh5yTufHcByr6eoK6p4xi/QHIeHWdC9pOAy7EHxNdsMn70Mo3AAEYNRl0FQL+cttXW0RrH4BNi6AQVMsqJwxxRr+6YuhiIhI/1VXCiv+aGWzkkbZdXvV3kOu+UfZDemurhcaKmzfiKTuGbeISDdSMFlEpCstzfXyPrCp8SHh0FQHG14FvxdiBtn0+64uKqv3WlO+rDO7Z9wi/VFwKKRPtKZ7RRtg+wcHg8rZF9hNn70rYP9a8FbZ/9e7P7XSGCMvtvVp46zZn4iIiPQfDZWWkVy6xYLGQW67Ab3+VevVED8URl3edWJIQ4XtN2o2ZJ/fLUMXEelOCiaLiHRlzzLIXQjhCRAWa004NrxmDb7C42HsNRDUxem0tsgyJk+7BdIndc+4RfqzILeVnUkd2z6oPHgGZJ4JBath3yporoeCVVC0Hta/BhnT7ctf+iSIz1K2soiISF/XVGd9UfavtQbbQcFQXw7rXjmYPDLmaru+6Ex9uV33j74Mxl7b9fYiIr2QgskiIp0pyoU1f7ULwagUy1Le/CbU7IfgcBh7HYR0UW+1vhwaK2HcdV2XwhCRE6uzoPKAidZAp2iDlbBprLRspLLtsPMj22fQFAs+p42zmQUiIiLSt/i88MVfYO9yK2cX7IHGalj3st1wjkqFcXOszF1nFEgWkX5CwWQRkSOp2gtf/NlqrSYOt2U7lkDpVnC5LSM5IqHzY3hroLbQaraOuEQZjiI9pbOgctIIW1e6FfI/g5pCq5VYuQf2r4G8JZAyCjJOh4GTIH6I/l8WERHpC/w+WPc32PWxzUZqKWe37mXwVtvMxHFfheCwzo+jQLKI9CMKJouIdKS+HFY+bwHl5FEWOCpYbRkLYDXQYjM6P0ZzgwWksi88UApDjfdEelxnQeXYDEgaCVV7LFO5fAdU77NH6VYoWGNfNFNGHZKtHN3Db0hERESOSyAAuQtg22IrYxEaBb5GWP8KNJSDJwbG39B1H4X6cqgrViBZRPoNBZNFRA7X3ABfvAglmyyw5AqCsjy70ATIOseadXXG57Wp8pkzYOKNXU+LE5Hu1VlQOWaQZSHVFsPez6F4k80wqC2E8jwo3wn7VkP0AMiYBgMnW7aybhiJiIj0Do4DW/8Jm9+2UnYtfVHWv2af/yERFkgOi+n8OC2B5FGzFUgWkX5DwWQRkUMF/DbVLf9zq5nmDrEpa5sWAg6kjbeMxE6P4YOybZA+EU671abLicipqaug8qjL7QbS3hXWlKe+zB6eaEgaBVX5sP19K4WTOcPOEV198RQREZGetfNj2PiGBZEjEu07wMa/Q/VecHtg/PVdl7NTIFlE+ikFk0VEWjgObHkH8j606e4h4VYrbf2r4G+CuCwYPqvzWqlOwKbDJ42AyXPtAlVETn1dBZWHzYTMM6HgC9i30uqh71thNRRTx1p9xcJ1EJkCg6dD+mmQMFTZyiIiIqea/BWw9mULGkel2vX75jehYgcEhVjT7KjUzo+hQLKI9GMKJouItNj9KeQutEYbYbFWqmL9a9aALyIJxlzV+YWi40DpNogdBFPmQlRytw1dRE6QroLKmWdYaYvCDVYCo6HCgstBwZAyxppz5i60sjhJI2Dw6TBgvG4siYiInAoKN1iD7YAfEgYfLHdRstk+w8dcY9fynTm0RvKYaxRIFpF+R8FkERGAoo2WoRAUYnXTnIAFhOqKrenGuOs67+LsONasKzweJt8OcYO7begichJ0FVROn2hB4tKtVhanZj8UrrVH0khrzle86UC2cjIMmgaDJlv5HGUri4iIdL+yPFj1vCWKJAyz6/cdH9pnNS4YfQUkDOn8GAoki4gomCwiQmU+rP6TTVNPPHBhuW3RwaluY+d0nVVYvReCQ+G0WyB5ZPeMW0ROvq6CysmjLHhclW9B5fI8KN1ij9jBMGgK+H2w+S3I+8DOMS21lcPjevrdiYiI9A+V+bDyj1BXcqDBtgt2f2I9EQBGXtL1NbwCySIigILJItLf1ZfDqhegusCCQi6XBYT2r7H1oy+H6AGdH6O2yGoqn3YrDDztpA9ZRHpAV0HluMH2qC2GvcuhOBeq9tgjMhkypkN4omUyF22wZaMuhaEXKFNZ+qz8/HxuueUWiouLCQ4O5v/9v//Hdddd19PDEpH+prYYVj5rAeWW6/19q2DXv2199oV2k7czCiSLiLRSMFlE+q/mBlj9ZyjZdCBDIcjqpe1YYuuzL7Sap52pL4fGShj3Vcg6+6QPWUR6WFdB5agUGHUZZJ1jDfr2r7UsqM1vgSfGMpVTxkFDGXzxIlTtg3FzrJyOSB8THBzMU089xcSJEyksLGTy5MlceumlREbq37uIdJOGClj5nN3MTR5l1/uF62H7YlufeRYMmtr5MRRIFhFpQ8FkEemfAn5Y9zfLIEzIBncIVO+zgA/AwMldX1h6q6G20LKXR1xsWQ4i0j90FVQOi7EbUoPPhP1fwN6Vds7I+9Cm1aZPtn23vWezGybdDDHpPf2uRE6oAQMGMGCAze5JS0sjKSmJ8vJyBZNFpHt4a61GcuE6SxAJCrag8pZ3bP3AKZB5ZufHqC+zm8IKJIuItNK8ShHpfxwHNr9twZ/YDAgJh4ZK2PA6BHxW0zT7ws6P0VwPlXtg6Pkw5mpNUxfpr1qCymf+B5z1HzZNtrrAaiY31UFIGAyeAad/y246hceDzwt7PoW89yFuCOxfB5/8DxSs6el3I9LGxx9/zOWXX056ejoul4sFCxa022b+/PlkZWURFhbG9OnTWb58eYfHWrVqFX6/n4yMjJM8ahERoLkRvviz3cxNGAbuUKjYZQ22caxRbvaFnSeDKJAsItIhRT9EpP/Z/Qls+gdEJFpjveYGWP83CxBHpVonZ1cnp0efF8p3WIBo4o2W1Swi/VtXQeWgYBgwEabebeeYoGA7j2xaAAlDoa4UPv8tbH7HGvaJnALq6uqYMGEC8+fP73D9K6+8wn333cfDDz/M6tWrmTBhArNmzaK4uLjNduXl5dx6660888wznb6e1+ulurq6zUNE5Jj5fbDuFdi1FOKH2I3d6n2WOOL4LUt5xCVHGUi+XIFkEZHDKJgsIv1L0UZY+woEhVht04APNr4BDeVWz3TsdZa5cCQBH5Rts6DRabdYVrOISIuugsquIEjJgfHXg9sDVXvtC29Muj1f+7JNyW1UEE163iWXXMKPf/xjrr766g7XP/HEE9x9993MnTuXnJwcfvvb3xIREcGzzz7buo3X6+Wqq67igQce4Iwzzuj09R5//HFiY2NbH8piFpFjFgjYtX3egRmIoZHWgG/9qxBohvisrhNH2gSSr1YgWUTkMAomi0j/UZkPq/9kAZ3YDCt3sfVdqMq3IM7YOeCJOvL+TsDqrCWNgMlzLatZRKQjXQWVYzNgwo12Q6q2ENa8ZF94YwdZE9BPf22ldEROUU1NTaxatYqZM2e2LgsKCmLmzJksW7YMAMdxuP3227ngggu45ZZbujzmgw8+SFVVVesjPz//pI1fRPogx7F6yFvegchUu1ZvqID1r4CvEWIGHsgy7qR1lALJIiJdUjBZRPqH+nLL9qsugMRsm9a2e6llKruCIOcqy1Q+EsexjOTYQTDlDohK7q6Ri0hv1llQOTwOJnwNQqOhvhTWvGjNQZNGQMkm+OR/rdaj4/T0uxBpp7S0FL/fT2pqapvlqampFBYWAvDJJ5/wyiuvsGDBAiZOnMjEiRNZv379EY/p8XiIiYlp8xAROWo7lsDGv0NYPEQkWOPbtX+1m7iRKTCuixmICiSLiBwVBZNFpO9rqofVf4aSzZA43ILHheutdjLA8FmQMOTI+zsOVOywxlmT50Kcpt0eKisrC5fL1ebxs5/9rM0269at4+yzzyYsLIyMjAx+/vOf99BoRXrI4UHllBwo226zISZ9DcLioLHKAsqN1ZA82p4vfwZy/wH+5p5+ByLH7KyzziIQCLBmzZrWx7hx43p6WCLSF+35HNb9zWb8RKXY9f+6VyygHB5v5aWCw468vwLJIiJHTcFkEenb/D67sNy7HBKyrVle5W4rbwGQMcMCPJ2p2mtlME67FZJHnPwx90KPPfYY+/fvb3185zvfaV1XXV3NRRddRGZmJqtWreIXv/gFjzzySJeNmET6pJag8rSvQ/okCygHh8PEmyEiCZpqYc1foLbIGvOFRMKG12DFH2yqrsgpIikpCbfbTVFRUZvlRUVFpKWl9dCoRKRf2r8OvnjREkBiBlqz7PV/swCxJxrG32ClpI6kJZCcc4UCySIiR0HBZBHpuxwHNr8NOz6E2MGWqVBXak05nIBl/g05p/Nj1BRas44JN1jgRzoUHR1NWlpa6yMy8uAF+1/+8heampp49tlnGTNmDDfccAP33nsvTzzxRA+OWKSHhcfB1DstsFy2DYJDYeLXIDoNfA2w9iWrmRyVAnGZ1pH+019BWV5Pj1wEgNDQUCZPnswHH3zQuiwQCPDBBx8wY8aMHhyZiPQrpdtg9QvQXG+fl/5muwlbWwghERZI7qzPyaGB5JyrFEgWETkKCiaLSN+1aylsetOy/cJirF7ahlctWyFmEIyabbWTj6S+HLxVlqGQdVb3jbsX+tnPfkZiYiKTJk3iF7/4BT6fr3XdsmXLOOeccwgNPVijbtasWWzZsoWKio4zLb1eL9XV1W0eIn1OeDxMvcvqKJdutS+w42+05nz+JsuqKsuzbKqkkVC63Rrz7f5UdZSlW9TW1raWpwDYuXMna9asYc8eaw5533338fvf/54XXniBTZs28a1vfYu6ujrmzp3bg6MWkX6jcg+sfNYCwgnZliySu+Bgc+1xX4WIxCPv3xpIvlKBZBGRY6Bgsoj0TYUbrE6aOxQikw9kKbxuNUjD42FsF52cvdWW0TDyUhhxcedB537u3nvv5eWXX2bJkiV84xvf4Kc//Sk/+MEPWtcXFhZ22KCpZV1HHn/8cWJjY1sfGRmqUy19VESCBZRTx1pA2RVkX34TsiHgg42vW713dwgkj7LMqxV/tKwrn7enRy993MqVK5k0aRKTJtnMnPvuu49Jkybx0EMPAXD99dfzy1/+koceeoiJEyeyZs0a/vnPf7Y75x+r+fPnk5OTw9SpU7/0exCRPqqmyD4Pq/ZaTxQc2PwWlOfZNf64OTbb50gUSBYROW4ux+ldqS3V1dXExsZSVVWlDs8i0rHKPbBsvl0gJgyzZbl/t0BNcBhMutUCOEfSXA/lO2DYTJh0swVxelh3n/seeOAB/uu//qvTbTZt2sSoUaPaLX/22Wf5xje+QW1tLR6Ph4suuoghQ4bwu9/9rnWb3NxcxowZQ25uLqNHj253DK/Xi9d7MFBWXV1NRkaGzv3Sd9WVwue/g+Jcy0J2BdmX4pJNgMtuarXUd68vs5tdg6ZZaYzITrKupFfr79e9/f39i8gR1JfbZ2bRBrvR6nLDtvdg/xr7/Bw7x/oOHHH/wwPJp1aOnc59InKq6yQtT0SkF6ovh1XPQ3XBgYtLF+R9eCDjzw1jr+08kOzzWkbD4DOsTvIpEEjuCffffz+33357p9sMHdrxRfr06dPx+Xzs2rWLkSNHkpaW1mGDJuCITZo8Hg8ej+fYBy7SW0UmwbS77ctx6RYLKI++3GZXFK61pqH+Jhg01abshoRD/ucWhJ50s5qDiohI/+CtgZXPWSA5aYRlIe9YYoFkXDD6is4DyXWlUF96ygaSRUR6AwWTRaTvaKq3BhwlWw5m9hWshr3Lbf2o2VaL9EgCPmuENWAinHarBWv6qeTkZJKTk49r3zVr1hAUFERKSgoAM2bM4Ic//CHNzc2EhFhwfvHixYwcOZL4+PgTNmaRXi8qpX1AecTFEOyx81jeB3bDK/NMayqUPMpufi37lWVhZZ2tL8UiItJ3NTfAqhdg3ypIGm43XPcss5urYJ+Zye1nzbVSIFlE5ITo9rNnfn4+5513Hjk5OYwfP55XX321u4cgIn2R3wfr/gZ7V1ppC3eINa7attjWZ50DKTlH3t8JWPZy0kiYcoc17JMuLVu2jKeeeoq1a9eyY8cO/vKXv/C9732Pm2++uTVQfNNNNxEaGsqdd97Jxo0beeWVV/if//kf7rvvvh4evcgpKDoNpn3daiaXbrFz09DzLVAMsHsp7PjQGvAFBUPiCAj4bUbG2pfti7aIiEhf42uCL/5iwePEbCtdV7Aadn5k64decLAcVEdaA8lXKZAsIvIldXtmcnBwME899RQTJ06ksLCQyZMnc+mllxIZGdndQxGRvsI50HBjx4cQOxhCwqC2CDYtBBxIGw+DZ3S+f9k2iB0EU+badHM5Kh6Ph5dffplHHnkEr9fLkCFD+N73vtcmUBwbG8uiRYuYN28ekydPJikpiYceeoivf/3rPThykVNYzAALKB+aoZx5pmVg5X0Ae1fYl+oRs2wGRmwGNFTAlretlvLEr0H0l2uAJiIicsrw+2D9q7DjXxCXabNzijbCtkW2fvAZkDHtyPu3CSRfqUCyiMiX1O3B5AEDBjBgwADAamUmJSVRXl6uYLKIHL9d/4ZNb0JEkmUUe6vtgtPfZBecw2dZ7eSOOA5U7IDwBMtIjuukDIa0c9ppp/HZZ591ud348eP597//3Q0jEukjYge2LXmRPMrqJbtDYes/rY6yvwlGXWYd6MPjITjcpv7Wl1pAOXVMT78LERGRLycQgE3/sMBxzEDwREPpNkskARg4+eDsnY4okCwicsId85n0448/5vLLLyc9PR2Xy8WCBQvabTN//nyysrIICwtj+vTpLF++vMNjrVq1Cr/fT0aGgjcicpwK11t5i2APRCZbPdH1r0FTrQWXx1xtgZYjqcoHtwdOu8Vqr4mInCriMiygHJdhteCdgE3hzbnSMpJLNsHGN8DfbNuHhEHyaKguhGVPw7b3rQSGSC8zf/58cnJymDp1ak8PRUR6kuPYDdRN/7Dr/PA4qNwNuQsAB1LHQvbMIyeN1JVCQ5kCySIiJ9gxn03r6uqYMGEC8+fP73D9K6+8wn333cfDDz/M6tWrmTBhArNmzaK4uLjNduXl5dx6660888wznb6e1+ulurq6zUNEBICK3bD6z1YjNGaQBVpyF0JdMYRGwrjrrJ7akdQUWtO9iTdC+qTuG7eIyNGKz4Spd1umculWO88lj7KGe0HB1oBv/d/sRhrYzbPEYRZsXvMifPEieGt79j2IHKN58+aRm5vLihUrenooItKTdn5kN009sRCRCDX7YcPr4PghcTiMvFSBZBGRHnDMZ9RLLrmEH//4x1x99dUdrn/iiSe4++67mTt3Ljk5Ofz2t78lIiKCZ599tnUbr9fLVVddxQMPPMAZZ5zR6es9/vjjxMbGtj6UxSwiANSVWcOpmv2QMNSWbVtsJSuCQizQEhZ75P3ry8BbBWOvsVqkIiKnqoQhMPUua85Xus0CyglDYdz1VvaiKh/WHdJ8z+WCmHSISrNpwZ89DdUFPfseREREjkX+cmss6/bY519dqc1GbClj1zJLpyOHBpJHX6FAsojICXZCz6pNTU2sWrWKmTNnHnyBoCBmzpzJsmXLAHAch9tvv50LLriAW265pctjPvjgg1RVVbU+8vPzT+SQRaQ3aqqD1S9Yll7SCLuQ3Lsc9n9h60dfDtEDjrx/Y7VlL4+a3Xk9ZRGRU0VitmUoR6UcCCg7Vv5iwk1WK7lmP6z5S9ss5LBYy9zavw4++R8oWNNjwxcRETlq+9fa7EPHsQbZjZWw7hXwNdg1/phrbHZORxRIFhE56U7ombW0tBS/309qatsO4qmpqRQWFgLwySef8Morr7BgwQImTpzIxIkTWb9+/RGP6fF4iImJafMQkX7M77MshX2rbCp3UDCUbIYdS2x99oUWYD6Spnqo2gNDL4Ccq3WBKSK9R9Iwy1COTIKyAwHl6DRrthcaZQ2G1rwIDZUH9wn2QMpo+3L9+W9h8zt2HhURETkVlWyFVS9Ac71lIDfV2rV/U431Qxn3Vfts64gCySIi3eIIt/NOnrPOOotAINDdLysifYHjWAOOnR/ZxWVwGFTva9vNeVAnzXp8XiuDkXkGTLgB3N1+ChQR+XKSR1hAecXvoWy73VSLTIKJN8O6v1r21pq/wPjrbTnY7I3EYVYnft0rdt4cfz2E6Qa9iIicQip2wco/Qn25JYf4vPa51Vhps23GXw8h4R3vq0CyiEi3OaFn2KSkJNxuN0VFRW2WFxUVkZaWdiJfSkT6o50fWeA4Ihk80ZZ9t+F1a6KXOMyyko8k4LNMvgETYdItENJJYz4RkVNZyiiYcgeEx1oDPsexDvcTb7asraYaWPsXCx4fKjoNYgbCjn/Bp7+2JqYiIiKngur9sOKPVuM/aTgEmmHDq1BXYo21x99g1/8dUSBZRKRbndCzbGhoKJMnT+aDDz5oXRYIBPjggw+YMWPGiXwpEelvCtZY043gcMu2a260C8zmeohKtQvHIzXhcAJQsgWSRsKUucrGE5HeL3WMBZQ90TbjwnHs94k3WeO95gZY+1drzncoT7Rle5Vsgk//F/JX2L4iIiI9pa7MAsnlO+163QnAxjdsJk1wmAWSw+OPsG+JAskiIt3smM+0tbW1rFmzhjVr1gCwc+dO1qxZw549ewC47777+P3vf88LL7zApk2b+Na3vkVdXR1z5849oQMXkX6kfCd88aJNdYsZaFnGG9+A+jLwxMDY68Ad2vG+jmPNquIHw9Q7Dk77FhHp7dLGweTbISQCyg8ElEMiYMKNEJsB/gPTg8t3tN3PHQrJo6GxBpY/A7kLwd/cI29BpCPz588nJyeHqVM7KV0lIn1DY5WVtijZdKCxtgs2vWklL4JCrEZyZHLH+9aVQEO59UFRIFlEpNu4HOfY0lH+9a9/cf7557dbftttt/H8888D8Otf/5pf/OIXFBYWMnHiRP73f/+X6dOnn5ABV1dXExsbS1VVlZrxifQHtSWw7NcWUE4eZcu2vAVFGy0gMvFmiErpeF/HsYy9sFiY/k2bMtdL9fdzX39//yKd2rcaVj5nN9zis+yLuL8Zcv9ugWRXkH3JbjmHHqquxB4tteSPlPklPaK/n/v6+/sX6fOa6iwjOf9zSBxu1/Zb34XCdeByw7jr7HOtI20CyZf3qUCyzn0icqo75u5T5513Hl3Fn++55x7uueee4x5UR+bPn8/8+fPx+/0n9Lgicgrz1sLqF6zJVPIoC5Ds+rcFknHZxeORAslg07vdHquR3IsDySIinRp4mk0JXvU8VO62BqXuEBhzLWx+E0o2W/bxyGbLZj5UZLJlM+9aajfvJn0NErN75G2IiEg/4vPazMP8zyEh2wLJO5ZYIBkX5FzRSSC5tM8GkkVEeoNec9adN28eubm5rFixoqeHIiLdwd9s9T4LvrDmekHBULgedn9i60dcDAlDjrx/TaGVw5h4E6RP7JYhi4j0mEFT4LRbIcgNVVZ6jCC3ZSSnjQcc2PI27FvZft/QSKtRWbYdPv0V7P5UdZRFROTk8ftg7cuw898QPwRCwmHPMti73NaPvMQ+lzpSXw71pTD6SgWSRUR6iM68InLqcRzIXQA7P7YMu+Awy7bb+q6tzzgdBkw48v71ZeCtgrHX2tRtEZH+IGOazcTABZUHAsquIBhxCQycYs+3v2835Q4PFrtDbAZIc6NNOd7wmmWNiYiInEiBA8318j6A2EF2Q3PfKtj1sa3PvvDATdAONFRCbRGMmm2Zywoki4j0CJ19ReTUs2MJbH4HolLBE21T2Ta+YdO4k0fDkHOPvG9j9YGLzMtg+EVWGkNEpL/InGGlKpwAVO21ZS6XfTnPPNOe7/q3nWcPDyi7XBCfaXWTcxfC57+z86+IiMiJ4ByYJbPlHYhMtb4mRRth+2Jbn3kmDDpC483GKqgpgBGzYMw1NvtGRER6hILJInJq2bca1r0KoVEQkWiNOTa8ahlyMQMtE+FIAeKmepvenX0h5FylbAUR6Z+yzrKAcqAZqvfZMpcLss6G7Avs+d7lsO09CzofLiIR4odaHcvlz0BzQ/eNXURE+ibHsWzkjQsgLB4iEqB0G2x+y9YPnAyZZ3W8r7cGqvfCsK/A+K+C+5hbP4mIyAmkSIuInDrK8mDNX6zWcUy61U3e8LplIoTFWdmKoCNcPPq8ULHDMhom3KCLTBHp37LOhgk32rmxuuDg8kHTrOwFwP419iU+0EFz45BwSBoBRbmw/YNuGbKIiPRhe5bBur9Z09eoFCthl7sAcCB1LGTP7DhhpKnWth16wYFr/JDuHrmIiBxGwWQROTXUFsOqF2xKdfwQy17Y/JZNZwsOg3FftYvPjviboWybNdqbdDOEhHXr0EVETjkuFww9DyZcb5nFNYUH1w2YYI2LXEFQnGtlhPzN7Y/hDrUs5a3vQcWu7hq5iIj0NftWwxd/AZfbEkZq9lvCiOOHxOEw8tIjBJLr7fNnyLnWVDs4tNuHLiIi7fWaYPL8+fPJyclh6tQj1FASkd7LW2OB5PI8u6B0uayeZ+kWu+gcc61NhetIwA9lW62W8uQ7ICyme8cuInKqaqmVPP6rltl1aEA5ZbSdW4OC7dzbUk7ocFGp0FgJGxeC39dtQxcRkT6iKBdW/8k+Y2IzLHFk3d/A32SNtnMO3Nw8XHPDwVmHShYRETml9Jpg8rx588jNzWXFihU9PRQROZF8TbDmrzbdOnG4NdMo+MLqeYJlKsRldLyvE7CM5LgsmHoHRCZ216hFRHoHlwuGfwXGzYGmGpsF0iIx22Z9uEOhcg+se7l9fWSXy86xBath9yfdOnTpv5REItJHlOXBquetZF3CUPBWwbpXwNcA0QMONNLroDSdr9FudGZMh9NuhdAjzE4UEZEe0WuCySLSBwUCVitt18cQnwXBHrvo3LbI1medA6ljOt7XcWzbyGSYMtemzImISHsuF4y42OrON1ZCXcnBdXGDYfyNVk6oZj+sfcmymA8VGmE1lDe9CbUliJxsSiIR6QOq9sLKP0JtESQOg+Y6CyQ31UBEkt3MDPa038/nhbLt1pBv8u3gier2oYuISOcUTBaRnpP3IWx5B6IGQGiUXWxuWgg4kDYeBs848r6Vu+3icvLtll0nIiJH5nLZTI8xV0NDhU0zbhEzACZ+zc7DdSXWCLWxqu3+sRkWbN70D7uZJyIiciS1xbDij1Cxx2Ye+poskNxQAWGxMP56u0l5OH+TzTocMBGmqHydiMipSsFkEekZe1fBhtcgNMbqIXurYf1rB+unDZ/VcSMOgKp9tm7SLZA2tnvHLSLSW7lcMOoyq09ZXwr1ZQfXRSZbQDks1r7sr3mx7XpXkAWUd39qJS9EREQ60lABK56F0q2QPNKa7G141W5WhkbC+BvAE91+P3+z7ZM6FqbeCeFx3T50ERE5Ogomi0j3K91ugYqA3zLifF4LJLdMextztdVO7khtsdVZG389ZKiWoojIMQkKgtFXwOjL7Yt9ffnBdeHxMPFmiEi0xqhr/mIzRlqExdrPjQuhsbp7xy0iIqc+bw2sfA6K1kPSCFu28e9Qvc/KKY273j5rDhfwWePt5NEw7e4jN94WEZFTgoLJItK9aoqsEUd9OcQPsSZ6uQuhrhhCImHcdXax2ZGGCmgohzFXwdDzunHQIiJ9SFCQ3bQbNdvOvQ0VB9d5omHC1yAqFZrrrU6yEzi4Pj7LmiJte6/bhy0iIqew5gZY/WfYt8pqJAcF22dIxU4ICrFr/KiU9vsF/BZIThoB0+6CyKTuH7uIiBwTBZNFpPs0VlsguWKn1U8D2LYYKnbYBefYOQcz3w7nrbF6nSMugZGzj1wCQ0REuhbktoZ8Iy6BmkJoqDy4LjTCpiEHe6wcRnHuIfsFW6B5+4dQsqXbhy0iIqcgXxOs+Svs/gTih4LbA1v/aUFi14HPm5iB7fcL+KF0s+0z9S6ITuv+sYuIyDFTMFlEuofPa1OmC9dZIDnIDXuXw/4vbP3oK6zkRUea663h3tDzYdy1llUnIiJfTpAbxs2BERdDTUHbpnsh4TBouv2+a6l94W8RkWTn5Y0L7NwuIiL9V8Bv5ep2LLG+JyHh9nvhOsBl1/jxWe33cwJWIzlusGUkx3YQbBYRkVNSr4nIzJ8/n5ycHKZOVY1UkV4nEIANbxzIVhhi2W4lm+1CEyD7woN11Q7n89qU6sEzYOKN4A7pvnGLiPR17mAYf501Pa3e1zagPGgKhERAYyUUrj+43OWywEDRetjxr24esIiInDICAcj9h5U+ik63Ukl7llnCCMDIS6wJ3+EcB0q3QUw6TL3bAsoiItJr9Jpg8rx588jNzWXFihU9PRQRORaOA9sXH7zIDI20gMXmt2x9+mkwcErH+wZ8ULYNBkyC0261TAcRETmx3CEw4XoYNhOq94L3QHM9d6jdyAPY84mdk1sEh0FYPGx5F6r2dv+YRUSkZzkObFsEm/5hM1bC46BgNez62NZnXwhp4zver2yb1UaeehckDOnWYYuIyJfXa4LJItJL7V1pWcmeWOve3FAJG163oERCtgUvOqp/3NKMI3kkTJkLYTHdPnQRkX7DHQITbrQv/5X5VqceIH2SZZp5a6Dgi7b7RA+wmsobF7QtgyEiIn3fzo/tmt4TY4Hhoo0WXAbIPBMGdTCj2HFsxmF4vAWSk4Z175hFROSEUDBZRE6ekq1WJ9lxrKFGcyNseNVqbUalQs6V4OrgNNSSsRA3GKbcqa7OIiLdITgUJt4EQ8+zOvVNtdZwL/NMW79nGfibDm7vcll9zH0rIf/zHhmy9E0qbydyistfAWtfthks0WlQtv3grMOBkyHzrPb7OI413fZEw5Q7IGVU945ZREROGAWTReTkqN4Pq1+wWpvxWZa1tvENqC+zDIaxc+wC9HAtGQuRyRZIVjMOEZHuE+yBSTfDkHOhYhc01UHqOAiLsxuBe1e23T40Ctwe2PQm1Jf3xIilD1J5O5FTWOF6+OJPdm0fOwgq90DuAsCB1DGQ3cGsQ8exz5TgcJh8G6SN7YGBi4jIiaJgsoiceI1VsOp5qNgNCQemr219B6r2WAB57BzLSuhI5W5r+DT5NkjM7rYhi4jIASFhcNotkHWWZZG5XJB1tq3b+zn4GttuH5thwYRNb1nAQERE+qbSbXaN31RvySI1+2HDa1a+LnEYjLi04/J1VXusnNLk26x8koiI9GoKJovIieXzwhd/gaINkDQcgtyw+xOro4YLcq6GqJSO960usJ+Tboa0cd02ZDmyn/zkJ5xxxhlEREQQFxfX4TZ79uxh9uzZREREkJKSwve//318Pl+bbf71r39x2mmn4fF4GDZsGM8///zJH7yIHL+QcBh3HUQkQ10JpIy2Bks+L+Qvb7ttkBtiBsKuf1vGmoiI9D0Vu2HlszbLMCHbfq77m5U/ihsMOVfZ58HhqvLt56SbYdARmm6LiEivomCyiJw4AT+sfw12fwrxQy0LuXA97F5q60fMOnLH5roSm0I9/qsweHr3jVk61dTUxHXXXce3vvWtDtf7/X5mz55NU1MTn376KS+88ALPP/88Dz30UOs2O3fuZPbs2Zx//vmsWbOG7373u9x1112899573fU2ROR4RCZB1pl2fsYFQ1qyk1dY+YtDhccfKGe0oP06ERHp3WoKLZBctRcSh4O3Cta9Ar4Ga8Y65lqrsX+46gLLWp54E2TO6P5xi4jISaFgsoicGI5jHZy3LbIMtdAIK1mx9V1bn3E6DJjY8b4NlZbdkHMlZF/QXSOWo/Doo4/yve99j3HjOs4UX7RoEbm5ubz44otMnDiRSy65hB/96EfMnz+fpiZr1PXb3/6WIUOG8N///d+MHj2ae+65hzlz5vDkk09251sRkeOReYbVS24oh8QR1mgp0Ax7Pmu/bXwmlG6Bbe93+zBFROQkqS+HFX+0niZJIy35Y90r0FRjM1bGfdXq7R+uphCaG2DCDQdLJYmISJ+gYLKInBj5y2Hj3y3oEB4HdaXWcM8JQPIoa+bUEW8N1OyDERfDqNkd11mTU9ayZcsYN24cqamprctmzZpFdXU1GzdubN1m5syZbfabNWsWy5YtO+JxvV4v1dXVbR4i0gNiB8GgqRYUAMg6x34WrAbvYf9fukOteeq2RVCW173jFBGRE6+xClb+EYpz7YZioNkCyQ0VEBYL46+3skiHqy22YPP462Do+bq+FxHpYxRMFpEvr3gzrPkL4LKstaY62PCq1daMGQgjjxAkbm6w7OUh58HYazuusyantMLCwjaBZKD1eWFhYafbVFdX09DQ0OFxH3/8cWJjY1sfGRkZJ2H0InJUhpwNoZE2rTl+iAWYHb+VNDpcZIoFmTcuAF9Ttw9VREROkKZ6WPUCFKyx0hY4sP5VK30UGgnjb+i4oXZdKTRWwJhrYPhFCiSLiPRBvSaYPH/+fHJycpg6dWpPD0VEDlW1D1a/AI3VEJcJ/mbY8LplMoTFWZDYHdJ+P58XyrZDxnSroxYc2u1D768eeOABXC5Xp4/Nmzf36BgffPBBqqqqWh/5+fk9Oh6Rfi1hKAyYADX7LSiQdWCmSeE6y047lMtlAef9a60hn4iI9D4+L3zxIuR/bs32goJtBmL1PggOg3HXW638w9WXQ32pNeMbeakCySIifVQHVfJPTfPmzWPevHlUV1cTGxvb08MREbBax6tesC7NyaNt2ea3oKbgwIXmVyEkov1+AR+UbYP0iTD5NquvLN3m/vvv5/bbb+90m6FDhx7VsdLS0li+fHmbZUVFRa3rWn62LDt0m5iYGMLDO5gaCXg8HjyeDurviUj3c7lg6LmwbxU01UJchgWMK3bCrqUw+vK224eEgycKNr8NqWNsxoqIiPQOfh+s+xvs+hjisqwe8qZ/2Dk/KATGXQdRKe33a6iA2iLIudw+F4J6Td6aiIgco14TTBaRU0xzo2UsFG+wZhyuIMj70JovudzW1Tkiof1+TgBKt0LSCJg81+qtSbdKTk4mOTn5hBxrxowZ/OQnP6G4uJiUFPtisXjxYmJiYsjJyWnd5p133mmz3+LFi5kxQ129RXqN5NGQMhoKN0DySBhyjgUWijfC4NOtVvKhYgZajc3cf8DUuxRUEBHpDQIByP07bFsMMYOsnMXWd6Fk84Hr+2vs/H64xiqbvTLyUttGpetERPo0XdmLyLEL+GH9a7BnmU19c4dCwRew90CG6shLLXPtcI4Dpdus3uaUOyDqxAQ05eTZs2cPa9asYc+ePfj9ftasWcOaNWuora0F4KKLLiInJ4dbbrmFtWvX8t577/F//+//Zd68ea2Zxd/85jfZsWMHP/jBD9i8eTNPP/00f/vb3/je977Xk29NRI5FUBBknw8urN599AC7KQgdl7NwBUHcYPuc2LeyW4cqIiLHwXFgyzs2qyQqFTwxsGOJlTTCBaOvgIQh7ffzVkP1XquPPG6OAskiIv2AgskicmwcB7b+E7YvtqBwSASU5cG2RbY+62yb1tzRfuV5EJlogeSOgs1yynnooYeYNGkSDz/8MLW1tUyaNIlJkyaxcqUFh9xuN2+99RZut5sZM2Zw8803c+utt/LYY4+1HmPIkCG8/fbbLF68mAkTJvDf//3f/OEPf2DWrFk99bZE5HikjbcmTNX77HnW2fazdCvUFLbf3hNjmWy5C60skoiInLp2LLG6yGHxNrtwz7JDEkUusVkph/PWQuUeyL4Qxl/fcZ8UERHpc1TmQkSOzZ7PYOMCa7oRFme10TYtBBxIHQeDz+h4v8o9Fng+7VZIGt6NA5Yv4/nnn+f555/vdJvMzMx2ZSwOd9555/HFF1+cwJGJSLdzh1h2cukW8DdZaYuUMVbqYufHMP6r7feJz7Tp0VvehQk3qBmTiMipaM9nsPYVu1aPSoGC1VYzGSD7AruZeLimOqjcBUPOhQk3qpm2iEg/osxkETl6xZtg7Us2fS0q1aa1rX/NggpxmTDi4o4DBdX7AQcm3gQDJnT7sEVE5ARJn2Tn++oCe551lpW0qNhhzVgPFxRsJTF2/Ms+Q0SOwvz588nJyWHq1Kk9PRSRvq9gjfVBwQUx6VC08eCMw8FnwKBp7fdpbrC6+Zlnwmm3QEhYd45YRER6mILJInJ0qvbC6j/ZdLbYweDzWiC5qQYikmDM1R3XSKsrheZa6/w8+PTuH7eIiJw4IeEw9DxoroOAz2aptGSs7fzYShodLiIR/F6b1dLc0J2jlV5q3rx55ObmsmLFip4eikjfVrwZVr8Avkarc1+2Hba8besGTj5YzuhQvkYrXZcxHSbfZp8LIiLSryiYLCJda6iAlc9DZT4kDgMcK21RVwwhkdZsI7iDjISGSqgvtYYdwy7U9GYRkb4gYxpEpx+sk5x5htVGrsqHil0d7xOXBcW5kPdhd41SREQ6U74TVj1n1+vxQy1xJHcBOAErYZQ9s/21u89rAedBU2DKXAiN7ImRn9L8AYc9ZfX8a0sxv/lXHku3lfb0kERETjjVTBaRzjU3wOo/Q8kmSBoJuGzqW/kOm748do7VTj6ctxZq9sGIS2D05Qoki4j0FZ5oGHourHnJpkR7Yqz8xb6VsOsjiM9qf84P9lhDpy3/hNSxVktZRER6RnUBrHzWStElj7QEkQ2v2YyTxGEw8tL253F/E5RtgwETYfJc+ywQAOq8PnaW1rGjpJYNBVWU1Hipb/JT5/WTGuPp6eGJiJxwCiaLyJEF/LDub5D/OSRkW/Ol/M9h/4FGaqOvgJgB7fdrbrCGHEPPs/IWHZW/EBGR3mvwDNj2PtQWQ3SaPd+/1rKVy7ZB0oj2+0SlQUku5C6E078Nbl2Gioh0u7pSWPEHq3mcNMoyk9e9YuWIYjNg9JXtr939zVC61coaTb0TwuN6YuSnDMdxKK7xsqOkjq1FNWwtqqGyvhm/4xAVGkxipIeMeDdbi2p7eqgiIieFruJFpGOOA1vege0f2IVlSDiUbIYdS2x99gUdBwv8TVC+HQZNt4Z76uwsItL3RCRA1pmw8e/WkDU00qY971kGu/5tmW2uw6qpuVwQNwT2rYI9n8KQc3pm7CIi/VVDpWUkl2yxGYfN9bDuZfsZlQpjr7XkkUMFfFC6BVJyLJAckdAjQ+9pXp+f/PJ6dpTUsaGgmoLKBmq9zbhdLmLDQ8lMjCDErSqiItI/9Jpg8vz585k/fz5+v7+nhyLSP+z+1LLHIhIhLBaq98Hmt2xd+mkwsIMO6wHfgayFCdaQQ3XURET6rswzYMe/rDZ+ZLLdRNy3GupKoHgTpI5pv09oBASHw6a3LDARmdTtwxYR6Zea6mDVCzaLJHG4XbevewW81dZMddxX2/dACfgtkJw0Aqbe1e/O2ZX1TeworSOvuJbcgmrK6rw0+QKEhbiJjwhlQGwYQV2U8nM6akwrItLL9Zpg8rx585g3bx7V1dXExsb29HBE+raijbD2ZQgKgagUy2LY8LpddCZkw7AOGnI4AQskJ42whhz9fPqbiEifF5MOGdNh63sQkQQhYfZ818eweykkj+q4zFFchjXjy/2HfV6opr6IyMnV3Gg9UPYuh4Rhtmz93+xmYGg0jL+hfRJISyA5fihMuxuiU7t/3N3MH3AoqGxgR2kdm/dXs7O0juqGZhwgJiyEAbHhhIV0Xr7PcRyKqr3sLK1jU2E1CZEhXDs5o3vegIhIN+k1wWQR6SaV+bD6T5a9kDjMLj43vHpw+lvOle2nLjuO1ciMHWSBgaiUnhm7iIh0r6yzYPcn0FhlNxEHTbFGfA0VULQBBkxov48ryD4vdn8C6RNh4GndPWoRkf7D32xJIrv+DfFDrF79+lehZr9lIo+/3mYhHqolSSRusAWSY9J7ZuzdoL7JmuftLKljfUEVxdVeGpr8hLhdxEWEMjQ5CndQ5zc9m3wB9pTX23FK62hoPjibemNB9cl+CyIi3U7BZBE5qL7cpr9VF1hGmROAjW9AfZl1bB47B9yH1UB2HKjYAeEJ1tk5bnDPjL2XCAQcXC5wKRNPRPqC+CwYMNECw+Fx9hkx+HTI+9CWpY6BoA4uN8PirAlU7kJIGm6fMSIicmIFAlbbPu+QHii5C6Fyt81AHPfV9qUrWgLJsQOttEVc38qqdRyHkhrLHN5aVMOWA83zfAGHyFA3iZGhRMS7u7xWr25oZseB4PG+igb8h5SzCHUHkZkYQViIm2snDzrZb0lEpNspmCwiprnBpr+VbLKGHLhg69tQtceCA2Ov6/jLflW+ZTWcdiskd9CQT/D5A+wuryevuJZ1e6vISIjg+ql968JcRPoplwuGnmtN9bw19jmRfhrkr7A6nAVfwKAOauwDxGXaFOqt78G4Od07bhGRvs5xrN/J5rchegB4YmDru3bedbmt2d7hGceOA6XbbDbi1LsgYUjPjP0Ea/IFyK+oZ2dJHRsKqthX0UCN10eQy0VceAgZ8RGEBnfePC/gOBRWNbKjtI5dpXWU1TW1WR8bHsKQpEiGJEUyMC4cd5CLLYU1RHkUchGRvkdnNhGxmmjr/nagjlq2dXHetdRqJ+OCnKs7Ll1RUwiOHybcbFOVpVVjs59dZXVsL6pl7d5Kimu8NDb78TYHiAnTqVdE+pCkkZCaY02dPCMtEznzTNj2T9izzEpdHD6rBeyzJioVtn8AaeN1Q1JE5ERxHDu35i6w2YPh8bBjCRSuA1ww+gqbWXL4PmXbITIRptwBidk9MPATp6q+mZ1ldWwvrrHmebVNNPoChIcEERcRStpRNM/z+vzsLrPyFbvK6mhsDrSuc7kgPTa8NYAcHxGimYci0m8ooiHS3zmOZSxsP2T6W9EGa54EMGJWx1kJdaWWdTbhBsg8o3vHfIqq8/rYUVLHlqJqNuyrprTWi8/vEOUJJiXaQ0RoMLtK63p6mCIiJ1ZQEAw9D/avs1kuIeGQNg7yP4PGSstaHjyj430jkqBkswU8zvwPCPZ048BFRPqo3Z9ag72QKEsI2fMZ5H9u60ZcDMkj227fUrYuLMbK1qWM6v4xf0mBgENBVYM1vttfzc6SOqoONM+LDgsmNTaM8C6a5wFU1je1lq8oqGwgcLB6BZ7gILISLXjcUsZCRKQ/UjBZpL/b/Qnk/gMiEq35RuVu2PKOrcs43WphHq6x0ro/51wJwy+yW/P9VFV9M9tLati8v4ZNhdVU1DURcKzj86D4cDzBusgUkX4gdZwFJ0q3WfPWILc159v8lgWV0ydZSaTDuVx2w3L/Otj5MQz/SvePXUSkL9m3Gta8ZKUsYgbYrJGd/7J1Q89v3xjVcaBiFwSHw+TbIG1sd4/4uDU02UzAHSW1bCiooqjKS12TjxB3EHHhIQxJjiQ4qPPyFf6Aw/4DQeidpXVU1De3WR8fEcLQpCiGJEUyIDaMoC6a8YmI9AcKJov0Z0UbrbuzO8SyFurLrOGeE7AGfEPObb9PUy1U74PhF9sUuX4WSHYch5JaL3nFdeQWVLGtuJaqhmZcQGxECJmJkYS4O79oFRHpc9zBlp1cvAl8XsswTsmxbLj6UshfDkPO6Xjf4DBryLf5bdsndmB3jlxEpO8oyoXVfwJ/E8QPsZkfW/9p6zJOh4zp7fep2mPfBSbfZjf+TnGBgENeSS0rdpWzaX8N5XVN+AMOEaFu4iNCGRQf3mW5iZZydDtL69hdVo/Xd7B8RZALBsYdLF8RF9FBmaYuOI5DrdeH1+c/5n1FRHoDBZNF+qvKfLvYbKq3LLKmOpsO5/NCzEAYObt9oLi50TIXhpwL46+z4EE/4DgOBVWN5BXXsmFfFbvK6qhu8OEOgviIULKTo3AfRZZCrdfHztI6IkKVrSwifVD6JKvBWV1g2cauIMg6G3L/DvtWwsApEBrR8b4x6VC8EXIXwvRvWGaziIgcvbI8WPU8NFZB4nCbbbjpTcCxmYYdJYlU7bWfk26GQVO6cbDHzh9w2LS/mk/zSsktqMbrCxAXHsLghK6b5zmOQ0V9MztL69hRWsv+ykYOqV5BeIibrMQIhiRFMjgx4rhmFjb7A1TWN1PV0IQ/AJEeNznpsWQnRx3zsURETnX9IxIkIm3Vl9vFZnWBZSAHfLDhdbv4DIuDMddahsKh/E1Qtg0ypsKkr/X5upb+gEN+eT3bi2tZt6+SfRUN1Hr9hAa7SIgIJTWm66YdAFUNzeQV17K9pJb9VY0ANCpLQUT6omAPZJ8PK/4A/mb7HEkaAVFpUFsI+csg+8KO93W5IC4L9q6woHTmEWosi4hIe1V7YeWzUFtk592a/XZt7/jtWr+jsnTVBRBotkDyKXzObfYH2LCviqXbS9laWIPfcUiLCSM6LKTT/fwBh32VB8tXVDW0LV+RGBXKkAP1j4+mGd/hHMehrslPZX0TdV4/7iAXseEhTB2SwIjUaIYkRZIarbIYItI3KZgs0t801cPqP9u0t6SRgMtqWtYU2FTjcde1zxwL+KB0qzVUmnw7hEb2xMhPuiZfgF0Huj6v3VtFUVUjDU1+wkPdxEeGMjCu62lzjuNQXtfE9pJa8orrKKn1tlkfHxFCZsIRMvNERHq7gVNg63tQUwhxGRa8GHKOzXzZtxoGTQNPdMf7eqKgLgQ2/cPqL0ckdO/YRUR6o9oSWPEsVO6xa/v6MjvnBppttsioy2ymyKFqCq1h6sQbbAbJKaix2c/a/Er+vb2UXaV1uIC02DAiQo8cwqhv8rGrrJ6dpXXsKaunyX+wfIXb5WJQQnhrADkmvPNgdEd8/gCVDc1UNTTj8weICA0mJcbD+SNjGZIcSVZiJJEehVhEpO/TmU6kP/H7YN3fYO9ySMi2rLG8JVC6xZp0jLnGGvEdyglYIDlxGEy5A8Lje2bsJ0lDk5+8klq2Fdeyfm8lJTVemv0BIj3BJEV5iAh1H1UAuajG25qBXHlI4w7Xgbprw5KjyE6OorTWy5j0mJP9tkREeoYnymonr/4TBNKtXEX8EIgZBNV7YfenMGLWkfePGwzFubD5HZsF08/q8ouZP38+8+fPx+/XTB6RTjVUWEZy6RbLQG6qgXWvgK8RotPt2j7osK/8tcW23bjrbLbIKXaerfP6WL2ngqXbS8kvqyfYHcTAuHDCQtqXnnAch7K6JnaU1rGrtK51FmCLiFB3a+3jjPiuy2F0dPz6Jj+V9c3Ueq3EXUx4CBMz4hiVFkNWUgQDYsOPqtydiEhfomCySH/hONbcaMeHEDsYQsKh4AvY+7mtH3mpfYk/fJ/yPIgeAFPmQnRq94/7JKhutNITWwpr2FhQbY07HIeYsGDSj3CxeriA41BQ2UBecR3bS2qp9fpa17ldLgYnRpCdHMnQpCjCD6mRXHpYprKISJ+TMc2yk2uLIWbAwezktS9B4VprABUe1/G+QW6IHQQ7P4L0CTYjRvqdefPmMW/ePKqrq4mNje3p4Yicmry1VraucJ2VtvB5LZDcVAsRSRYsdh/WPK6uFBorYOy1MOLiUyqQXFXfzKo95SzdVkpBZSPhoW4yEyPbBYAdx6GgspGtRTXsLKujptHXZn1ytKc1gJwa7ekyKeRwvkCA6gYflfVNNPsDhIe6SYrycNbwJLKTo8hKiuiyxIaISF+nYLJIf7FrqU0djkiCsBhr0rFtka3LOhtSx7Tfp2oPhETCabfaNLleqrX0RHEtmwtr2FxYTVV9Mw4Qe5SNO+BAHeUKq6O8o6SOhuaDGVMhbhdZiZEMS4ki8zgbd4iI9Anh8fa5suE1iE47UA95sGUoV+yE3Utt2nVn+9eVwMYFkDC0z5ZWEhE5bs2N8MWfYe9Kmz3oBGD9K5apHBYL46+3xJFDNVRAfSnkXNlxo+0eUlrrZcXOcpbtKKOoupFoTwjZyZEEu9sHkXeW1rFiVwWF1QczkN1BLgYnRDAkMfK4Ar2O49DQfDD72IVlH48dGMuoATEMSYwkPS6s3XhERPqzXhNM1nQ3kS+hcINlKrg9EJlszTk2LQQcSB0Hg89ov09NoV2YTrwJ0sZ2+5C/LMdxKKr2sr24lg0FVewsqaWqwYc7yEVcRAhDktpfpHak2R9gd1k920tq2VlS16b2mic4iKHJkQxLjmJwQoQuMkVEWmSeAXkfWlA4KsWWZZ1jweSijZBxOkQmHXn/+Cyr7b/tfRhzZbcMWUSkV/A3w9q/WqJI/BArVbf+FZsNEhIJ429oX5u+odKu7UdfZsHkoJ6/Zt1f1cDnO8r5fGcZ5bVNxEWEMjwlul3JiEDAYWtRDSt3V1BW1wRYAHlkajTZKVa+IuQYr8H9AYfqxmYq65vx+vyEhbhJjvIwIzvRso8TI4mNUPaxiMiR9Jpgsqa7iRynyj2WudBUb5kL3mpY/xr4myAus+MpbvXltt3462Hw6T0z7uPgDzjsq2ggr6SWdXsryS+vp9brJ9jtIiEylOFH2VHZ2+xnZ6mVr9hdVo8v4LSuiwx1k50cRXZKFAPjVCNNRKRD0an2+bHlHbuJ6XJZyYvE4VC2DXb9G8ZcfeT93aG23/bFMGCcZSiLiPR3Ab9dx+d9aDM+gsNg4xtQtdeSRsZ/tX1/k8Zqa7Q94uIDNZR7bvac4zjklzfwaV4pq/dUUNXQTEJkKCPSogk67PuIzx9g4/5qVu+uoPpAKYtQdxDjBsUyKSPumBvdWfZxU2tZjJiwYEamRZOTbtnHA+PDjzkoLSLSX/WaYLKIHIf6clj5PFQXWFMOf5NdgDbVWKO9MVe3v6D01kJtIYy+HIZfdMpMgetMsz/Aur2VfLS1hPzyBuqbfIQFu0mIDCU9LvyoaqXVeX3sKK0jr7iW/Ip6DokfExMWzLAUa6A3IDbsmGuvgV0QV9Q3U+P1HVVAW0Sk18s6yzLnGiogIsGWDTnHgsmlWyxLLjrtyPtHpkDJJit3ccZ3rGmsiEh/5Tiw6U3Y+k/rZxIaDZvfsv4mQcEwbg5EHdbfxFtjZeuGfcUCze6e+frvOA55JbV8sr2MdXsrqfX6SI7yMDI1ut11tdfnZ93eKtbkV1LfZLOSw0PcTBwcx4SBsXiOorcJWEZzS/Zxo8+PJziIxEgPU7MSyE6JYkhiJHERIcd1XS8i0t8pmCzSVzXVw+oX7At70khbtmkh1BVDSIQ15QgOa7uPrxEqd8HQ8yDnqlNiClxnmv0B1u+r4qMtJWwvriEoyEVKdBgZ8UcXQG5pxLe9pJaCyrbdnxMjQ8lOjmJYShRJUaHHdaHZ5AtQUd9EVUMzuCAhIpQLRqUwfUjCMR9LRKTXiRsMAydbM72WYHJkMqSMgeKNlp087roj7+9y2RTu/Wts2+wLumXYIiKnHMexXie5Cy0hJCzOZm4UbwRXEORcDbEZbfdpqoPK3XZdP/HGHrkh5w84bC6s5tPtZWwsqMLrC5AS7WFgB8ke9U0+1uRXsnZvFU0+KysXHRbM5MHx5KTHHFXWsLfZT0VDM9UNza37Z6dEMSY9hqwkK4lxNH1SRESkcwomi/RFfp/VSN67EhKGWbbC9kVQvsN+HzvHLkLb7NMMZdvti//EmyA4tMNDnwp8B4LIH28tYVtxLS5gUHwEYUeRqVBR18T2klq2F9dSXONtsy41xmMB5OQo4iOP7/17fX7K65qobvThdrlIjArl3BHJjB4QQ3ZKFFHHOCVPRKTXcrksEzn/c5tmHRZjy7POguJcy6ar2guxg458jJBwCImCzW9bEDo69cjbioj0VbuW2uxCT4zdlNv1byhYbetGzobE7LbbNzdYjfqss2DSzRDs6dbhNvsDbCyoZum2UrYUVuMPOKTFhnXYHK+6oZnVeyrYUGDbgSVgTMmKZ0Rq+xrKhwo4DjWNPirrm2hs9hPiDiIhMpRJI5IZlhJFVlIkiZHHlxQiIiJHpqiGSF/jODblLW8JxA6GkDD7Il/wha0ffTnEpB+2TwDKtkLyaJh8O4RGdvuwj4bvwIXpR1tL2FJYg8sFA+PCOw0iO45DSa2XvGKrgVx+oHEHgAtIjwtnWEoUQ5MjiTnG7s8tGpsPBpBD3C6SozxMH5LAyLQYspOjCA/tudp0IiI9Kmk4pI2DfasOBpPD42HAeNi/1rKWJ9zUeUml2IEWfM5dCFPvOuVnzYiInFB7V1rDvaAQKw20dyXs/sTWDfsKpI5pu31zo92sGzwDTrvVbsp1k8ZmK1GxdFsJeSV1uIC02LAO6xuX1XpZtbuCLUU1reXlUmOsDMXQpMhOA8DVjc0UVXsJBByiw4LJTIxk7MBYhiRFkJEQgSdY194iIieTgskifc2upVZPLTLJvriXbIYdS2xd9gUHS160cByrXxmbAVPmHpyKfArxBxxyC6r519ZithTWABZEPlKQ1nEc9lc1sr2klrzi2tamHQBBLshIiGBYsgWQI0KP/TToOA4NBwLItV4fnuAgUqLDOHt4EsNToxmSFHlUWdIiIn2ey2VTrAvWWPml0AhbPvhMKNwAVflQsQsShnRyjCC7OZr/GaRPgoyp3TBwEZFTQOEGWP0nm3UYnwVFGyDvfVuXeZbNKDyUzwvl22HQFJh8W7cliNR5fXyxp5Kl20vYU1ZPsNvFoPiOEz4KqxpZubucvJK61mUZCeFMzUxgUCel6hzHobrRR1F1I57gIE4bHMf4QXFkJUWQHOVR9rGISDdSMFmkLylcb+Ut3B6bAlddYFnKAOmnwcAOvoBX7LQssclzLfvrFOIPOGzaX81HW0rYXFhNwIH0uLAOA8D+gMPeinrySurIK6ltbdgBEBzkIjMxgmEHmm0cbeOOQzmOQ12TBZDrm3yEhbhJiwnjwtEpDE+JJjMxUjXYREQ6kjoGUkZB8WbLVAa72Zk+CfathF0fW5Cks0BAWAzUlVh2cvIICIvtlqGLiPSYsjxY9Tw01VrZuvI8K/kDFkTOPLPt9v4mSxBJn2jX9Z7okz7EqoZmVu+u4N/bSiiobCQsJKjDa2LHccivaGDFrnL2VjS0Ls9OjmRKVgJpMWGHH7rNvpUNzRTXNBIREszpQxM5c1gS2cmdZy+LiMjJo2CySF9RsRtW/xma6+2Cs6ESNrwGAR8kZMOwme2/qFfvsxrKE2+2L+eniEDAYXNhDR9tLSa3oOsg8qbCapbvLKfmkAzk0OAghiZFkp0cRWZixFE17Tic4zjUen2U1zXR0OwnItTNgNhwJgyKZXhqNIMTIgg+juOKiPQrQW7LTi7aaI1eW5q/Dp5hpS5q9lsAJKmLz6H4TJtts/ldmHB958FnEZHerDIfVvzBbqIljbRZHLkLAMfqx2cfdl3vb4bSrZA2HqbcCeFxJ3V4ZbVeVuwq59O8MoqqG4nyBJOdHNnuuthxHPJK6lixq7y1V0mQC0amRTMlM4GETnqUOI5DRb0FkaM9wZw1LJmzhiWRmRihILKISA9TMFmkL6grg1Uv2Bfy5FE2xW3DqxZYjkqFnCttmnCbfUqtOcekr8GgyR0ft5sFAg5bimr4aGsJuQVV+AIO6bHhHdZZawk4L99VTtWBjs3hIW6ykyMZlhLFoPiITht2HEnLFLryuiaafH4iPMEMToy0AHJKNAPjw4/ruCIi/dqAiZAw1BruJQy1ZaGRMHAK5C+zZlKJwzsPEAcFQ/QAK92UPgFSRnfL0EVEulVNEaz4o50vk0dBbRFseN0SRBKHwchL254rAz4o3WLnxKl3ntSSdYVVjXy+s4zPdpRRXtdEbHgIw1PaN8nzBxy2FNawcnc5FfV2nR4c5GJMegynZcZ32qfEcRzK6poorfUSGx7C+SNTOHNYUqclMEREpHspmCzS2zXVwxd/sovI5FFWAzn3Dagvs+ltY+eA+7C7/o1VUF8KY66Goef3zLgP4TgOW4tq+WhrMRv3VdPsDzAgLpyoIwSRtxTV8PnOtkHkKVnxjB8Ye1yZwgHHoaqhmYq6Jpr9DlFhwQxLiWL8gQzkATFhBCmALCJy/IJDIft8WP57y6BzHwgkZEyHgtWWfVeyCVJyOj9ORKLdDN24wEpjdGNjKRGRk66+HFY+a7M1kkfZTMP1fwO/1/qbjL7SZnu0CPjtO0DSCJh6t/VMOcEcx2FvRQPLdpSxclc5VfXNJESGMiIlut31cfOBZtmrdldQ67UZg6HBQUwYFMvEjLhOe5UEHIey2ibKar3ERYRwUU4qM7KTSI/TeV5E5FSjYLJIb+b3WY3kvSuttIXLDVvehso9FkAee137emnN9TZVbvhFMOqyHp0m7DgO24tr+WhrCev3VdHsCzAgNpyosA6CyI7D1gNB5Mr6g0HkyZnxjB8Ue8xlLPyBAwHk+iZ8foeY8GBGp8cwfmAcw1KiSI1RIw+An/zkJ7z99tusWbOG0NBQKisr223T0d/pr3/9KzfccEPr83/961/cd999bNy4kYyMDP7v//2/3H777Sdx5CJyyhk4BeL+CTUFEJdpy0LCIGOaZSbv+rcFTw6fSXO4+Cwo3gh5S2DUpSd92CIi3cJbAyufsyZ7SSPsmn3dywdnGo699uCNODgQSN4M8UNg6l0QnXpCh9NSouLTvFLW5VdS4/WRHOVhZFp0u2u/xmY/6/ZWsSa/koZm61sSEepm0uA4xg2MxRN85H4lgYBDSa2X8romEiNDuXT8AE4fmkhqJ3WURUSkZymYLNJbOY4118tbAnGD7Qv5rqV2AYoLcq6CqJS2+/iboHyH1akcfz24e+YU0HJx+vHWYtbtrcLrCzAgNozoDqa8OY7DtuJaPt9RTnl9EwBhwUEHgshxx9T0zhcIUFnfTEV9MwHHIS48hIkZcYxJj2VYShRJUaEKIB+mqamJ6667jhkzZvDHP/7xiNs999xzXHzxxa3P4+LiWn/fuXMns2fP5pvf/CZ/+ctf+OCDD7jrrrsYMGAAs2bNOpnDF5FTSWiEzYZZ9bwFQVqy6wZOsUZ8DRXWSHbAhM6PE+yBsATY+i6kjbXPQBGR3qy5AVb/CfatskalAT+s+xt4q61R9rivHqw3D+AErEZy3GCYdvcJbaLdMgtw6bZScvdX0dAcIDXaQ3pc+zITdV4fX+ypZP2+Kpr8AQBiwoKZnBlPzoCYTmcM+gMOxTWNVNY3kxzt4cqJ6UwfmkhSlOeEvRcRETk5FEwW6a12/Rs2vQmRyeCJsSDy7qW2bvisgzUpWwT8BxtznHaLBZ+7meM47Cit499bS1i7t4rGZj9psWEd1k1ryVr+fGc5ZXUWRPYEB3FaZjwTjyGI7PMHqKi3DGSAuIgQpg9JICc9hmHJUcR30vhD4NFHHwXg+eef73S7uLg40tLSOlz329/+liFDhvDf//3fAIwePZqlS5fy5JNPKpgs0t8Mmgpb34PaQog5EPwI9kDGDNjxIez+BFLHWH3kzkSnQUmulbs4/ds9dnNURORL8zXBmpdg96fWNBsXrH/FStKFRsP4G6zGfAvHsTIYMQMsI/kE3lArrmnk7XX7+WJPBT6/Q2psGIM7uE6vamhm1e4KcvdX4w84ACRGhjIlK77D8hdt3m4gQFG1l5rGZlJjwrj2tBSmDUnUNbmISC+iK2+R3mj/Olj7in0Bj0yyshZb3rF1GdMhfWLb7VuyFxKHweTbISy2W4frOA67yur5eGsJa/MrqW/2MyAmjJiEiA63zSup4/OdZZTWWgA4NDiI0wbHMTEjrtNpci2afAEq6puoamjG5YKEiFDOGpbEqAExDEuJIjb8yE0/5PjMmzePu+66i6FDh/LNb36TuXPntmavLFu2jJkzZ7bZftasWXz3u9/tgZGKSI8Kj4Mh51iJpugBB0tapE+CvcstC2//GstW7ozLBXFZlsW3ZxkMOfskD1xE5CQI+GH9q9ZYNC7T6suvf9WaageH2UzCQ6/bWwLJEUkWSD48eeQ4+QMOK3aV8+76/RRWNTIoPqLDsnOltV5W7qpga1ENzoFlA2LDmJIVz5DEyE5n+Pn8AQqrG6nzWjLJxWNSmZqVSGyErstFRHobBZNFepuK3fDFi+BrtOyF+jLY+IYFjJNHwZDz2m7vOFbaIjoVJt92wuupdcZxHPaUWxD5i/xK6rw+BsSGd9iN2XEcdpbW8dnOckpqvACEuoOYNDiOSRlxeEI6DyL7Aw4lNV6qGptxu1wkRoVy/qgURqZGk50S1WEzPzkxHnvsMS644AIiIiJYtGgR3/72t6mtreXee+8FoLCwkNTUtv/uUlNTqa6upqGhgfDw9o1VvF4vXq+39Xl1dfXJfRMi0n0Gz4Dt71vTvagD5wZ3CGSeCdveg93LbBbN4c1jDxcaacGWTW9aNnNEwskfu4jIiRIIQO4/bLZG9EA7p+UuhMrdEBRipS0ObajnOFCeZzflpt5p5TBOgNJaL2+tK2DlrgpC3UGMSG2fWVxQ2cDK3RXsLK1rXZaZEMHUrATS48I6DSI3+wPsr2qkoclPelwYl09IZ3JmfIfl7UREpHdQdEWkN6krs1qTNfstcNxcb9kLvkabLjxydvuGelX5EBIBp916wrIXutLS9fnjbSWsPtDNOS0mjEEd1FpryVr+bEcZxQeCyCFuFxMz4jhtcDxhRxFELq5ppKq+mZSYMC7KSWVEajTZyVGEh3adxdwfPfDAA/zXf/1Xp9ts2rSJUaNGHdXx/t//+3+tv0+aNIm6ujp+8YtftAaTj8fjjz/eWmJDRPqYqGQYfAZsfhMiUw5+bqWNh/zPobES9q2Gwad3fay4wVCyyWotDz33pA5bROSEcRy7ebZpoZWsC4u1OvClW6yh9thrISa97fblOyzgPHkupIz+0kMIBBxW7q7gnfX7KahsIOOwbGTHcdhdXs/KXRXsq2xoXT48JYopmfGkdNEgr8kXYH9VA15fgEHx4Zw7IoVJg+OIVIKHiEivpzO5SG/RVAerX7ByFcmjbFrchtftS3dYHIw5rMMzQG0RBHww6WZIG9ctw8wvr+eT7aWs3F1BTaOP1BgPA48QRN5TXs9nO8oprG4ELIg8YZAFkbsKBLcGkRus3trMyalMH6Kpckfj/vvv5/bbb+90m6FDj//Gw/Tp0/nRj36E1+vF4/GQlpZGUVFRm22KioqIiYnpMCsZ4MEHH+S+++5rfV5dXU1GRsZxj0lETjFZZ1rt/4ZyiEi0ZUFuyDrLmsvmf2Ylm4K7qO/vCoKgUNi/VsFkEek9dn5s1/GeWMs+3rEECtcBLhh9BcRnHdzWcSxbOSTMytUNGP+lX76s1svb6/ezfGc5Ie4gRh6SjRw40Ldk5e6K1tmCQS4YPSCGyZnxxEd0PmvE2+ynoKoRnz9AZlIEZw9PZlJG19f2IiLSeyiYLNIb+H1WI3nfSkgcbhkLmxZATYF90R53HYQeVn+4ocICzeO+CplnnPQh7qts4N9bS1i1u4LqxmZSo8NIj20/7c1xHPIrGvhsRxn7qyyIHBx0IIicGUdEaOenpdbOzw32GteclsrpCiIfk+TkZJKTk0/a8desWUN8fDwej3XjnjFjBu+8806bbRYvXsyMGTOOeAyPx9O6v4j0QXEZMGgKbP8AwhMOZien5MCez6zx1N4VkHUUtZAjEqB0G9SVtp0SLiJyKspfAWtfBrfHmonu+cxmZQCMuBiSR7bdvirfbpyddisMPO1LvXQg4LB6j2Uj761oYFB8eJtyE7vL6vjX1hIq65sBu0YfNzCWSYPjuixL0djsp6CyAb/jMDQpinNGJDN+UGyXswxFRKT36TXB5Pnz5zN//nz8fn9PD0WkezmO1YNsbcwRBnlLDkyDC4Ix1xzM6mrRVGuB5pGz7aK0kzpmX9b+qgaWbitlxa7y1lITAzoIIoNlLX+2o4yCA0Fkd5CL8YNimTw4vsspby01kSsbmkiJDuPa01KZPiSBuC6yI+TL2bNnD+Xl5ezZswe/38+aNWsAGDZsGP8/e/cd33S5/n/8lXSmK917U0qZpUwBFVAUHCgqOM8BnMdz9Hdc6PF8PSqO4ziKx4VHjx5BPXpA3BNFFAciu2WUUQpt6d4jaZM0yef3x03ThrZQoOzr+Xj0AUk+406h6SfvXPd1BwQE8Pnnn1NRUcEZZ5yBr68vy5Yt44knnmDOnDmuY9x66628/PLL3Hfffdxwww18//33vP/++3z55ZfH6VkJIU4IyWepxfOsje0LTOn0qjo59xMVJscNV62aDsQ3WP1OrN4pYbIQ4sRWvhk2vK3WOglOVLMq9qxQj6VOhJhM9+0bStS2w2ZCwqgjOnWt2cZXm8tYvbsGD72O9KhAPPZVI1vtDn7Jq2ZLqVqjwsdTz9CEYDITgjEcJAxuttkpa7CgaZAWqULkwXFGvD31RzReIYQQJ66TJky+7bbbuO2222hsbMRoNB58ByFOFXt+au8r6RMEpRuheF/1Qr8L1YVoR3YL1BVAynjVb01/dC7kyhssrNxVxeo9tdQ3txIZ6EO/6MAuQ+SSfZXIxfv6rXnsq3IYkXTwENnp1KhsslLXbCMyyIfLs+IYnRomIfIx8tBDD/HWW2+5bmdlZQHwww8/MGHCBLy8vJg/fz533XUXmqaRlpbGc889x8033+zaJyUlhS+//JK77rqLF154gfj4eN544w0mT558zJ+PEOIEEtZnX5/kNe1hMkB4P7Uwn6lCVez1OefAx9F7qBk75ZuPyUwcIYQ4LNW71Nonrc1qEe2q7bBzqXos4QxIGO2+fVMZOKww9Nojem1zOjU27q3nq82l7K1tIS7EQNB+1cjfbavEZLUDkBlvZGyf8IOGwWarCpH1OugXFcjZ6REMjA3C00NCZNEzjZZWLLZjVyzo6+3h9n//dLZ9+3Zmz55NdnY2GRkZroKhE1lBQQEpKSls3LiRoUOHHu/hnPZOmjBZiNNS2SbY9D54GlS1Ve1uyPtWPZZ0JkQNct/e0Qo1u1Ql19BrwbP3A9fKRgsrd1Xz255a6sw2IgJ9yOgmRC6tVyHy3rp9IbJOx6C4IEYkhbot8NGVTiHysDhGp4QR4i8h8rG0cOFCFi5c2O3jU6ZMYcqUKQc9zoQJE9i4cWMvjkwIcdLT6SB1gvqQ1GZWC0u13Z98NmxZAqUbIH4k+AQe+Fh+oVCRCy31YAg+ygMXQohDVL8X1v1HLaYdnq4KP7Z9DmiqGjllv57vpgo10zDzGvU6eZizDOubbXy5uYzf8mvQH6Qa2WjwYlL/SOJDDjwbpMnSSnmDBU8PHQPjgji7bwT9Y4JcxxWiJxotrby0PI9as+2YnTPU35v/d27fQwqUJ0yYwNChQ3n++efd7l+4cCF33nkn9fX1PTpOcnIyd955J3feeWfPB3wUPfzww/j7+7Njxw4CAgKO93DESUjCZCFOVHUFahqc3aKqF0wVatovmgqRk8a5b6859y3O1w+GzQKf3v2lUNVk5df8albl11BnthEW0H2IXNbQwm+7aymqbQbUoh0DY42MTA45aL81p1Oj0mSlzmwjMtCHy7LiOCNVQmQhhDglRfZXXxVbVcDSJjQVguKhsRiKfoW+B5nJYAhRfZOr8yBh5NEdszjqpL2dOKWYqmDdm9BQrBbRbiqDrR+B5lAzMfpOdg+LzVVgaYDB0yFt0mEFyZqmkb23ni83lVFU20xcsIEgw4GrkcelheN1gKrixpZWyhsteHvqyUoM4cy+4W4L9wlxKCw2B7VmGz6eHvgdg8UZm/edz2JznLDVyQ6HA51Oh/4ozSzuKD8/n4suuoikpKTDPobNZsPbW96jn65kDooQJyJzDax/SwXIoamqMmHzB+CwqbYW6Re4X1hqmnoDHZwAI24A/7Duj32IbHYn3+WW89yyHXy5qQy9Tke/6EAiAn06BcnljRY+yS7h/XXFFNU2o9fBoNggZo1J5pyMyAMGyU6nRnmjhR0VTXjqdUwbGsfd5/fjgsExEiQLIcSpSu+h+oRqTmi1tN+v00HK2ervZTmq4viAx/EEHSqUFie92267jdzcXNauXXu8hyLEkWmpV0Fy9U71gVlzDWx+H5ytEJIM/aeqXvFtmmvU14Bpna/3e6ihuZXFa/eyYOUeqkxW0qMCXUGy1e5g+bYKPskuxWS1YzR4ccWwOCb0i+wySNY0jfpmGzsqmqhvaWVkSii3T0zjprNS6B8TJEGyOGJ+3h74+3ge9a+jGVjPnj2badOm8eyzzxITE0NYWBi33XYbra1qIcsJEyZQWFjIXXfdhU6nc72HXrhwIcHBwXz22WcMGDAAHx8fioqKWLt2Leeddx7h4eEYjUbGjx/Phg0b3M6p0+l44403uOyyy/Dz86Nv37589tlnrsfr6uq47rrriIiIwGAw0LdvXxYsWODad/369Tz66KPodDrmzp0LwObNmznnnHMwGAyEhYVxyy23YDKZOj3Pv//978TGxtKvXz8KCgrQ6XS8//77nHXWWRgMBkaOHMnOnTtZu3YtI0aMICAggAsuuICqqiq35/DGG2/Qv39/fH19ycjI4JVXXnF7fM2aNWRlZeHr68uIESNklusJRiqThTjR2Myw4a19VcYZqnXFliVga1IL7Q28XL357qiuQE3rHT4bjPG9NpSKRgsfbywhZ289Qb5e9IsORN/FRW1lo4Xf9tSyp9oMqOve/tFBjEoJxWg4SCWyphbWq93XMmPa0DjO6BNGqATIQghxeogZAmF9oW4PhKW13x+cqMKWugIo/AUyLj7wcXxDoHwTWE29PjtHCCEOmc2sikPKc1QFss0EmxarWYeBsfuu6Tu8HW+pA1MlDLhEhcyHWJ2oaRqbihv4YlMphTXNxAYb3K7DC2vMLN9eSZPl4NXIKkRupaLJSoCPB2P7hHFmWjgp4f5dzkoU4nT3ww8/EBMTww8//MCuXbu46qqrGDp0KDfffDMfffQRmZmZ3HLLLW7rygA0Nzfz9NNP88YbbxAWFkZkZCS7d+9m1qxZvPTSS2iaxrx587jwwgvJy8sjMLC97dcjjzzCP/7xD5555hleeuklrrvuOgoLCwkNDeXBBx8kNzeXr7/+mvDwcHbt2kVLi2o9WVZWxqRJk5gyZQpz5swhICAAs9nM5MmTGTNmDGvXrqWyspKbbrqJ22+/3a3l4fLlywkKCmLZsmVuz+Phhx/m+eefJzExkRtuuIFrr72WwMBAXnjhBfz8/Ljyyit56KGH+Ne//gXAu+++y0MPPcTLL79MVlYWGzdu5Oabb8bf359Zs2ZhMpm4+OKLOe+88/jvf//Lnj17uOOOO47Sv544HBImC3EicbRCziIoWa/eUOv0sO1jdWHp5QeDZ4Cnr/s+jaXqYjPrd6rFRS9wOjXWFdbxxaZSKhosJIX5Y+ji09yqJiur99SQX7UvRAYyYgIZlRx60AXy9g+RLx0ay5g+4RIiCyHE6cbDC/pMhNU71Qwcjw6/B5LPVmFyxVa1QJV/ePfH8QuD2nyoyYPYrKM+bCGE6JbdBtnvQfEaCE1T1/ibFqtA2S9cXdN3fK2zNKj2F/0uhIGXHXKQ3NDSyjdby1m5qxpN0+gbFYDnvmMcam/k+mYb5Q0WggxejE8PZ1xaOImhfhIiC3EAISEhvPzyy3h4eJCRkcFFF13E8uXLufnmmwkNDcXDw4PAwECio6Pd9mttbeWVV14hMzPTdd8557gvPPzvf/+b4OBgfvzxRy6+uP2D9dmzZ3PNNdcA8MQTT/Diiy+yZs0apkyZQlFREVlZWYwYMQJQPZvbREdH4+npSUBAgGs8r7/+OhaLhbfffht/f7WGxcsvv8zUqVN5+umniYqKAsDf35833njD1d6ioKAAgDlz5rgWV7/jjju45pprWL58OePGqdacN954o1so/fDDDzNv3jwuv/xyQC3Ynpuby2uvvcasWbN47733cDqd/Oc//8HX15eBAwdSXFzMH//4x0P8lxFHi4TJQpwoNE0txLF7BQQngYcP7Fqm3hjrPWHQdPANdt/HXA2tZhh6HcSP6JVhNLS08uWmUn7Nr8HLQ096F9XI1SYrq3fXsquqfdpLRnQgo1JCCTmEEDk8wIdLMmMZ0yeMsACfXhm/EEKIk1DcMFWJ3FiqqpHbBMWqquWaPFWdPGBa98fw8FLtMipyJUwWQhw/TgdsXgJ7foTgZFUcsmmRqjz2CYIhV4GXoX17a6Pqp9z3fNUnef8ZiAegaRpbShr5YnMpe6rMxBh93Qo6DqUa2e5wUljbjKdex8SMSM7sG37QxfiEEMrAgQPx8Gj/2Y2JiWHz5s0H3c/b25shQ4a43VdRUcHf/vY3VqxYQWVlJQ6Hg+bmZoqKity267ifv78/QUFBVFZWAvDHP/6RK664gg0bNnD++eczbdo0xo4d2+04tm3bRmZmpitIBhg3bhxOp5MdO3a4wuTBgwd32Se541g6btvxvraxmc1m8vPzufHGG90qte12O0aj0TWeIUOG4OvbXkg3ZsyYbscvjj0Jk4U4Uez5EbZ/Af6RatX6vWvUKvagproFxbpvb2lUC3QMnAZ9zul0uMOxrayRT7NL2F1l7rRQB0CNycrqPbXkVbaHyOlRAYxOOXhbCqemUd1kpaZDiHxGnzDCJUQWQgjhZYA+E2DdQnDa3ad+J5+lwuSq7dBUDoHR3R1Ffehalg2DrgAv3+63E0KIo0HTIPcz2PkNBMap16HNS9Q6KF4GGHK1us5vYzNBfRH0ORcyr1YfivVQo6WVb7eW80teNQ5No29kAJ4eh1eNXGu2UdFkoU+EPxcPiWVATJBUIgsBBAUF0dDQ0On++vp6V/AJ4OXl/rOr0+lwOp0HPb7BYOj0szZr1ixqamp44YUXSEpKwsfHhzFjxmCz2dy2O9A5L7jgAgoLC/nqq69YtmwZ5557LrfddhvPPvvsQcd0IB3D5u7G0vZ89r+vbWxtfZhff/11Ro8e7XacjoG8OLFJmCzEiaAsBza9D54GNYW3egfs/l49lnqO6rPWUWsLNBRB2nnQ/5LDWpyjI0urWoxj+fZKbHan28UoQJ3Zxm97athZ0R4i940MYHRK6EErijuGyGEB3hIiCyGE6Fr8KNj5rQqMO/b/D4iEyAFQmQsFP6vp4d3xC4P6AqjZBdGDjvqQhRDCRdMgbxls+wz8I8A3SP29vlC1tBh8JfiFtm9va1a94lMmwNBrwbNnrd40TWNraSNfbCpld5WZaKOv28zAQ6lGbnU4KaxpxsdTzwUDozlvYDQBPhIRCNGmX79+fPvtt53u37BhA+np6T0+jre3Nw6Ho0fbrly5kldeeYULL7wQgL1791JdXd3jc7WJiIhg1qxZzJo1i7POOot777232zC5f//+LFy4ELPZ7AqMV65ciV6vp1+/3mml2SYqKorY2Fh2797Ndddd1+143nnnHSwWi6s6+bfffuvVcYgjI78phDjeavfAhnfAboXQPmqK77bP1WOxwyB+pPv2DptqfZE4BjKvAo8j+zHeW9vMJ9klbC1pICzAh4QOFQtOp8baglpWF9Siaeq+PhH+jE4JIyKwByGyyUqNSYXIFw+JZWyahMhCCCG64RsEKWdDzv/UbBxdh+Aj6Uyo3KZ+/zWUgDGu62N4+qjK5qptEiYLIY6twl9hyweqlYVfmGpXV7VdvZYNvBwCY9q3bW2But3qtS3rdz2eSWGy2vlmSxm/7Kqm1XH41ciaplFjtlFtstI3MpCLM2PoFxUo1cjimGu29SxgPV7n+eMf/8jLL7/Mn//8Z2666SZ8fHz48ssv+d///sfnn3/e4+MkJyfz008/cfXVV+Pj40N4ePdrQPTt25d33nmHESNG0NjYyL333ovBYOh2+6489NBDDB8+nIEDB2K1Wvniiy/o379/t9tfd911PPzww8yaNYu5c+dSVVXF//t//4/f//73rrYVvemRRx7hz3/+M0ajkSlTpmC1Wlm3bh11dXXcfffdXHvttTzwwAPcfPPN/PWvf6WgoOCIq6pF75IwWYjjyVytVnk2VUBEhlp8Y8sH6o1waB9Im+Redex0QPVOiBq878Lz0H6pdORwaqzKr+GrzWXUNttIDvPHx6t9WknbQh5lDRYAUsL9GZN68BBZ0zSqTeriNMxfhchj+hx8PyGEEILEMbDrO7XwbMd2Fn6hED0EynOg4EfIvLb7Y/gYoXQj9L+0x5V+QghxREo3qgX3dB7qtavgl/Z2dRlT3XvB2y1Qu0stKjpsJngfvC+xpmlsK2vii02l7KoyER3oS4j/4VUj2+xOCmvNGLw8uHhILOf2j8TPW2IBcWz5ensQ6u9NrdmG1X5sAuVQf298u1hU/kBSU1P56aefeOCBB5g0aRI2m42MjAyWLFnClClTenycRx99lD/84Q/06dMHq9WK1lap1YX//Oc/3HLLLQwbNoyEhASeeOIJ5syZc0jj9vb2doWwBoOBs846i0WLFnW7vZ+fH9988w133HEHI0eOxM/PjyuuuILnnnvukM7bUzfddBN+fn4888wz3Hvvvfj7+zN48GDuvPNOAAICAvj888+59dZbycrKYsCAATz99NNcccUVR2U84tDptAP9Lz4BNTY2YjQaaWhoICgo6HgPR4jDZzXB6lfVxWdEBjjskP0ONNeoKb1Df+e+yrOmqfYXwYkw5rYD94w8iBqTlc9zSllTUIuftyexRl9XJYKmaWwvb2LFjipsDifeHnomZkSQEX3gn7eOIXKovzdj+oQxpk8YkYHSs7I3nO6vfaf78xfitLJ5CWz9BCIHun+gammANf8GzaH6jnYMZzpqbYHGEhh/H0T07tTMY+10f+073Z+/OElU7VDX9NYmCElVfdvzvlGPpZ0HccPbt7VbVQ/4uOEw8iY1I+MgzFY73+ZW8PNOdW2eFOp32NXI1SYbNWYrGdFBXDwkhr5RgZ22E8ff6fLa12hpxXKMKpNBBdhBvj3vSy6E6J58BCnE8eBoVdN4SzdCWBqgg9yPVJDsHQiDZnQOkmvzVf+14bMPO0jWNI1NxQ18nlNKUW0ziaF++Hfoi2ZpdfD99krXAnuxRl8mD4zutBDf/sfsGCJfNCRGQmQhhBCHL3Es7P5R/U707zAN1NcIsUOhZD3s+QmCk7peM8DLoAKbqu0nfZgshDjB1RXCugXQXAfh6arwoy1IThzrHiQ7WlWQHJMJI64/aJCsaRo7Kpr4PKeUXRUmIoN8STjMamSr3UFhTTMBPp5MGxrHhH6RGA6xQlOI3hbk6yXhrhAnKQmThTjWNA1yP1FvlIOTwcMHdnypVnL28IbB091XeQZoKFZvjof9HsL6HNZpzVY732wt58edVQCkRwXioW9/E763tplvcyswWe3odTA6NYwRSSHou+md5qpuMFkJ8ffmwsExjO0TRmSQhMhCCCGOgDFOLcaX943qO9rx91DiWCjbBE2lapG98L5dH8MnAIrXQ8bFoJfARAhxFDRVwLo31UyIiAy10F7buicxQyH5rPZt21rVRfaHETeCIeSAh2622VmWW8GPO6uwtjrpExngCon3r0YO8vXkvAFR3VYjVzZZqW9uZUCsqkZOjQjolacvhBDi9CVhshDHWv73sP0rVV3sE6B6qlVsAXQwYBoE7Nfg3lQBzlbImqUqGQ7D7ioTn2wsYUd5E1H7rfjscGqs2l3D+sI6AIINXkweFE10N6FwxxA52N+bKYOiGZcWLiGyEEKI3pNyJhT9qlpbGILb7/f2V5V+e3+Dgp/U7J6uPvT0C4emMqgrOOwPYYUQolvNtSpIrtmlgmRTJWz9SLXhCe8Hfc9vf23SnCpIDk1RQbJ/2AEPvbOiic9ySsmraCJiv8Wxu6pGHtsnHG/PztXIllYHhTVmjAYvLh8Wx9npEfh6yYdrQgghjpyEyUIcSyXrYfMH4B2gqq0qtkDhL+qxvudDaKr79i310FIHQ66EpHGHfLpWh5Mfd1SqimOLndSIALeLzVqzjaVby6lqsgIwKDaIs/pGdHlB2rbqc1WTqkSeMiiasWnhREmILIQQoreFpKjKvsKV7mEyQMJo1SbKXKVaWUR2sTq5lx+0NqsAR8JkIURvsppgw1vqOj48XfVK3vw+OGxgTIT+U0G371pa01TgHBgNI26AoJhuD9tic7B8WwU/7KjE0uqkT8ThVyNXNFppsLQyOC6YizNjSArz7/3vgxBCiNOWhMlCHCs1+bDxXXDa1SJ69UWw4yv1WPxoiM1y395mgqYSSL8Q0qd0XXl1ABWNFj7NLmFjUT1BBi/SIgPcFtnbXNLAz3nV2J0avl56JvWPok83097qm22UNVgI8fNyVSJLiCyEEOKo0ekg5WwoWaeCmo7tn7wMkDAKCn5WXxH92oObjvt7+asPcftOBn3nD0mFEOKQtVpg4ztQvE7NjLDbYNMi9eFVQCQMugL0+95iaxrU7VH93ofPVpXJ3dhVqaqRd5Q3ER7gQ1ywwXXdXlTbzHfbKnpUjdzS6qCopplgPy+uHB7Pmd0UiQghhBBHQsJkIY6Fpop9i3PUqKlvzTX7psI51e3UCe7b2y1qam7K2aqH8iH0e3Q6NdYV1vHFplIqGiwkhfm7LbDRbLPz3bZK9lSbAUgM9eO8AVEE+HR+OXA6NfbWNePUNM7tH8n49EiijRIiCyGEOAYiMiByIJTldF5IL26ECppbalV1YPSQzvv7h0H9XmjYCyFJx2bMQohTl8MOmxarFnUh+4Lhze+rdjy+wTD4KvD0ad++sUQFy1m/h6gBXR7S0urg+22VfL+jkmarndTw9lmEh1qNXNZgwWS1k5lgZGpmbJfbCSGEEL1BwmQhjjZLI6xfqCoTIvpDawtsXqIC48BYtThQx6pjp11Nh4sdBkOvA0/vbg+9v4aWVr7aVMav+dV4euhJjw50W0BvT7WZZbkVtLQ68NDrGNcnjKEJwa7Kh46abXaKapqJCTZwydBYsrrZTgghhDgq9HpIHQ/lOep3p5eh/TFPH0g4A3b/oIKdyIGdP3j1DlRhcvVOCZOFEEfG6YTcj2HXd2BMUK9BmxaDuVLNghhyterp3qapHBxWFSTHD+/ykPlVJj7LLmV7eSNh/j7EdphFeCjVyM02O0W1LYQHeHNNZiJj+oS52mMIIYQQR4OEyUIcTXYrZL8L5ZtUTzXNCVs+AEu9mvI26Arw8Grfvm2BjvB+MHyWWqCvh7aXN/LJxhJ2V5mJCzYQZGg/rt3h5Odd1WwqbgAgbF/P4/AAn07H0TSNiiYrjS2tjEgO5dKsWCIDpRpZCCHEcRA9RP1OrNmlppR3FDsM9q4Ga+O+6uNk98d1OvD0hZINkDbpkNtFCSEEoNpV5H2jFtAOiFJtd7Z+rF53PHzU2iYde7s316jXpcEz1CzD/VhaHfy4o5LvtlViPoJqZKemUVZvobnVwYikEC7OjCHGaOi0nRBCCNHbJEwW4mhxOmHLR2rxoJAU0HtB7ifQVKre3A6+0r2CoW2BDmM8jLge/MN7dBpLq1qs4/vtlVhbnfSNDMCzQzVCVZOVpVvKqW22ATA0IZhxfcLctmnT6nBSUG0mwNeTGcPjOSs9QiobhBBCHD8enqoVVOU29QFtxynkHl7q92vlVrUOwf5hMqjFbusLoakMgmKP1aiFEKeSgp/VNb1PEBhCYedSqMkDnQcMulwFzG0sDWCqgAGXdLnmSUG1mU+zS9hW1kiov4/bmiaHUo1sttrZW9dMZKAvlw2LY3RKaJfX9kIIIcTRIL9xhDgaNA3yvlVVDIGxKjTeswKqd6hFggZert7gdlRfqKqVh82C4IQenWZvbTOv/7ybz3JK8fXyoE+HIFnTNNYX1rFobRG1zTb8vD2YNjSW8ekRXV5s1jfbyK8ykRYZwK3j+3BO/ygJkoUQQhx/sVkqKG4s7fxYcKL6s76w6319jardVNWOozY8IcQprHg95CxSH14FRqtguTwH0EH/SyC4Qwsdm1lVK6dNggGXuS38qWkaq3fX8OqP+ewobyI53J+IQB90Oh1WuyoM+XhjCU0WO0G+nlwxLI4J/SI7BclOp8be2mbKGiyMTgnl/52Txri0cAmSxcnJ0qBawhyrL0vD8X7GR2zFihXodDrq6+t7vE9ycjLPP//8URtTdw5nrCeiTz75hLS0NDw8PLjzzjuP93B6ZOHChQQHBx/Vc0hlshBHw941aoE9HyMYQqA0W03FBeh3Yfub3zaNpapyYei1EJlx0MM7nBqr8mv4anMZtc02UsL88fFq7xXZZGnl29wKiutaAOgT4c+5GVFuC/G1cTo1imqbATh/QBRTBsXg38VifEIIIcRx4eULfSbCuv+odQX0HX5HtQU5TWXgsIHHfusM6HQqBCrLURXO0upCCNFTldtg4zvgaFWzIIrXQdGv6rH0ye4Lg9otan2U5DNhyFVqVkXbQw4n32wt59utFXh66A67GrnJ0kpxXQuxwb5MGRTDyORQPPTymiZOUpYG+PEfqi3MseIXBuPvUx8098Ds2bN56623APDy8iIxMZGZM2fyf//3f3h6nl7vlxcuXMidd9551IPhgoICUlJS2LhxI0OHDj2q5+qpP/zhD1x//fX8+c9/JjAw8HgP54Rxev0ECHEsVG6HnPcAnapgqN2tKpQBks6EqEHu2zfXgM2kFttLGHXQw9eabXyWU8KaPbX4eXuS3uGCFCCvoonl2yux2p146nWMT49gYGxQl4vnma12imqbiQ8xMDUzttvF+IQQQojjKn4E7PwGGsvcZ+8YgtXUc2sjNBRDaGrnff3CVRspczUERByzIQshTmK1e2DdAhV4hfWFqm2Q/516LPksiBnavq3Dpl5j4oarBfe82tcaMVvtfLShmF/zawjz9yZs33olh9Ib2eHUKK5rxu7UGJcWzoWDY4gI7LzuiRAnldYW9T7Y0wBenf/f9/75mtX5Wlt6HCYDTJkyhQULFmC1Wvnqq6+47bbb8PLy4q9//etRHKw4GJvNhre398E3PEImk4nKykomT55MbOzht0s7VuM9lmQ+jBC9qaEENrwFLQ2qWspUqfoko6kQOWmc+/bWRrUKdMZFkHbuAQ+taRo5e+t55Ydd/Lqrhhijgbhggyv8tdmdfJtbzldbyrHanUQG+nDt6EQGxRk7BcSaplHeYKG0voXRqaH8aWIaWYkhEiQLIYQ4MfkEQup4sDaA0+H+WMi+6uT6oq73NQSrQKhaWl0IIXqgsQzWvammxYelQV0BbP9CPRY7DBLHtm/rdKj+yZEDYfhst8Wzq5qsLFhZwM+7qok1GlxBclFtM++uLnIFyUPijVw3OqnLILnR0kpeRROh/t7MHpvM789IkiBZnFq8/NTPzdH+OszA2sfHh+joaJKSkvjjH//IpEmT+OyzzwDVxmHUqFH4+/sTHBzMuHHjKCxsb7v16aefMmzYMHx9fUlNTeWRRx7BblezEAoKCtDpdGRnZ7u2r6+vR6fTsWLFCtd9X331Fenp6RgMBiZOnEhBQUGnMX744YcMHDgQHx8fkpOTmTdvXqdtmpqauOaaa/D39ycuLo758+e7Pf7cc88xePBg/P39SUhI4E9/+hMmk8n1PK+//noaGhrQ6XTodDrmzp0LgNVq5S9/+QsJCQn4+PiQlpbGf/7zH7djr1+/nhEjRuDn58fYsWPZsaP767GUlBQAsrKy0Ol0TJgwAVBV4tOmTePvf/87sbGx9OunZoa88847jBgxgsDAQKKjo7n22muprKx0Ha+t1cby5cu7HUNOTg4TJ04kMDCQoKAghg8fzrp161ixYoWrEvmcc85x+7c52Pc8OTmZxx57jJkzZxIUFMQtt9ziaj3xxRdf0K9fP/z8/Jg+fTrNzc289dZbJCcnExISwp///GccjvZrXavVypw5c4iLi8Pf35/Ro0e7/R8BVTmemJiIn58fl112GTU1R7/iX8JkIXpLSx2sX6h6pYX3VdXGW5aoaoXgREi/wH16bWuLeuObOhEGTDvg1Ntmm52PN5bw5so9VDZZSI8KJKBDK4qyhhbeW1PEtrImAEYmh3DliARC/Dp/+mWzO8mrNIEOZoxMYNaYZMID5KJUCCHECS5htFroylzpfn9bq4vu+ibr9GqhrLJNR3d8QoiTX3MtrP2PqkwOT1eB8taPQHNCRH9IO6/9ml1zqg+pQlJh5A3gF+o6TH6Vidd/zmdzST2p4f4E+Hp22Rv58qw4JnbRG9nh1CioNlNjsnFWegS3n9OXEcmh6KWthRDHlcFgwGazYbfbmTZtGuPHj2fTpk2sWrWKW265xVWc9fPPPzNz5kzuuOMOcnNzee2111i4cCF///vfe3yuvXv3cvnllzN16lSys7O56aabuP/++922Wb9+PVdeeSVXX301mzdvZu7cuTz44IMsXLjQbbtnnnmGzMxMNm7cyP33388dd9zBsmXLXI/r9XpefPFFtm7dyltvvcX333/PfffdB8DYsWN5/vnnCQoKoqysjLKyMubMmQPAzJkz+d///seLL77Itm3beO211wgICHA79wMPPMC8efNYt24dnp6e3HDDDd0+5zVr1gDw3XffUVZWxkcffeR6bPny5ezYsYNly5bxxRfqA77W1lYee+wxcnJy+OSTTygoKGD27NmdjnugMVx33XXEx8ezdu1a1q9fz/3334+Xl5db6Pzhhx9SVlbG2LFje/w9f/bZZ13f8wcffBCA5uZmXnzxRRYtWsTSpUtZsWIFl112GV999RVfffUV77zzDq+99hoffPCB6zi33347q1atYtGiRWzatIkZM2YwZcoU8vLyAFi9ejU33ngjt99+O9nZ2UycOJHHH3+82+9xb5E2F0L0htYW2PAOVOZCeD/V03HLB2BtUr2ZBlwO+g79ih2tUJsP8aM69VXb3+4qE59sLGFHRRNRQb5uAbHTqbGmoJY1BbVoGgT6ejJ5QDRxIYYuj1XXbKOi0UJGdBDTsuJICffvtW+BEEIIcVT5hap+pFs+hIDo9kCnbR2CpnLVt9TTt+t9q7arD34NIcduzEKIk4e1SVUkV21T1/OWeti8BJytahHQjIs7BMmaam0RFKuC5MDofXdrbCiq46MNJdQ12+gbGYiHXkdds43Pskupb2kFVDXyuG56Ize0tFJa30JiqB8XDolhaHywhMhCHGeaprF8+XK++eYb/t//+380NjbS0NDAxRdfTJ8+fQDo37+/a/tHHnmE+++/n1mzZgGQmprKY489xn333cfDDz/co3P+61//ok+fPq6q1379+rF582aefvpp1zbPPfcc5557riusTE9PJzc3l2eeecYtVB03bpwriE5PT2flypX885//5LzzzgNwW1guOTmZxx9/nFtvvZVXXnkFb29vjEY12zk6Otq13c6dO3n//fdZtmwZkyZNcj3P/f39739n/PjxANx///1cdNFFWCwWfH07X69FRKh2ZGFhYW7nAvD39+eNN95waxfRMRROTU3lxRdfZOTIkZhMJrdQ+0BjKCoq4t577yUjQ61d1bdvX9d+kZGRAISGhrrG09Pv+TnnnMM999zjuv3zzz/T2trq+ncFmD59Ou+88w4VFRUEBAQwYMAAJk6cyA8//MBVV11FUVERCxYsoKioyNVmY86cOSxdupQFCxbwxBNP8MILLzBlyhRX+J+ens6vv/7K0qVLO31/e9NJU5k8f/58BgwYwMiRI4/3UIRw53TApiVqgb3QPio0zv0UTBVqOs2gGW6909R0uJ0QOQCG/R68u55y0+pwsnxbBa/+mM+uShOp4QFuQXJDSysfbChm9R4VJPeLDuS60YldBskOp0ZBjZmGllYmD4zmD+NTJUgWQghx8kkaC4ZQaK5uv88naF9ArKm+yV0xhKoguWrnMRmmEOIk09oCG96Gkg2qtYW9BTYtVn8GRsOAy9oLQzRNrYnia4Th16ugGXW9vSy3gv/+VkizzUFaRAAeeh17a5tZvHYv9S2tBPh0X41sdzjZU22izmzjnIxIbj8njWGJIRIkC3EcffHFFwQEBODr68sFF1zAVVddxdy5cwkNDWX27NlMnjyZqVOn8sILL1BWVubaLycnh0cffZSAgADX180330xZWRnNzc09Ove2bdsYPXq0231jxozptM24ce6tNMeNG0deXp5bq4T99xszZgzbtm1z3f7uu+8499xziYuLIzAwkN///vfU1NQccKzZ2dl4eHi4QtruDBkyxPX3mJgYALdWFD01ePDgTn2H169fz9SpU0lMTCQwMNA1lqIi99ZnBxrD3XffzU033cSkSZN46qmnyM/PP+A4evo9HzFiRKd9/fz8XEEyQFRUFMnJyW7Bd1RUlGtsmzdvxuFwkJ6e7vZ/6ccff3SNsyf/T46GkyZMvu2228jNzWXt2rXHeyhCtNM02PEV5C8HY4Kqhtr1nao61nvCoOmqV2PH7Wt3qSqq4bPdpsN1VNloYcHKPXywvhidTq363HbBqWkauWWNvLe6iLIGC94eeiYPjGLKwGh8PD06HctstbOzookwf29uGJfCZVlx+HnLpAQhhBAnocBoSDxDrUmgae33t1Und9fqQu+h2l1UbDn6YxRCnFwcrZCzCAp/VYUhmgab3ldrmxhCYdCV4NmhJVxDMXh6w7CZEKkq2VpsDpas28sn2aUYvDxJDPVDp9OxpaSBT7JLsNqdRAf5cvXIBBJCOxeS1DXbyKs0EW00cONZKVw1MoHgLtrVCSGOrYkTJ5KdnU1eXh4tLS289dZb+PuroqwFCxawatUqxo4dy+LFi0lPT+e3334D1MJtjzzyCNnZ2a6vzZs3k5eXh6+vL3p9+3v7Nq2trcf+CaL6N1988cUMGTKEDz/8kPXr17t6Kttstm73Mxi6ng29Py8vL9ff29qAOJ3OQx5n2/e9jdlsZvLkyQQFBfHuu++ydu1aPv74Y6DzuA80hrlz57J161Yuuugivv/+ewYMGOA6zpHYf7z7j6NtLF3d1zY2k8mEh4cH69evd/u/tG3bNl544YUjHuORkERJiCNRuFJVIRtCVXXC3jVQukE9ljFVTX3rqG4P+IbAsNlgjOt0OKdTY31RHV/klFLeaCEx1M8t+LW0Ovh+e6XqeQzEBvsyeUA0QQavTsfSNI3yRgsmi50xfcK4JDPWtfCHEEIIcdJKHgcFv6gp6G0tK4KToCyn+0X4QG1bvllNZfcJPCZDFUKc4JxO2PIR5H+vPpTy8IJNi9TsB+8A1Y6u4yzCpnLV9mLYTIgbBkCt2cbitUVk760n1mggyOCFU9NYuauaDUX1AKRHBXBe/yg8PTpXIxfVNuOh13H+wCjOHxhNkG/n63ohxPHh7+9PWlpat49nZWWRlZXFX//6V8aMGcN7773HGWecwbBhw9ixY0e3+7a1cygrKyMrKwvAbTE+UG0z2hb7a9MWVnfcZuXKlW73rVy5kvT0dDw8PLrd77fffnO15Vi/fj1Op5N58+a5Qu7333/fbXtvb2+3qltQlcJOp5Mff/zR1ebiSLVVHu9/rq5s376dmpoannrqKRISEgBYt27dYZ03PT2d9PR07rrrLq655hoWLFjAZZdd1uW2Pf2e94asrCwcDgeVlZWcddZZ3Y5n9erVbvft/+99NEiYLMThKt+iqhj0XhAQqRbg2P29eix1IkT0c9++sVRVRmX9DiLSOx2u0dLKV5vKWLmrGk8PPelRgeg7LMq3t7aZb3MrMFnt6HUwOjWMEUkhbtu0sdmdFNSYMRq8uGpUIuP6hHW6eBVCCCFOSsFJKsTZ81OHMHlfZbKpQk1X9+qiWsYQqmYHVe+EuOHHbrxCiBNT2wzDHV9BYAx4+avF9hpLVCXykKtUsUgbczVYG2DI1ap/O1BU08yitUXsqjSREu6Pr5cHNruTb7aWs7vaDMDolFBGp4S6quHa1JptVDZZ6BMRwEVDYhgQE9RpGyFOea09a/lwop1nz549/Pvf/+aSSy4hNjaWHTt2kJeXx8yZMwF46KGHuPjii0lMTGT69Ono9XpycnLYsmULjz/+OAaDgTPOOIOnnnqKlJQUKisr+dvf/uZ2jltvvZV58+Zx7733ctNNN7F+/fpOi7zdc889jBw5kscee4yrrrqKVatW8fLLL/PKK6+4bbdy5Ur+8Y9/MG3aNJYtW8aSJUv48ssvAUhLS6O1tZWXXnqJqVOnsnLlSl599VW3/ZOTkzGZTCxfvpzMzEz8/PxITk5m1qxZ3HDDDbz44otkZmZSWFhIZWUlV1555WF9XyMjIzEYDCxdupT4+Hh8fX0xGo1dbpuYmIi3tzcvvfQSt956K1u2bOGxxx47pPO1tLRw7733Mn36dFJSUiguLmbt2rVcccUV3e7T0+95b0hPT+e6665j5syZzJs3j6ysLKqqqli+fDlDhgzhoosu4s9//jPjxo3j2Wef5dJLL+Wbb7456v2S4SRqcyHECaW+CDa+A7Zm1d6isRS2fa4ei81SC+t11FwDrWYYPAPiO7+B3V7eyL9W7OL77ZWEB/iQGOrnCokdTo1f8qr5aGMJJqudYIMXM0YkMCo5tMsguc5sY3e1ifSoQP44oQ/j0yMkSBZCCHHq0Okg5WzVWsraqO7zDlAL3gI07O16Pw8vFR5VbOv6cSHE6WX3Ctj68b4ZhsGw82v3VnX+Ee3bWuqhuUrNPOx7Puh05Oyt5/Wfd7On2kzfyAB8vTxosrSyZP1edleb8dDrmDIwmjNSw9xC4laHk12VJsxWO1MGxfCniWkMjDVKkCxOL14G9Xvb3gItNUf/y96iztfVh82Hwc/Pj+3bt3PFFVeQnp7OLbfcwm233cYf/vAHACZPnswXX3zBt99+y8iRIznjjDP45z//SVJSkusYb775Jna7neHDh3PnnXfy+OOPu50jMTGRDz/8kE8++YTMzExeffVVnnjiCbdthg0bxvvvv8+iRYsYNGgQDz30EI8++qjbQnCgAtB169aRlZXF448/znPPPcfkyZMByMzM5LnnnuPpp59m0KBBvPvuuzz55JNu+48dO5Zbb72Vq666ioiICP7xj38AapHA6dOn86c//YmMjAxuvvlmzGbzYX9fPT09efHFF3nttdeIjY3l0ksv7XbbiIgIFi5cyJIlSxgwYABPPfUUzz777CGdz8PDg5qaGmbOnEl6ejpXXnklF1xwAY888ki3+/T0e95bFixYwMyZM7nnnnvo168f06ZNY+3atSQmqkKKM844g9dff50XXniBzMxMvv32204fTBwNOq1jk5aTQGNjI0ajkYaGBoKCgo73cMTpyFwDq+ZDTR5EZIClETa+rT7tDO0Dg65QfRnbWBtVb7UB02DQ5e2rQKOmti3LreC7bRVYW50khfm5Bb+1ZhtLt5ZT1WQFYFBsEGenR+DVRTjscGoU1ZrR63RM6BfJ5IHRGLx7d5qFOH5O99e+0/35CyH2o2nw60tQsl79LgbI+1a1moobDmnndb1fY5nqdXr+Y732hvJoOt1f+0735y+Oor1rYN2boPNUrefyf4Di1YAOBl4O4X3bt7WZoK4A0qdA5jU4dR78mFfFFzml2B0aSWGqP3J5o4XPc0pptjkweHkwNTOGGKP760yNyUqVyUrfyEAuzoyhX1SghMiik9Pmtc/SoGYTHSteBvfZBkKIwyZtLoQ4FDYzbHhLtbSIyAC7DbYsUUFyQCT0v8Q9SG5tUVXMaZNgwKVuQbKl1cHHG0r4Ka+KED9v4kPa+7FpmsamkgZ+zqvG4dTw9dIzqX8UfSIC6IrZaqeotpnEUD8uHRrHoDiZJieEEOIUptNB6ngo3ahmCXn7qVYXpRsO3DfZLxTqC6A6D2KGdL+dEOLUVb5FzTDUNAiOg72r9wXJQL8L3IPkVosKklPOhiFXYnHq+GJTMSt2VBHg40l8iC8AeRVNfJNbgcOpEebvzSWZsW5rmmiaRlFtMzqdjosHx3JO/0j8feStuDjN+Rol3BXiJCW/wYToKYcdchZDyToI6wvoIPcj1cLCOxAGzXBf6dnRqqbKxY9SPdc82n/cGi2tLF6zl3WFtcQGG9wW2jBb7Xy3rYKCGtXXKTHUj/MHRHV5walpGmUNFsw2B2P7hHHJ0DhC/WXlZyGEEKeByIHqg93qHer3clvfZHNVe8C8P08fcDqgaruEyUKcjmryYf1CVSASmqYW5dz9g3osZQJEd3hdcNjUTMSEkZD1Oxpset5fV8i6wlpijAaMBi80TWNtQR2rdtcAkBTmxwWDovHxbJ8d6HBq7K42EeLnzRXD48lKCJaiDyGEECc1aaQqRE9oGmz7DPasgOBk8PBRfdXqi8DDGwZPd18Z3umAmp0QOQCG/d7tDW1Vk5UFv+xhbUEtSaH+bkHynmoz764uoqBGrep8dt9wpg2N7TJIttod5FWa8NTruGZUAr87I0mCZNGrCgoKuPHGG0lJScFgMNCnTx8efvhhbDab23abNm3irLPOwtfXl4SEBFcPrY6WLFlCRkYGvr6+DB48mK+++upYPQ0hxKnKwxNSJ6jfuXYrePm19zhtOEB1so9RVTTbbd1vI4Q49TSUwLr/qA+cQtNU0ceOfdcj8SMhYXT7tk67WqwzejAMn02xWcfrv+x2Xb8bDV7YnU6+za1wBclDE4K5ZEisW5BsszvJq2wiPsTADWemMCwxRIJkIYQQJz2pTBaiJ3avgO1fgF+ECo0LV0LFFkAH/S+FgKj2bTVNrRYfnAgjrldTavfZW9vMu6sL2VNtpk9EAN6e6vOcVoeTX/Kq2VTSAEBYgDdTBkYTHtCh0rkDtfqzlQExgVyWFU9iWBfVV0Icoe3bt+N0OnnttddIS0tjy5YtrkUV2hY3aGxs5Pzzz2fSpEm8+uqrbN68mRtuuIHg4GBuueUWAH799VeuueYannzySS6++GLee+89pk2bxoYNGxg0aNDxfIpCiJNd7FAIjFazhIJi1e9ecxXUF7b3Ut6fX5hapK82HyL7H9PhCiGOE3M1rP2PKgQJz4DGEsj9BNAgaiCkntPejk5z7pvxkAYjbmBrnZ4l6/ZQ0WghLTIALw89zTY7X2wqo6zBgk4HE9IjGBIf7H7KfW3oBscZuWpUApGBvsf6WQshhBBHhYTJQhxM6UbYvAQ8/cA/HCq2QsHP6rG+50NYH/ft6/aAIQSGX6/e2O6zvbyRRWv2ui5EPfUqSK5qsrJ0Szm1zapCamhCMOP6hLktxNfG4dQorDXjqddz4eBozh8gi+yJo2fKlClMmTLFdTs1NZUdO3bwr3/9yxUmv/vuu9hsNt588028vb0ZOHAg2dnZPPfcc64w+YUXXmDKlCnce++9ADz22GMsW7aMl19+mVdfffXYPzEhxKnD00e1uCj8Rd0OTlKL8h2ob7KXLzhtULVDwmQhTgeWBrXYXtuaJy21sOUDVX0c2gfSL+wQJGuqp7oxAW3EDaws9+DT7AIsdgdpkQHodTpqTFY+yyml0WLH21PPhYOiSQrzdztl3b7Cj3Fp4VwxPJ4A6Y8shBDiFCJtLoQ4kNrdsPG/qmdaUKx6c+qaDjcaYrPct28sBb0nDP2da/EOTdNYV1DLwpUFVJusbkFyzt56Fq0torbZhp+3B9OGxjI+PaLLINlktZNX0UR0kC83npnCJZmxEiSLY66hoYHQ0PZq+1WrVnH22Wfj7d3eYmXy5Mns2LGDuro61zaTJk1yO87kyZNZtWpVt+exWq00Nja6fQkhRJdCU1SrCwDjvr7JzTVgNXW/j3cgFK9T6yEIIU5dtmZY/xaU5agPnmxm2PQ+2C0QGKsWyNbvu57WNKjbDX4h2IbO4tMCTxatLUKng5Qwf/Q6HYU1Zt5fV0yjxY7R4MVVIxLcgmS1nkkLdc02LhgczTWjEiVIFkIIccqRMFmI7piq1MWnqQpCUlUVw9aPQHNAeD/Vp7EjczW0mlX/5PjhADidGit2VPLu6iJsdiep4epCVNM0fsqrYsXOKpwa9Inw53ejkzpVNYC6KC2pb6G8oYWxaeH8aUIag+KM0m9NHHO7du3ipZde4g9/+IPrvvLycqKioty2a7tdXl5+wG3aHu/Kk08+idFodH0lJCT01tMQQpxqjPHg4aXCIS/f9tZT9YXd7+MXDqZyqCs4JkM8nV122WWEhIQwffr04z0Ucbqx2yD7Pdj7m6pA1hywaTHYmlS7m8Ez1NonbRr2gocPpkHX8W6+D0u3lBPq702M0YBOpyOnuJ5Pc0qxOZzEBvty1YgEt/VKnJpGQY0ZTYOrRiZySWasq6WdEEIIcSqR325CdMXapFZ6rtmlKoxbW1Sri7YqhoyL26fDAVgbwVyp7u9zDqD6IH++qZQPN5Tg46knIdQPnU6H3eHk6y3lbCyqB2BsnzAuGhzTZZVx2yJ73h56rhmVxO/OSCJEFtkTR+j+++9Hp9Md8Gv79u1u+5SUlDBlyhRmzJjBzTfffNTH+Ne//pWGhgbX1969e4/6OYUQJ6mgOPAJUr+7QbW6gIO0ujBAq0VNexdH1R133MHbb799vIchTjdOB2z+oH3xbL2HupZvqVWvF4OvUq8DbZrKQHNQ03c6r+cFsSq/hvgQAyF+3q7ikBU7qtA06B8TyGVZcW7X7naHk12VJoL9vJk1Npkz+4ZL4YcQQohTlsy5EWJ/dhtk/w/KstV0OE1TfdUs9eBrhEFXqAqoNq0t6g1r2iTofwnodFhaHXy4oZhf8qqJCPBxBcCWVgefbyqltN6CXgfn9Y8iIyaoy2HUmKxUm2wMjA1iWlYcCaGyyJ7oHffccw+zZ88+4Dapqamuv5eWljJx4kTGjh3Lv//9b7ftoqOjqaiocLuv7XZ0dPQBt2l7vCs+Pj74+HS9AKUQQrjxCYDgBKjYBv4RahG+4jUHrkzW6cDbX/VXTr8A9FJfcbRMmDCBFStWHO9hiNOJpsG2LyDvGwiMAy8/dS3fVAaevjD4SvDtcP1trgZrE8WJ03gzP4LSxkbXQtlWu4Ovt5RTWNMMqCKQEUkhbkGxpdXBnmozaZEBXDMqUa7ZhRCiB+bOncu//vUvKisr+fjjj5k2bdrxHtJBzZ49m/r6ej755JPjPZTjTq6chejI6VQrOxf8BCHJaurb9i+gqbT94tO7QysKR6taDT5hFAy5Cjw8aWhp5Z1Vhfy0s4oYo68rSG5saWXJumJK6y14e+i5dGhcl0Gy3elkd5WJZpuDi4fEcPPZqXJRKnpVREQEGRkZB/xq64FcUlLChAkTGD58OAsWLEC/X+AyZswYfvrpJ1pbW133LVu2jH79+hESEuLaZvny5W77LVu2jDFjxhzlZyqEOG2E9wOHVf3dmADo1IfAlgP0W/cLg4ZiaDhABfNp7qeffmLq1KnExsai0+m6fPM0f/58kpOT8fX1ZfTo0axZs+bYD1SINpoG+cth26fqZ9zXCDu+VAtk673Utbx/ePv2LfVo5ip2hE7kpb3JVJps9I0IxNtTT8O+a/fCmmY89TouHBzNyORQtyC5ydLKnhozWYnB3HSWXLMLcao42CzOuXPnHu8hHpKFCxcSHBx8vIfhsm3bNh555BFee+01ysrKuOCCC473kMQhkjBZiI7yl8OOryEgBrwD1NS46h2g08PAy9VFaRunA2p2QuRAGDYTvP2obLKwYOUe1hbUkhTmT6CvqmCubLKweN1eapttBPh4MmNEPIldXGyaLHbyKkzEBPty41kpXDQkBl8vWWRPHB9tQXJiYiLPPvssVVVVlJeXu/U6vvbaa/H29ubGG29k69atLF68mBdeeIG7777btc0dd9zB0qVLmTdvHtu3b2fu3LmsW7eO22+//Xg8LSHEqcgYp6qNnXbw9IHAfTMfDlSd7B2gFuOq2nlsxngSMpvNZGZmMn/+/C4fX7x4MXfffTcPP/wwGzZsIDMzk8mTJ1NZWXmMRyrEPkW/waYl4BWgeqPnL4fK3H3X8pepBbXbWE04GkvIMYzilYr+OJyo9U30OkrrW1i8di81Zhv+3h5MHx5P38hAt1NVm6yUN1qYmB7J7LEpbv2ThRAnt7KyMtfX888/T1BQkNt9c+bMcW2raRp2+6mxoK/NZjsm58nPzwfg0ksvJTo6+rBnpHYsaBLHloTJQrQpXgdbPgSfQPALhdJs2LtaPdbvQjVtto2mqX7KwYkwYjYYQiisMfOfX/awrayJPhEBGPaFwIU1Zj5YX0yzzUGYvzdXjognPMD9xVLTNErqWqhosnBmX7XI3sBYWWRPHF/Lli1j165dLF++nPj4eGJiYlxfbYxGI99++y179uxh+PDh3HPPPTz00EPccsstrm3Gjh3Le++9x7///W8yMzP54IMP+OSTTxg0aNDxeFpCiFORMWFf32STut2Tvsk6nZr+XrpB/V4XnVxwwQU8/vjjXHbZZV0+/txzz3HzzTdz/fXXM2DAAF599VX8/Px48803D+t8VquVxsZGty8heqwsB7LfBXQQFKMW3itZpx7rdxGEtrfworUFe81u1jGQ/zQMJ9DgS1yIWmhve3kjH20ooaXVQUSgD1eNTCAqyNe1q6ZpFNc1Y7LamToklhkj4rtc+0QIcfKKjo52fRmN6n152+3t27cTGBjI119/zfDhw/Hx8eGXX35h9uzZnVo13HnnnUyYMMF12+l08uSTT5KSkoLBYHC9NzqQrmYGBQcHs3DhQgAKCgrQ6XR89NFHTJw4ET8/PzIzM1m1ahUAK1as4Prrr6ehoaFTZXVycjKPPfYYM2fOJCgoyPUe7i9/+Qvp6en4+fmRmprKgw8+6Bbczp07l6FDh/LOO++QnJyM0Wjk6quvpqmpybXNBx98wODBgzEYDISFhTFp0iTMZjNz585l6tSpAOj1elfm4XQ6efTRR4mPj8fHx4ehQ4eydOlS1/HanufixYsZP348vr6+vPvuu67v+xNPPEFUVBTBwcE8+uij2O127r33XkJDQ4mPj2fBggVu38O9e/dy5ZVXEhwcTGhoKJdeeikFBQWuxx0OB3fffTfBwcGEhYVx3333ocn1oouEyUIAVOfBxndVm4vAGKjdrfqsASSdCVH7hV51e8AvBIZfD0Gx5JY28uYveyiqaaZvZIBr5eatpQ18mlNKq0MjPsTAjBHxrmrlNtZWBzsrTfh46bl2VCLXjU4i2E8qG8TxN3v2bDRN6/KroyFDhvDzzz9jsVgoLi7mL3/5S6djzZgxgx07dmC1WtmyZQsXXnjhsXoaQojTgV+Y6pdsbVC3XWFy4YGDYr8wqCuExtKjP8ZTjM1mY/369UyaNMl1n16vZ9KkSa43sIfqySefxGg0ur4SEhJ6a7jiVFedB+vfUmuZBCeqYHnPj+qxPudC1MD2bR02LJU7+M2exjuWM4kMMRIW4IOmaazKr+GbrRU4NI3UcH+mD3O/dnc6NXZXmfHyUNftUwZF4+khb6mFOBSaptFssx+Xr94MA++//36eeuoptm3bxpAhQ3q0z5NPPsnbb7/Nq6++ytatW7nrrrv43e9+x48//njE43nggQeYM2cO2dnZpKenc80112C32xk7dmyn6uqOldXPPvssmZmZbNy4kQcffBCAwMBAFi5cSG5uLi+88AKvv/46//znP93Ol5+fzyeffMIXX3zBF198wY8//shTTz0FqMrua665hhtuuIFt27axYsUKLr/8cjRNY86cOa5gt208AC+88ALz5s3j2WefZdOmTUyePJlLLrmEvLw8t/Pef//93HHHHWzbto3JkycD8P3331NaWspPP/3Ec889x8MPP8zFF19MSEgIq1ev5tZbb+UPf/gDxcXFgKponjx5MoGBgfz888+sXLmSgIAApkyZ4qrOnjdvHgsXLuTNN9/kl19+oba2lo8//viI/51OFbIAnxCNZbB+IbTUQXg6mCpV32Q0FSInjdtv+xLQe8LQ36GFpbGuoJYP1u2l2eYgLTIAvU6Hpmms2VPLb3tqAegXHch5/aPw0LtXGjdaWimtb2FwXDDTsmKJD5E+a0IIIcQh0+kgIkPNGoJ9bS/0YG0ESwMYgrvezycIGvaqllbGuGM23FNBdXU1DoeDqKgot/ujoqLYvn276/akSZPIycnBbDYTHx/PkiVLuu2Z/9e//tWtTVJjY6MEyuLgGkth/QJorlXX8jV5sHNfNVvCGRA/sn1bpx1TSS7rrfF87HUu8dHh+Hh6YHc4+Ta3grxKNbtheFII4/qEuc0SbHU4ya8yERds4OpRiaRHube9EEL0TEurgwEPfXNczp376GT8vHsnBnv00Uc577zzery91WrliSee4LvvvnP9HkxNTeWXX37htddeY/z48Uc0njlz5nDRRRcB8MgjjzBw4EB27dpFRkaGW3X1/s455xzuuecet/v+9re/uf6enJzMnDlzWLRoEffdd5/rfqfTycKFCwkMVK+Fv//971m+fDl///vfKSsrw263c/nll5OUpD7gHzx4sGvftv7NHcfz7LPP8pe//IWrr74agKeffpoffviB559/3q3d1p133snll1/uNt7Q0FBefPFF9Ho9/fr14x//+AfNzc383//9H6CuL5566il++eUXrr76ahYvXozT6eSNN95wvc4vWLCA4OBgVqxYwfnnn8/zzz/PX//6V9e5Xn31Vb755vj8vz0RSZgsTm+WBhUk1xVARH+wmWDLEnDYwJioVnjv2GrCXA2tzTD0Opyxw/hheyVfbCpFh46UcH90Oh0Op8YPOyrZWqqmZo5ICmHsfhejADUmK7XNNib2i2RaVpz0RhZCCCGORFs7Kk1TC+gGxkJjsapO7i5M1unAw0e1tkqd6P47X/SK7777rsfb+vj4HHbfRHGaaq6FdQtUS5vwDPXhUO6ngAbRQyClPZzRNAd1RVvY1BzO1wEXEh8dg4deh9lq5/NNpVQ0WtHr4JyMSAbGGt1PY7NTWNNMRkwg14xKJMZoOMZPVAhxohkxYsQhbb9r1y6am5s7BdA2m42srKwjHk/H6ui2toSVlZVkZGQccL+unsfixYt58cUXyc/Px2QyYbfbCQoKctsmOTnZFSS3nbNtzYTMzEzOPfdcBg8ezOTJkzn//POZPn26a4H2/TU2NlJaWsq4ce6FfOPGjSMnJ+eg4x04cKDbQvFRUVFuLRU9PDwICwtzjS8nJ4ddu3a5jR/AYrGQn59PQ0MDZWVljB492vWYp6cnI0aMkFYX+0iYLE5frRbY+F+o2KKqGDQHbPkArE1q2uvAy0HfIeC1NoK5EgZeRmvyBL7MKWVZbgWBvp6uPmo2u5OvtpRRWNOMDpjQL4Ih8cFup9U0jfJGC5ZWJxcNjmHyQJkeJ4QQQhwxY5zqgdxqVovrBSfuC5OLICaz+/38w6EmH8xVEBB57MZ7kgsPD8fDw4OKigq3+ysqKrqsfBKi19nMsOEttcBeeD9orlHrn2gOCOsL6VNcHxA5nU4q9mxmuzmAn8IuISoyHp1OR1WTlc9ySjFZ7fh66rloSEynmYINLa2UN7QwKiWUGSMSMBq8uhqNEKKHDF4e5D46+bidu7f4+/u73dbr9Z2Cxo59hk0mNfPhyy+/JC7OfTbUgT5I1e2b+dzdcdt4ebW/NnXsQ3ww+z+PVatWcd111/HII48wefJkjEYjixYtYt68ed2er+2cbefz8PBg2bJl/Prrr3z77be89NJLPPDAA6xevZqUlJSDjulQxtvdWA40PpPJxPDhw3n33Xc7HSsiIuKIxne6kDBZnJ6cDnWxWfgrhKSqthVbPgRThXojOmgGeLUvtEFri3ozmjaJlrSL+HBdMb/sqiYy0IeQff2NzVY7n+WUUtlkxVOv44JB0aRGBLidVtM0Cmub8fLQc+WIBMalda5YFkIIIcRhCIxRFciWxvYwuejX9r7J3f2+9TVCUylU7ZAw+RB4e3szfPhwli9f7lpwyOl0snz5cm6//fbjOzhx6nO0Qvb/oHgthPZVwfLmxeCwgjEe+l+iWt0ArXYHJbu3Umj2YWP05QRFqCBjd7WJpVvKaXVoBPt5cUlmrOu6vk1FowWT1c6kAVFMzYzFx1NmEgpxpHQ6Xa+1mjiRREREsGXLFrf7srOzXaHmgAED8PHxoaio6JBaWkRERLj6CgPk5eXR3Nx8SGPz9vbG4XD0aNtff/2VpKQkHnjgAdd9hYWFh3Q+UP/O48aNY9y4cTz00EMkJSXx8ccfu7WzahMUFERsbCwrV650+96sXLmSUaNGHfK5D2bYsGEsXryYyMjIThXXbWJiYli9ejVnn302AHa7nfXr1zNs2LBeH8/J6NT7CRbiYDRN9VHL+xaC4sHLALuWQW2+CpUHTXefDutoVY8ljKah7xUsWl3M+qI6EoL9CPBVP0K1ZhufZpfQaLFj8PLgksxYoo2+bqd1ODX2VJsJ8fNixogEMhOCEUIIIUQv8fBS1YiFv6jbQXGg81AtrFrqwC+06/10etB7QfkmSDnr2I33JGAymdi1a5fr9p49e8jOziY0NJTExETuvvtuZs2axYgRIxg1ahTPP/88ZrOZ66+//jiOWpzynE7Y+rFaYC84WVUib16sAmX/CHUt76HCm2abnaLd26lu1tgRPw1daF80TWPj3np+zqsGID7EwEWDY9xazmmaRlFtM3qdjsuz4pjQLxK9XgpAhBDdO+ecc3jmmWd4++23GTNmDP/973/ZsmWLq4VFYGAgc+bM4a677sLpdHLmmWfS0NDAypUrCQoKYtasWd0e9+WXX2bMmDE4HA7+8pe/dKq6PZjk5GRMJhPLly8nMzMTPz8//Py6Xq+pb9++FBUVsWjRIkaOHMmXX355yAvPrV69muXLl3P++ecTGRnJ6tWrqaqqon///t3uc++99/Lwww/Tp08fhg4dyoIFC8jOzu6yevhIXXfddTzzzDNceumlPProo8THx1NYWMhHH33EfffdR3x8PHfccQdPPfUUffv2JSMjg+eee476+vpeH8vJSsJkcfop+g22fgKGEBUaF6+B0g3qsYyLISi2fVunA2p2QuRAqvpeyX/XlLOtrJGUcH/XBWdJfQuf55RitTsxGryYNjSW4P2qGtoW7EgM9ePqUYn02a9iWQghhBC9IDRFBUygwqSgOGgoUtXJ3YXJAIZQqNqu+q8eaLvTzLp165g4caLrdls10axZs1i4cCFXXXUVVVVVPPTQQ5SXlzN06FCWLl3aaVG+QzV//nzmz5/f4yoqcRrRNFUQsuNrCIgGTx/I+Z/6wMjXCIOvBE9V0FHfYqNgTx4tLVYKEq7AHDoIh1NjxY5Ktuxb22RQbBAT+kW6LZLtcGrsrjIR4u/N9OHxZCV23eNTCCE6mjx5Mg8++CD33XcfFouFG264gZkzZ7J582bXNo899hgRERE8+eST7N69m+DgYIYNG+ZaKK4r8+bN4/rrr+ess84iNjaWF154gfXr1x/S2MaOHcutt97KVVddRU1NDQ8//DBz587tcttLLrmEu+66i9tvvx2r1cpFF13Egw8+2O32XQkKCuKnn37i+eefp7GxkaSkJObNm8cFF1zQ7T5//vOfaWho4J577qGyspIBAwbw2Wef0bdv30N6rj3h5+fHTz/9xF/+8hcuv/xympqaiIuL49xzz3VVKt9zzz2UlZUxa9Ys9Ho9N9xwA5dddhkNDQ29Pp6TkU47ybpHNzY2YjQaaWho6LYcXYhuVW6D314BeyuEJKnV27fu+5QtdSIktDdYR9OgeicY49jb73reybVRWNNMn4gAvPb1OM6raOKb3AocTo3oIF+mZsZ0mrJjaXWwp9pMRkwg145K6lSxLERPnO6vfaf78xdC9FDVDvjxaTAmqECp4BdVqRzRHwZc2v1+Toe6JhhzGySecezGexCn+2vf6f78RRcKV8H6BeBpUG1ptn4ENbvUz3vW79W6J0B5o4XCogL01gYKEqZRHDIGi93Jl5vLKK5rAeCsvuFkJQS7tZyz2tV1e1KYH9eMSiIlvHNvTiGONnntE0Kc6KQyWZw+Gophw9tgNalpsI2lsO1z9VhMFsTv14unbg/4hZCXcAXv5FiobrLSNzLQVbmwsaiOn/ZNj0sN92fKoGhXyNymydJKSX0Lw5JCuGZkIkY/WbBDCCGEOGqC4sAnSC2m6+kLwUkqTD5Y32S9h2p3Ub7lhAqThRAdlG+B7PcAPQREwa5vVZDc1qbOLwxN0yioMbO3tJQAex3FsVMoDhlDfUsrn+aUUt/cipeHjikDO69tYrbaKaptZnC8katHJhIR2P2CWEIIIcTpTMJkcXporoV1C1WgHJEBlgbY8gE47RCaCn3Pc3+D2ViCpvdga+RU3s71wNJqIy0ywLWS6s951WzcWw/A4DgjE/pFoN/vDWqt2Ua1ycrZ6RFcnhWPwVsW7BBCCCGOKp8ACE6Aim2qd2pQjAqaWpuhuVrd1x1DKFRsUQv4+UolmBAnlLoCVRRiM0NYGuxdDaUb1WMZU8EYj93pZEd5E2VV1UQ5qymJnsju8IkU17fw5aYyLHYnAT6eXJIZ2ykorjXbqDJZObNvOJcPiyfAR94mCyGEEN3RH3wTIU5ytmbY8A5UbVMVyXYbbFmi3lj6R0L/S12rPQNgrsZpa2aj8Tze2B2Cw6mRHOaPTqfD7nDy9ZZyV5A8rk8YE7sIkssbLNQ127hgUAxXjkiQIFkIIYQ4VsL7gcOq/q73VIvtAtQXHXg/v1BoqYXqvKM7PiHEoTFVwroF0FQGYX2gMhf2rFCP9TkXIvphaXWQs7ee4soa4rQKKsPHsCN8MlvKTHy8sQSL3UlUkA9Xj0xwC5I1TaO0voX6llYuHBTDNaMSJUgWQgghDkLCZHFqc9hh0/tqkb3QPio0zv0ImmvAOxAGz1ALd7SxNOIwVbLWdwxvliVj8PYgPsQPnU6HpdXBxxtLyKs0odfB5IFRjEgOdeuzpmkahTVm7E4nM0YkMDUzplPrCyGEEEIcRcY4NdvIaVe3gxPVn/WFB95P7wkaULH1qA5PCHEILI2wfqFqZxGeDvV7YceX6rH4kRA/UgXJxfVU1DWRrKugMngoWyMu4qfdDXy3rRKnBn0jA5g+LB7/DkGxc19LDICrR8p1uxBCCNFT8rGrOHVpGmz/AnZ/D8ZE1Ttxx5eqMsnDGwZPB5/A9u1bW7DXFbLWcxjv1GUSbvQhxM8bgMaWVj7JLqGuuRVvDz0XD4khIdTP7XROp8buajNGgxfTR8QzTFZ+FkIIIY49Y8K+vskmMASrvsmgfv8fqG8ygCEEynPUrCZvv+63E0Icfa0W2PgOlGVDWDq01KkF9zSnaluXeo4rSK5uaCZNX0p1QAYbIi7li9w68qtUUDwqOZQzUt0LQOwOJ7urzUQF+TB9eAKD4ozH6UkKIYQQJx8Jk8Wpq+BntcCeX7jqfVi4UvVCRKdaWwREtW/rsGGrymOdoy/v2cYQEx7gmuJW2Wjh05xSmm0OAnw8uXRoLOEB7n3W7A4n+dVmYo2+XDs6kbTIQIQQQghxHPiFqd7ITWUqTA6MVh8i2y1grnT//d9p31Co3Q01eRCTecyGLNzNnz+f+fPn43A4jvdQxPHidKjZhYW/QkgfcNhg8/uqhU1QPGRcjMXuJKe4nqqGFtL0pdT7pbIydBpLcuqparLiodMxaUAkGdHuPdAtrQ72VJvpGxXA1SMTOxWICCGEEOLAZB6PODWVbYKcxaqFhX+EmrJa8LN6rO/5qt9aG6cDS9l21rfEsMQxkbjIUFeQXFBj5oMNxTTbHIQFeHPliPhOQbK11UFepYm0yABuOitVgmQhhBDieNLpVNWiTVUlovcAYw/7Jnt4q6rHim1Hd4zigG677TZyc3NZu3bt8R6KOB40DbZ9Abu+UzMN9B4qSLY2qQ+LBl1Bi0NH9t56Khss9PEow+wbzbeBl/JWdiNVTVYMXh5cPiyuU5DcaGmloMbMsKQQbjozVYJkIYQQ4jBImCxOPXUFakqc3aIqF+qLYMdX6rH4URCb1b6tpmEq285Gk5FPPM4jJiYGXy+1WN7W0gY+yyml1aGREGJgxvB4An293E5lstrZXWNmaGIwN45LITbYcIyepBBCCCG61dYnWdP23W5rdXGQvskAvkYo2wh269EZmxDiwHavgG2fgn84eAfA1o/BXAXe/jB4Bi14k7NXVR+neFZh8zLyvtelvLWpBbPVQai/N1eNTOh0XV7VZKWiwcLEfpHMGpNMiL/38Xl+QgghxElO2lyIU4u5GtYthKZyVZXUUruvt5pDre6eOtFt8/qSHeys9+Ab/8lExKbiodehaRqr99Syek8tABnRgUzqH4WH3r3HYl2zjcpGK2emhTN9eDx+3vLjJIQQQpwQjHHg5QetZhVGuRbh26sqj3UHqKfwC1MfRNfkQ9SAYzNeIYRSsl61t/D0U63qdnwJ9QWg94JBM2jxCHQFyYmedeh0HizQTeOTnU4AksL8uGBQND6eHq5DappGcV0LDk3j0qGxTBoQ3em6XgghhBA9J5XJ4tRhNe1b7TlPrfbcaoHNS1SFcmAsZFzsWnRHQ6OiOJ9dNRZ+8p9MUPwAPPQ6HE6N77ZVuoLkkckhnD+gc5Bc0Wih1mxj8qBorhmVKEGyEEIIcSIJjFH9ki2N6nZAFHj4qH6rpooD7+vpC45WqNp+1IcphOigaids+C847eoDoYKf29c7GTCNFt8IV5Ac523GB6sKkgvUdfjgOCOXDIl1C5KdTo38KjPennp+d0YS5w+UIFkIcWJZsWIFOp2O+vr6Y3re5ORknn/++V473uzZs5k2bVqvHe9QFBQUoNPpyM7OPi7nP17mzp3L0KFDXbeP5b+BhMni1OBohZz/QelGCEtT01q3fgiWejVdddAV4KFaVGiaxt7ivRRX1rA+6Dz08cPR6XTY7E4+zyklt6wRHTCxXwRj+4S7rfysaRp7a5ux2p1cnhXHpZmxeHnIj5EQQghxQvHwgrC+qscqqErk4AT194P1TQbwCYKSDer6Qghx9DWUwIaFYKmDkBQoy4aiX9Vj6VNoCUome289VSYrMT5WAhx1vKldwgdF/gAMTQhmYr8I9B2C4laHk7yqJqKNPtx4Zgojk0PdruuFEKI7Op3ugF9z5849rONOmDCBO++8s1fHerI62QLghQsXEhwcfLyHccKQckpx8nM6VS+1PT9BcLKqPNr2KTSWqAX4Bs1QPdYAh1Njd3EpTZXF7AibRHP8Weh0OsxWO5/mlFLVZMVTr+OCQdGkRgS4n0bT2FNtJsDHk+nD4xmeFCIXpEIIIcSJKjQF9vzYfjs4EWp2qb7JCaMPvK9/GDSWqXUYwvse1WEKcdprroV1C9QHPRH9oXY37PxGPZY0juawgeTsrafaZCXKx4HRVsECbSrvl4UCkJUYzFlp7gUgzTY7hTXN9I8J4ppRiUQbfY/HMxNCnKTKyspcf1+8eDEPPfQQO3bscN0XENCeFWiahsPhwNNT4jVxcA6HA51Oh15/chclntyjFwIg/3vY8TUERINPgHrjWLVdVSENvFwt3oGqTti2twJTxR72hp5BZfx5oNNRa7axeN1e18rPVwyL7xQk2x1OdlWaiAjw4fpxKYyQygYhhBDixGaMVxXKdou63bYIX0MxOB0H3tfLT+0nrS6EOLpsZtjwFlRtg7B01YYm9xNAg6jBNMecQU5xA9VNViJ8IdRWzELHZN4riwFgWBdBcn2zjb21zZyRGsqNZ6VIkCyEOGTR0dGuL6PRiE6nc93evn07gYGBfP311wwfPhwfHx9++eWXLlsM3HnnnUyYMAFQLQh+/PFHXnjhBVeFc0FBgWvb9evXM2LECPz8/Bg7dqxbeN2V4uJirrnmGkJDQ/H392fEiBGsXr0agPz8fC699FKioqIICAhg5MiRfPfddwc8Xn19PX/4wx+IiorC19eXQYMG8cUXXwCd2ykAPP/88yQnJ3d7vKVLl3LmmWcSHBxMWFgYF198Mfn5+a7HU1JSAMjKykKn07m+TwBvvPEG/fv3x9fXl4yMDF555RW3Y69Zs4asrCx8fX0ZMWIEGzduPOBzA7BarcyZM4e4uDj8/f0ZPXo0K1asAMBisTBw4EBuueUW1/b5+fkEBgby5ptvsmLFCq6//noaGho6Vacf6LjQXtH82WefMWDAAHx8fCgqKiI5OZknnniCG264gcDAQBITE/n3v//tNua//OUvpKen4+fnR2pqKg8++CCtrT2bNff2228TFhaG1eq+oPS0adP4/e9/36NjHIiEyeLkVrwetnygFtfxC4XSbNj7m3os/QLXG0dLq4NNhVW0VuZRHTqUwripaDpPSupaeH/dXposdowGL64cEd/pgtNqd5BXaSIl3J8bz0qhX3TgMX6SQgghhDhkQXGqXUVbqwv/SPA0gMMGpvKD7+/tr1pdHCx4FkIcHkcrZL8HxetUmzqbWa134myFkGSakyeRU6KC5DA/PWHWIt5uPZd3K9T1/fDEEM7cL0gub7RQY7Zx3oAorjsjiSBfr+P17IQQ3dE09fN+PL40rdeexv33389TTz3Ftm3bGDJkyEG3f+GFFxgzZgw333wzZWVllJWVkZCQ4Hr8gQceYN68eaxbtw5PT09uuOGGbo9lMpkYP348JSUlfPbZZ+Tk5HDffffhdDpdj1944YUsX76cjRs3MmXKFKZOnUpRUdetvpxOJxdccAErV67kv//9L7m5uTz11FN4eHh0uX1PmM1m7r77btatW8fy5cvR6/VcdtllrjGuWbMGgO+++46ysjI++ugjAN59910eeugh/v73v7Nt2zaeeOIJHnzwQd566y3Xc7v44osZMGAA69evZ+7cucyZM+eg47n99ttZtWoVixYtYtOmTcyYMYMpU6aQl5eHr68v7777Lm+99RaffvopDoeD3/3ud5x33nnccMMNjB07lueff56goCDXv13bOQ903DbNzc08/fTTvPHGG2zdupXIyEgA5s2b5wrD//SnP/HHP/7R7UOEwMBAFi5cSG5uLi+88AKvv/46//znP3v0/Z8xYwYOh4PPPvvMdV9lZSVffvnlAf9v9dRxqcO/7LLLWLFiBeeeey4ffPDB8RiCOBVU74Ls/6o3ecFJakpcXvuUOKIHA2Cy2tm8txafujzMwf3Ii7sMh4cveRVNfJNbgcOpER3ky9TMmE4L6Zmtdopqm8mMD+bqUQmEBfgc62cphBBCiMPhE6D6JFdsA/8ItQhvcAJU74S6QhU2H4hfuGqZVV+kWmaIY2b+/PnMnz8fh0OC/FOW0wlbPmpvU6dpsPl9aG0G/0ia06aSU9pEdZONUD9Pwi17+K/1LN6uSQNgeFII4/qEuYJkTdMorG3GQ6/jimFxjE+PdOufLIQ4gbQ2wxOxx+fc/1fqaoF5pB599FHOO++8Hm9vNBrx9vbGz8+P6OjoTo///e9/Z/z48YAKqi+66CIsFgu+vp1nV7z33ntUVVWxdu1aQkNVy5+0tDTX45mZmWRmZrpuP/bYY3z88cd89tln3H777Z2O991337FmzRq2bdtGeno6AKmpqT1+bl254oor3G6/+eabREREkJuby6BBg4iIiAAgLCzM7fvx8MMPM2/ePC6//HJAVTDn5uby2muvMWvWLN577z2cTif/+c9/8PX1ZeDAgRQXF/PHP/6x27EUFRWxYMECioqKiI1V//fmzJnD0qVLWbBgAU888QRDhw7l8ccf56abbuLqq6+msLDQVZnt7e3tVqF+KMcFaG1t5ZVXXnH7NwG48MIL+dOf/gSoKuR//vOf/PDDD/Tr1w+Av/3tb65tk5OTmTNnDosWLeK+++476PffYDBw7bXXsmDBAmbMmAHAf//7XxITE92qwA/XcQmT77jjDm644QbXJwtCHLLGMli/AJrrIDwdTJUdpsQNhKQzAahrtrF5bz2GpnzsQYnkxk7H6hnEhqI6fs6rBiA13J8pg6I7LaRX32yjotHK2LQwpg9PIMBHeiAJIYQQJ5XwfmrWUpvgJBUm1xdB0tgD7+vtD/UFansJk4+p2267jdtuu43GxkaMRuPxHo7obZoGed/Czq8hMAa8fCFnEbTUgk8QLRmXk1PWQrXZRqifF2HWQv5nOYO3avsDMCIphLH7Bcn5VWaC/byYMSKBoQnBx/HJCSFOFyNGjOjV43Wsbo6JUa18KisrSUxM7LRtdnY2WVlZriB5fyaTiblz5/Lll19SVlaG3W6npaWl28rk7Oxs4uPjXUFyb8jLy+Ohhx5i9erVVFdXuyqSi4qKGDRoUJf7mM1m8vPzufHGG7n55ptd99vtdtf1QFsleMeQfcyYMQccy+bNm3E4HJ2en9VqJSwszHX7nnvu4ZNPPuHll1/m66+/dnvsSI7r7e3dZfV6x/vagurKykrXfYsXL+bFF18kPz8fk8mE3W4nKCjogGPq6Oabb2bkyJGUlJQQFxfHwoULmT17dq+0bD0u6diECRPceogIcUgsDbB+oVoUJ6I/2EywZYmatmpMUO0tdDqqTFY2F9cTYC7CMyCMnJjLMHmH89POKrL31gMwJN7I+PQI9Pv9MFU1WWlosXHegEimZsbh7SkdYYQQQoiTjjFOVSQ77aD3VIvwATQWt9/XHZ1O9U4uWQ99z1e3hRBHrug32PIh+BjBN1gVhDQWg4cPLRmXk11h3xckexNiK+H95mEsqFMzDkcmhzAmtT1Idmoau6vMhAV4M3NMEmmR0o5OiBOel5+qED5e5+4l/v7uFc56vR5tvzYaPe1vC+Dl1d6Wx/Uaty+A3Z/BYDjgsebMmcOyZct49tlnSUtLw2AwMH36dGw222Ed73Ce29SpU0lKSuL1118nNjYWp9PJoEGDuh0DqBAc4PXXX2f0aPfFko+k5YbJZMLDw4P169d3Ok7HxRQrKyvZuXMnHh4e5OXlMWXKlF45rsFg6DLA7fhvDurfve3ffNWqVVx33XU88sgjTJ48GaPRyKJFi5g3b17PnjSqH3VmZiZvv/02559/Plu3buXLL7/s8f4Hcshh8k8//cQzzzzD+vXrKSsr4+OPP+7UZHz+/Pk888wzlJeXk5mZyUsvvcSoUaN6ZcDiNNdqgY3/hYotqiJZc6ieydYm8AuDgVeA3pMqk5VNxfUYWirwM/iyKeoSqnwS+WZLObsq1QvUmWnhDEsMdvuh1jSNkvoWHE6NS4fGMal/lEyRE0IIIU5WxoR9fZNNYAhWrSu8/NQU28Yy1fbiQPzCVBVzY4la0E8IcWTKt6g+yXoPCIyGXcuhegfoPGjpdykbazyp2RckB7VW8WHjAN5sGArAqORQzkgN7RQkRwR687szkkmLDDjAiYUQJwydrtdaTZxIIiIi2LJli9t92dnZboGht7d3r7RwGjJkCG+88Qa1tbVdVievXLmS2bNnc9lllwEq9Oy42F9XxysuLmbnzp1dVidHRERQXl6Opmmu1+Ds7Oxuj1dTU8OOHTt4/fXXOeusswD45Zdf3Lbx9vYGcPt+REVFERsby+7du7nuuuu6PHb//v1555133FqA/Pbbb92OBVSo6nA4qKysdI2nKzfccAODBw92VUZPmjSJ/v37u8a7/79dT497OH799VeSkpJ44IEHXPcVFhYe8nFuuukmnn/+eUpKSpg0aZJbn+4jccjllmazmczMTObPn9/l44sXL+buu+/m4YcfZsOGDWRmZjJ58mS3Um0hDovToaoYCn+FkFRVTZT7qVr12csPBs0AL1+q9wXJXpZaQrzt7Ii8gALfDD7aWMKuShN6HUwZGM3wpBC3INmpaeypNuOh13HNqETOGyBBshBCCHFS8wtT/ZKtDeq2TtdenVzfgwvytgX8qg68oroQogdq98CGt6HVDMZEKF4LJWsBsKRdwMbGIFeQ7O+o55OGVP7TMBw4UJDsw+/HSJAshDj+zjnnHNatW8fbb79NXl4eDz/8cKdwOTk5mdWrV1NQUODW+uFQXXPNNURHRzNt2jRWrlzJ7t27+fDDD1m1ahUAffv25aOPPiI7O5ucnByuvfbaA55r/PjxnH322VxxxRUsW7aMPXv28PXXX7N06VJAdReoqqriH//4B/n5+cyfP5+vv/662+OFhIQQFhbGv//9b3bt2sX333/P3Xff7bZNZGQkBoOBpUuXUlFRQUODulZ75JFHePLJJ3nxxRfZuXMnmzdvZsGCBTz33HMAXHvtteh0Om6++WZyc3P56quvePbZZw/4/UpPT+e6665j5syZfPTRR+zZs4c1a9bw5JNPuip158+fz6pVq3jrrbe47rrrmDZtGtddd52rkjo5ORmTycTy5cuprq6mubm5R8c9XH379qWoqIhFixaRn5/Piy++yMcff3zIx7n22mspLi7m9ddf75WF99occph8wQUX8Pjjj7s+4djfc889x80338z111/PgAEDePXVV/Hz8+PNN988rAFarVYaGxvdvsRpSNNg51LVXy0oHrwMsOs7qM1XofKg6WAIdgXJOksT0Z5N5IdOYLN3FkvW7aWswYK3p55pQ+PoF+0+Bc7udLKr0kSovzezx6YwusP0OSGEEEKcpHQ6iMhQK7i3CU5Sf9Z33Tew0/6evqrvci+uAC/EacdUqdrUNZVDaB9VjZy/HABb4tlsaImmxqSCZF+nmS9q4/lPw0gARqeEMqaPe2uL/CoTEYE+zByTRJ8ICZKFEMff5MmTefDBB7nvvvsYOXIkTU1NzJw5022bOXPm4OHhwYABA4iIiOi2h/HBeHt78+233xIZGcmFF17I4MGDeeqpp1ytFp577jlCQkIYO3YsU6dOZfLkyQwbNuyAx/zwww8ZOXIk11xzDQMGDOC+++5zVeL279+fV155hfnz55OZmcmaNWuYM2dOt8fS6/UsWrSI9evXM2jQIO666y6eeeYZt208PT158cUXee2114iNjeXSSy8FVCXtG2+8wYIFCxg8eDDjx49n4cKFpKSo9SsCAgL4/PPP2bx5M1lZWTzwwAM8/fTTB/2eLViwgJkzZ3LPPffQr18/pk2bxtq1a0lMTGT79u3ce++9vPLKK67K3VdeeYXq6moefPBBAMaOHcutt97KVVddRUREBP/4xz8Oetwjcckll3DXXXdx++23M3ToUH799VfXWA6F0WjkiiuuICAgoFNXiSOh0/ZvfHIoO+t0bm0ubDYbfn5+fPDBB26DnDVrFvX19Xz66aeu+1asWMHLL7/MBx98cMBzzJ07l0ceeaTT/Q0NDYfUeFqc5Ap/hXUL1HSYgCgoXgP536vHBkyDiAxXkOywtpCsL6cwZAzLDZP5dFMFzTYHAT6eXDo0lvAAH7dD2+xOdlebSAn359pRSSSG9V4fJSF6S9siRKfra9/p/vyFEEegcBX89opaZ0Gng+ZaWPtv0HnAuDvBw+vA+7fUqTD63IcgMOqYDLnN6f7ad7o//1OGpQFWvwZlOernsKlULbinOWiNGspaz+HUNLcS6ueNt2ZhaVUY/2lSvTJHp4RyRmr7IkZOTSO/0kRkkC8zxySRKkGyOAXJa58Qojede+65DBw4kBdffLHXjtmrq4pVV1fjcDiIinK/0I6KiqK8vNx1e9KkScyYMYOvvvqK+Ph4Vyl+V/7617/S0NDg+tq7d29vDlmcDCpyIed/qrdaQNS+SoZ9QXLqRIjIoMasgmSbzUayvozSwCF8qZ/IBxvLaLY5CA/w5qoRCZ2C5GabnfwqEwNjjdx4ZqoEyUIIIcSpxhi3r0/yvupkQwh4B6h1FxpLDr6/r1GFYVXbj+44hTgVtVpgwzsqSA5PB0u9alunObCHpLHGc5grSPakla+rwl1B8hn7B8lOFSRHGX2ZNTZZgmQhhBDiAOrq6vj4449ZsWIFt912W68e+5AX4OsN3333XY+39fHxwcfH5+AbilNT/V7Y8BZYzRCWBo2lsO1z9VhMFsSPosZsJWdvPVabnT66Emr80vjIYzKfbalG0yAh1MBFg2Pw8XRfXbOxpZXShhbOSA1lxogEAn0PUpkkhBBCiJNPYIxafM/SqEJknU61uqjcqlpdhCQfeH+dXlUvl+VA6vhjMWIhTg0OO2xaDEWrIDQVHDbY/D7YLTgCYlhrOJPaZjuhft546Jx8XRHKwibV2mJMahijUtoXlXI6VWuLaKMvM8ckkxx+6i3eJYQQQvSmrKws6urqePrpp+nXr1+vHrtXw+Tw8HA8PDyoqKhwu7+iooLo6OjePJU4HTTXwvoFKkCOyFCL52z5AJx2dUHa9zxqmm3k7G3AYnOQqi+jySeW9z2n8tm2BjQN+kUFct6AKDz2W0iv2mSlzmzj3P5RXJIZi6+XRzeDEEIIIcRJzcMLwvpCQYdVxIMT28PknvALg+o8MNeAf9jBtxdHZP78+cyfP79XVrwXx4mmwfYvVF9kY4Ja4yT7PbA04PQNZl3gOVS3OAn180av0/iqIpi3m0YAMKZPGKOSuw6SZ41NJilMgmQhhBDiYAoKCo7asXu1zYW3tzfDhw9n+fLlrvucTifLly9nzJgxvXkqcaqzNavVnqt2qDeADhtsXgKtzeAfCf0vpba5lU3FDVhaHSR7VGL1DGKx56V8sqMZTYOM6EDOH+geJGuaRkl9CyaLnUuGxnLFsHgJkoUQQohTXWiKamvRpm0RvqZSdY1xML7Banp+9Y6jMTqxn9tuu43c3FzWrl17vIciDtfuFWo2oV8E+ARC7qdgKkfzNLAx+DwqLR77gmT4siLUFSSP7SJI3lVlIibYl9ljUyRIFkIIIU4Ahxwmm0wmsrOzyc7OBmDPnj1kZ2e7VqG8++67ef3113nrrbfYtm0bf/zjHzGbzVx//fW9OnBxCmubEle8FkLT1PTSrR9Dc42anjp4OrVWyCluoNnmIMGzDk3nwRKvS/kgz4FTg37RqiJZr3MPkgtqzOiAq0YlMHlgdKeKZSFEu4KCAm688UZSUlIwGAz06dOHhx9+GJvN5raNTqfr9PXbb7+5HWvJkiVkZGTg6+vL4MGD+eqrr4710xFCnM6M8apC2W5Rt32N4BMEmhMaetA3We+hrkfKNx/dcQpxKiheD5veBy+DqurP+wZq89H0nmwKOY9Sq0EFyXodn1eG89+mLADG9QljZIcg2bEvSI4LNjBrTIqsbSKEEEKcIA65zcW6deuYOHGi6/bdd98NwKxZs1i4cCFXXXUVVVVVPPTQQ5SXlzN06FCWLl3aaVE+IbqkaaqKIf8HNQXV0wd2fAn1heDhDYNnUGv3Jae4nmabg1gvM16OFhZ5X8F7+V4qSI4K5Pz9gmSHU2N3lYmwAB+uGpnAoDjjcXySQpwctm/fjtPp5LXXXiMtLY0tW7Zw8803YzabefbZZ922/e677xg4cKDrdlhY+zTwX3/9lWuuuYYnn3ySiy++mPfee49p06axYcMGBg0adMyejxDiNBYUp8JjaxN4+rb3Ta7YrK4xQlMOfgxDKFTmqsX4fOU6QoguVe2Ejf9VbemCE6HwVyjLQUPH9uCJFNmDCfXzRqfT8WlFJIsa1bXDmWnhDE8KcR3Gsa+1RVywgVljk0kIlSBZCCGEOFHoNE3TjvcgeqJj77SdO3fS0NBAUFDQ8R6W6G27V6gVn32DwT8cCldCwc+ADgZNp9Y3wRUkR/vYCLRV8IHnxbxRFI1Tg/SoACYPiEbfoeLYZneyu9pMUpiBa0clyYId4qTU2NiI0Wg87q99zzzzDP/617/YvXs3oCqTU1JS2LhxI0OHDu1yn6uuugqz2cwXX3zhuu+MM85g6NChvPrqqz0674ny/IUQJ7Gf50HFNgjro26Xb1YfWAfGwrCZB9/faVd9k8f+P0gYeXTHus/p/tp3uj//k05DMayaD03lqk1dxRb1MwbsMo5hu74vIf7e6NDxcVUMSxoyADgzLYzhSe4VyflVJuJDDMwcI0GyOP3Ia58Q4kTXqz2TjybpnXYaKM1WU+I8fVWQXLF1X5AM9D2PWkMCm/YFyeG+ToKspXyqn3TAILnF5iC/ykRGdCA3nZkqQbIQR6ihoYHQ0NBO919yySVERkZy5pln8tlnn7k9tmrVKiZNmuR23+TJk1m1alW357FarTQ2Nrp9CSHEEQnvBw5r+21X3+QysFu73qcj/b4JfRVbe39sQpzsmmth3UIVKIelQV0B7PwagL0BQ9jWIUj+sCrOFSSfdYAgWSqShRBCiBPTSRMmi1Nc7W41Jc5hU1NR64tgx76eqvGjqAsexKa99ZhtDsIMOkIte/lKdzb/Kk7uNkg2WewU1poZmRzKDWemEBnke5yenBCnhl27dvHSSy/xhz/8wXVfQEAA8+bNY8mSJXz55ZeceeaZTJs2zS1QLi8v79TqKCoqivLy8m7P9eSTT2I0Gl1fCQkJvf+EhBCnF2O8am/htKvbvkFqJhQaNOzt2TEMIaqi2Wo6WqMU4uRjM8P6hVC1TVUkm6sg92PQnFQaUsn2zCR0X5C8pDqRDxvSATg7LZRhXQTJCaEqSI4PkSBZCCGEOBFJmCyOP1MlrH9L/RmSCi21sPUjtep6eD/qoseRsy9IDjF4ENpSyLfaKF4o7d9tkNxkaaWkvpmz+kbw+zFJGA1ex/EJCnFiuf/++7tcNK/j1/bt2932KSkpYcqUKcyYMYObb77ZdX94eDh33303o0ePZuTIkTz11FP87ne/45lnnjmiMf71r3+loaHB9bV3bw+DHiGE6I4xfl/f5A5BcFt1cn1Rz47hFwrN1VCT1/vjE+JkZLdB9ntQsl5VJLe2wOYl4LBR7x3DOp8xhAb4oEPH4upkPq5XbWYmpAWTldS+vkLbYnsqSE6RIFkIIYQ4gR3yAnxC9CprkwqSa3ZBREb7BajdAoGx1CWdT05xA2abnRCDF2GWQr53ZDKvcqgKkiO7DpJL61s4Kz2C6cPj8fH0OI5PUIgTzz333MPs2bMPuE1qaqrr76WlpUycOJGxY8fy73//+6DHHz16NMuWLXPdjo6OpqKiwm2biooKoqOjuz2Gj48PPj4+Bz2XEEL0mF8Y+EeothaGYHVfcCKU56hF+HrCwxs0p+q9HJt11IYqxEnB6YQtH8GeHyE4Wd23+X2wmTB7BvObYTzGAAM6dPyvOoXP69U256YFMSgpwnUYu9NJfqWZpHA/Zo1JJjbYcOyfixBCCCF6TMJkcfzYbbDxXSjLVlPiNA22fgiWevA10tDnEnJKzCpI9vMm2FrKL7Z0nqkehVODvpEBTB4oQbIQhyoiIoKIiIiDb4iqSJ44cSLDhw9nwYIF6PUHn9CSnZ1NTEyM6/aYMWNYvnw5d955p+u+ZcuWMWbMmEMeuxBCHDadTn1wXbOr/b62ymRTBbRawKsHLbF8g9W1y6DLe7a9EKciTYOdSyFvqVrE0stXrX3SXI1V78cq/3MICgwAdLxXncoX9epn7bw+BgYktbe+aguSk8P9mDU2mRijBMlCCCHEiU7CZHF8tFUyFPwCIcmq0mfbp9BYAp4+NKZNY2OFDbPVToi/NwGt1axpieOJmnE49gXJU7oMki2cnR7B9OEJeHtKFxchjkRJSQkTJkwgKSmJZ599lqqqKtdjbVXFb731Ft7e3mRlqQq9jz76iDfffJM33njDte0dd9zB+PHjmTdvHhdddBGLFi1i3bp1PapyFkKIXhWcqP7UNBUu+wSoiuXmGmgogvD0gx/DLwzqC1QoHT3oqA5XiBNW0SrY+jH4GNUHLNs/h4Yi7DovfvM/B7/AUEDHf6v78FW9+rm7INWL9OR41yHsTie7Kk2khPtLkCyEEEKcRCRMFseepsGuZZD3DQTFgncA7F4BVdtBp8eUdgkbazwwW1SQbLA3km0K4bHaCTg0HWndViRbGJ8ewRXD4yVIFqIXLFu2jF27drFr1y7i4+PdHtM0zfX3xx57jMLCQjw9PcnIyGDx4sVMnz7d9fjYsWN57733+Nvf/sb//d//0bdvXz755BMGDZIQRghxjBnjwMsPWs3q+gNUwNxco/om9yRM9vRRi/hVbZcw+SiZP38+8+fPx+FwHO+hiK6Ub1Z9kvWeEBitruMrc3GiY53/eLyM0aggOY2v6tUCulOTITUl2XUIu8PJrioTqRH+zBqTQrRRqvyFEEKIk4VO65gInMA6XlTu3LmThoYGgoKCjvewxOHYuxbWvgGeXJef7AAAYJpJREFUvuoCtCxbTZMDzKlTWNcSi2lfkOztbGF7vQdz6yZj13SkRQQwZVA0HhIki9NMY2MjRqPxtH3tO92fvxCilzha4du/ga1ZfaANKhTO/UT1Ux5xY8+O01AMBiNMegQ8jt4iv6f7a9/p/vxPSLV7YNV8aKmD0D5QthHyvgUg228czaH9AR1vV6exdF+QfFmSlcS09g9e2oLkPhEBzBqbTFSQBMlCdCSvfUKIE91Jk7rddttt5Obmsnbt2uM9FHEkqnZA9ruqOjkwGmp3w85vALDEjnELkj21VnbU65hbd363QXKjBMlCCCGE6CkPL7VOg7Wp/T7jvtYX5ioVMveEXxg0VajrGCFOF00VsG4BmCohNBVqdqHlqQV3d/gO7TJIvjK+gcQ+A12HaAuS0yIDmC1BshBCCHFSkuRNHDuNpbDhLWipV32STZWqEggNW9gAVjszXEGyHge76hzMrZuCXdPTJ8K/yyC5rN7ChH4SJAshhBCih0JTQOvQPsHbT1Ulg+qb3BNeBrBbVVWzEKcDSwOsXwi1+aodTFM52rZP0aFR5J1GTdhwQMfCqr6uIPnauEpi0oep/uS0Bclm0iIDmDUmmUgJkoUQQoiTkqRv4thoqYd1C1U/wrA0sJlgyxJw2LAHxrPaaxRNVgch/t7o0MivdfBw3WRa9wXJFwyK6TZIvnyYBMlCCCGE6CFjvKpQtlva72tbmK++h2EyqMX7SjaAU/r6ilNcqwU2vANlOSpItjbi3LwEndNOpWccxRFng07Pwqq+fNsQjw6NWTF7iUofDTp1jW53qMX20iLVYnsSJAshhBAnL0ngxNHXaoGN70DlFjW1VHPAlg/A2oTDN4Q1fhNosDoJ9fdGB+TX2Zlbdx6tmkfXQXKLBMlCCCGEOExBceAT5N7qwhUmF/b8OH7hatZVXUGvDk+IE4rTAZveh6JVENYHHHYcOYvR21uo9whld+QkNJ0Hb1alu4LkG6J3E95vLE69Wuu9rbVF3+hAFSQHSpAshBBCnMwkhRNHl+sC9De1SIfeE3I/BVMFTk8D6wMnUWvTqyBZpyOvHh6pmXTgILlBWlsIIYQQ4jD5BEBwAlga2+9r65vcXKNmT/WElx+0tkD1zt4foxAnirxvIX85GBNA74V90xI8rPU06wPIi5yCQ+/Ngqp0vmuIQ4fGH6K2E9ZvLHYPFRi3tgXJUYGqtYUEyUIIIcRJT5I4cfRoGuz4qv0C1NMAu76D2nw0nSc5wZOotBtcQfKOBg8eqx5PKx6khncfJE/MUEGyl4f89xVCCCHEYQjvBw5r+20vAwREqb/3tNWFTqcC5ZL14HT2/hiFON5K1sPWT8A3GHwCad36KZ7mMmw6b3ZETMHm4c+ble1B8p8iNhGaPharZxCgguT8ShP9ogKZPTaZiECf4/p0hBBCCNE7JI0TR0/hSlWFbAgFXyOUrIXSDQBsCz6bEkeIK0je1uTDE5VjXUHyhYO7CpJbOKd/JJcPkyBZCCGEEEfAGK/CYKe9/b7DaXXhHwb1e6GxuHfHJ8TxVlcI2f8DzQkBUVi3f4tX3S4c6NkRfj7NXiH8p7IfyxtVkPzn8PWE9R2N2Tsc6BAkxwQyc2wy4QESJAshhBCnCknkxNFRvgVyFoHeCwIioXoH5H8PwO6gUewmvkOQbOCp8lHY8CQ13K/rILnRwjn9o7gsK06CZCGEEEIcGWP8vr7JHVpaBCepPw9lET7vQNUWo0paXYhTSEsdbHgbTBUQkkLLnlX4VGajAbtCJ9LoE8Mblf34vjEWPU7uDvuNiD7DaDAkAPtaW1SayIgJYtYYCZKFEEKIU81Jk8rNnz+fAQMGMHLkyOM9FHEwdYXqAtTWrNpbNJbCts8BKPPLIFffzxUkbzUF8FT5CBUkhxm4cHBs10FyRqQEyUIIIYToHX5h4B8B1ob2+4zxgE4FadbGbnd1o9OpNl6lG1R7LyFOdnYrZL8HVdshrC+W0q0Y9v4EQIFxNNV+qbxe2Y8fGmPRo3FP6EqiUgZRFdAPAJtdBcn9Y4KYNTaZMAmShRBCiFPOSZPM3XbbbeTm5rJ27drjPRRxIOYaWP8WNJWqFZ+tDbDlA3DaqfWJZ4P3CEIDfNDpdGwxB/GPsiwVJIf6cMGQroPkcyVIFkIIIURv0ukgIgNs5vb7PH0hMFr9/VCqk/3CoK4Amsp7dYhCHHOaplrUFa2CkFSsjZV4538NQGnAIEoDh/DvigxW7AuS7wv5kfjENEqCsgAVJOdXmRgQq4LkUH/v4/lshBBCCHGUSDoneo/NDBveUi0twvuBwwabl0BrMyavUFYbziIkwHdfkGzk2bJMbHjSJ9SLCzLj8dS3/3dsaGmlfF+QPE2CZCGEEEL0tuBEQHOvKHa1ujiEvsm+RrA0qOsfIU5mBT/DzqUQEIPdaUe39SP0moNa3wT2GEfzWkUGPzbFoEfjLyHfkxQfx+7QM0GncwXJA2NVawsJkoUQQohTlyR0onc4WtUiHSXrISwN0MHWj6G5Bqvej9/8JmIM8N8XJAfz7P9v777D4yqvve9/p49GZdR7cS9y74Vq7LhQjCEQeoAQcpKYhBYCJOdAcpITSDjkHPLgNzyEh0AIhBZaEoqNMabZuBe5F1mS1XsZafp+/xAWCBuMsayRRr/Pdc1lae+tPWsJazFavmfdlePxGVaGJ5lZOCH/qEZydYuXuaPVSBYREZFTxJ0Dttjuq5O7NuE7gZXJJhNY7FC5tWfjE+lNNbtg2/NgdRJ2xOPf8nfsIQ/t1kT2Jp/DIzVjeK81CzNh7k5aybCsVPamzgeTuauRPDbHzbdnDSJJjWQREZGopi6dnLwjb4krXt25osfi6FzV0FRC0GTj49hzcMUndc5Ibk/kvyvH4TOsjEg0mD9x8Bc3kieqkSwiIiKnSHwWxCR2n4/szgWTuXOlcUfTV7+XKxXq9oGnrqejHJC0V0ova62CzU+B34MRn03b9n/h8lUTMNnZlTqfh2sn8H5rJmbC/CxpJaPSXexMP4+w2YovGOJgVyO5QI1kERGRAUCdOjl5B1fBntchLgMc8VD6EVRvx8DEptgzsLgzMZlM7GxP5HcVnY3kkQkBvjFx2Jc2kq1qJIuIiMipYrFBynDwtX7mmL2zyQwnNuoiJhG8TVCrURc9QXul9CJfG2x6qnMD7eShNO1fS0LzbgxM7E2Zyx/qZ/DBJ43knye9w9gUM9szlhC0xHzSSPYwNrezkZzoUiNZRERkIFC3Tk5O+SbY9gLYXJ0b0FTv6Jy3Bmx3TSeQOATzZxrJfsPK6Hgv8yaN7NYsViNZREREel3yYDBC3Y91zU0+kVEXZjBZoWp7z8UmcqqFgp2jLSq3QMpwmir3k1j5AQCHEmfyePvpn8xIDvOz5FVMSPKxLfNifDZ3VyN5XK6bb88cpEayiIjIAKKOnXx99Qdg81875yUn5EBTKcae1wE44CikNXlct0ayz7AyJq6NuZNHYbVaum7T1O6nusXLPDWSRUREpDe5cztXKAe9nx777Nzkz27OdzyuZKjZCR2NPRujyKlgGJ1j6YpXQ2I+LS1NxB74FyYMalwjeC48l783DAZgaeLHTE1oZnvmxXgc6V2N5Am5iXx75iDcLluEkxEREZHepK6dfD2t1bDxCWivh+Qh0F6PUfQSJiNEpS2fqtRZmE0mdnW4uxrJ42KbmTu5EIv10xecTe1+alp9zBudzoVqJIuIiEhvSsgBR0L3URcJOWCygL/1xBrDMUmdc5br9vV4mCI9rnwj7HoNYpLwhCxYd72EzfDTak/nNef5/KlmFACXJOxkYXwxOzIW0xSTjy/waSP56lkFaiSLiIgMQOrcyYnztsCmJ6HhYOeswUAH4W3PYwp5abSkcij1HMxmM7s63Py2fAI+w8p4VwPzJo/EZHN03UaNZBEREYkoR1znSmTvZzbhs9ggIbvz4xMZdWG2gskEVUU9G6NIT2s4CFueAQN8jmT821/BFWzGZ4nlnfgLebBqIiHMnBF7mBvi1rIn7RvUxI3ubCTXeZiY90kjOUaNZBERkYGo33TvtKtzHxH0dY62qNza2Ug2woS2v4jZ10y7OY59afPBamN3h5vflo/HZ1iYEFPHgklDCNvju27T1O6nttXHNwoz1EgWERGRyEkdASFf92Ndc5NPYBM+6FydXF3UfaWzSF/S3gCb/gqeOoLufJp2rCTJW0YIC+uSzuWX1bPoCFsZ7WzgroQ3KUk+jZLEmXiPNJLz1UgWEREZ6PpNB0+7OvcB4TBs/zuUfgRJg8FiJ7jrH1jaKvCb7OxOXUDIFsvuDjf3l4/HZ1iZ4Kzm3PG5+J1pXbc50kieV5jB4gnZaiSLiIhI5LhzO1cUh4OfHvu6c5NjkjtHgGnUhfRFAS9seRrq9hBOGUbVvk1kNG8BYHfS2fx7zTwagk6ybR5+nfgP6hPGsDftG3iDBsV1HiblJ3LNzAISnGoki4iIDGTq4slXc2STjn1vQXwO2GPx71+FtX4vYczsTZmHz5HcrZE8yVnJknFptMfldd3msyuS1UgWERGRiHPnfjI3ue3TYwnZnWMrAp7O5vBXZbGBEYaaXT0fp8jJCIdhxytQ+jFG8mDKy0vJqn4XgNL4ifyseQkl/ngSLH7uS/4HodhMdmQspiNso7jOw+SCJK6eWUC8GskiIiIDnjp58tWUfQw7XwFnIsQk4ivbhL1iHQD7k86gNSaHPV2jLaxMclRw6WgXTQkju27R1O6ntq2zkXyBGskiIiLSF7hSIDYNfM2fHjNbOzfigxMfdeFMgsotEOjosRBFTlrx6s5FIQnZVDa2k1byLyyEaHDm80vvlWxtT8FuCvGfKW+TGGOjKGMJbZYEDta1MTbHzVUz8tVIFhEREUDNZPkqanZ1btKBCeIz8dXux35wBQCl8ZOojxvBnk9WJHsNK5Mc5Vw1Ikx10pSuWzR2rUjOZLFmJIuIiEhfYTJB2ijwe7of75qbfAKb8AG4kqGtFur390x8IieregdsfxFssdT67bj2vYYz3E67NZH/NV/DytZcTBj8JHUtIxz17Ew/j0ZnDgdrPQxOjeWK6Woki4iIyKfU0ZMv13wYNv2lcyOZxAL8zZVYd72KCYOamGGUu6ewtyOhq5E80V7Od4a0cDjtzM5fzuhsJNe1+pg/JpPFE7KxmE0RTkpERETkMxLzAaP7fOSvOzfZ6gAjqFEX0je0VHRunh3ooNmaSnDPmyQGawmaHDzjvIK/NIwB4DvJRZxt38W+lHOojB3DoXoP6fEOrpxeQFq8I8JJiIiISF+iZrJ8sfYG2PAENJVByjACHS2w/UUsRoBmeyYHU85kr9fN/RUTuhrJPxxUSXHmAgyTBejeSL5AjWQRERHpi9w5YIvtvjo5PgvMNgh2gKf2xO7ncEPFZgj6ezZOkRPha4VNT0FTGe3xBdTv+4isjn0YmFgRt5j7608D4Hz3IS53fkSpezrFyadT3uwlxmbhsmn55Ke4IpyEiIiI9DVqJsux+ds7X3zW7oLUEQSDfgJbX8Ae8tBudbMnbT57vEncXzGBjnBnI/mWvP3szzqfkLlz9cKRRvKCsWoki4iISB8WnwUxieBr+fSY2QLuTzYRPtG5ya5UaKuGhoM9FqLICQkFYetzULUNf+IQSg/sZnBz534nW+PP4Cf15xM0zEyPreFHruVUx41md/oiatpCBMMG35ycS2F2QoSTEBERkb5IzWQ5WigI256Dw+sgeSghk5n2LS/j8tfhNzvZnbaQ3b60rkbyeHsFP8kuYm/2EnzWeKB7I/n88Woki4iISB9msUHK8M6VnJ/12VEXJ8Lm7FyVXLu7Z+ITORGGAXteh+LVhBLy2V9ezZC6tzFhUBYzihsbv40nbGO4s5l/d79Ba0wOOzIupM5vo6nDz3njspg+ODnSWYiIiEgfpWaydGcYsOsfcGAVuPMJWxw0b3+ThPYSQljYkzqfHcEc7jvSSHZU8bPMdezLXozHngp80khu86uRLCIiIv1H8mAwQt2PfXYTPiN8YvdzxEP5ps5/pBfpTWXrYNc/MFyp7K/3kVf+BnbDT7M9g++2L6U26CLD1s4vkt/GZHWyI2MxtUYiVc0dnDMqnbmjMzCZ9PpdREREjk3NZOmueDXs/gfEpmE446nf+xHJTdsB2J9yNrsYwv3lnY3kcY5q7k1dzcHM82iK6Vy50+j5pJE8JkONZBEREek/3LmdK5SD3k+PxWeAxQEhH7TVnNj9XCnQWnniIzJETkb9Adj6LIbJRHGHk6TSN4kPN+OzxHJr8Efs8aUQZ/Zzb/r7pJhb2Z2+iEp7AaUN7cwckqLRdCIiInJcaibLpyq2wLbnwRqDEZtCTfF2Uqs/AKDEPZ1dtkJ+Uz4BT9jGSEc9/5mygkOZ36A6vhDobCTXe/wsHKMVySIiItLPuHPBkdB91IXJ3HkcTrwpbHNBoB1q9/RcjCJfxlMPm/4CHQ1UkgHF75EeKCeEhQfMN/BO+xBsphB3ZW5gmFHKgeQzORQ7keJaD+Ny3VwyNQ+H1RLpLERERKSPUzNZOjUchM1/haAPEnKoKT9EaulbmICq2FHsiJnKb8on0hRykG9r4b+SX6c89XRK3dM7v/yTRvKCMZmcNz5LjWQRERHpX+yxnTOSvS3dj3921MWJMJnAHgflGyF8giMyBrhly5ZRWFjItGnTIh1K/xHo6HwtX7+femceDYe2MKSjCIAXHRfzWOtMAJamFzGTIsrdk9mbPIeD9e0MTY/jyun5xDmskcxARERE+ol+00zWi8pTqK0GNj7Z+WfyUGpqa0g88CoWQjQ6cylKOIv7KiZSE4ghw9rO75JfpSl5IvtT54DJRIPHT4PHz8KxaiSLiIhIP5Y6onOkxWclfdJMbi478bnJrhRoPtz5tfKVLV26lJ07d7J+/fpIh9I/hMNQ9BIcXkdLbD4lJYcY3fIhAOscs7mreQkAV6Xs41zrOmpdw9iRdh4HGvxkJDi5Yno+KXGOCCYgIiIi/Um/aSbrReUp4mvtbCTX74fU4dQ1teDa+zIOw4vHlsz2pG/w28qJlPnjSLL4eCD5VQKJQ9mVdi6GyfrJimQfi8Zmcu44NZJFRESkH3Pndq4oDn9m07zYdLA6IeSH1qoTu589DvxtULe3Z+MU+ayD78D+t/G6sthd0URhw9tYCFFmH8LVLf+GgYn57sNc7fyINns6RZkXcrDVQqzDyuXT88hLdkU6AxEREelH+k0zWU6BoB82Pw2VWyBlOA3tAcy7XyEu1ITf7KIoZSH/XT2FfV43seYA9yf/E0dCKkUZFxK0OD9Zkezj3LFZaiSLRKnFixeTn5+P0+kkKyuLa665hoqKim7XbNu2jTPOOAOn00leXh6/+93vjrrPCy+8wKhRo3A6nYwbN47XX3+9t1IQEfnquuYmt316zGTqHH8BJz432WQCawyUbwLD6Lk4RY6o3AZFLxG0uiiqCzG8ZjlOo4MWSzKXtN2B37AxObaOHyZ8RNhsY2f6BRz0JRI2DC6ZksuozIRIZyAiIiL9jJrJA9WRt8Md+gCSBtHsN+Hb+TrJ/kpCJhs7UxfyP3XT2NaejMMU4lfJb5EWZ2V75sV4bYldjeRFnzSSzWoki0SlOXPm8Pzzz7Nnzx7+/ve/c+DAAS655JKu8y0tLcyfP5+CggI2btzIAw88wC9+8QseffTRrms++ugjrrjiCm644QY2b97MkiVLWLJkCUVFRZFISUTki7lSIDYNfM3dj3/dZjJAbAo0HoLWypMOT6Sb5sOw5WlCAS87WlxkVK4mKVRHwOTgO/7bqQ67GeJo4Sepa3GGPexJm88+82BafUEumJDN1IKkSGcgIiIi/ZCayQORYcC+5bDvLUjIps1w0rj7XbI69mFgYk/yOfyfplmsbcvAQph/T13NcJeHoowltDoyaWrv3GxPjWSR6Hfrrbcyc+ZMCgoKmD17NnfddRdr164lEAgA8PTTT+P3+3n88ccZM2YMl19+OT/+8Y/5/e9/33WPhx56iIULF3LHHXcwevRofvWrXzF58mQefvjhSKUlInJsJhOkjQK/p/vxI5vwNZdDOHRi93S4wd8KtXt6JkYR6NwoctNThJvL2RdIw1q1ibzAAQxM/Nz4NzYEBpNq7eCujPWkBSo4lDybnTFTqG7xcc6odOaMTMdk0mt4EREROXFqJg9Eh9fDjpfBkUCHNYGKvRsY1LoJgOKk2TzSfjYrW3IwYXB76sdMdRxmV/q51McOo9UboLrVx7zR6SxSI1lkQGloaODpp59m9uzZ2Gw2ANasWcOZZ56J3W7vum7BggXs2bOHxsbGrmvmzZvX7V4LFixgzZo1X/hcPp+PlpaWbg8RkV6RmA8Y3cdSuFLB5oJwAForvvBLj8lkApMFGr/GqmaRYwkFYOuzUF1EmTmHlor9FHZsBOAJ8xKe984k1hzg7uzNDA4eoCJ+PNsTz6G00cusoSmcPz5br+FFRETka1MzeaCp3QNbngHAF5NG8f5dDG14D4CK+HE8FljAa42dq2++n7qVuY6d7E2dS3nCJNr9QcqbvJwxPJULJmRrRrLIAHHnnXcSGxtLSkoKpaWlvPrqq13nqqqqyMjI6Hb9kc+rqqq+9Joj54/lvvvuw+12dz3y8vJ6Kh0RkS/nzgFbbPfVyd3mJpee+D1NZjBOcEWzyLEYBuz+Fxx6n2pLJqWV1UzyvIcJg48sU/ll+yVYCHNb1nbGhXbSEFPAttTz2VcfZEJeIpdMycVu1a+AIiIi8vXplcRA0lwOG5+AjiYC8XnsPVTCsNrlWAhTHzOIP7OEZ+qGAXB18m4utq/jUNJsipPPwBsMU1LfzswhyXxzci42i/7qiPRXd911FyaT6Usfu3fv7rr+jjvuYPPmzSxfvhyLxcK3v/1tjFO8kdTdd99Nc3Nz16OsrOyUPp+ISJf4LIhJAt/n3hFxZNTF15mbLNJTStfCrn/SbE5kV00Hk5pXYjP8lJrzuM7zI8DEDzJ2Mcu8gw5bEtvTL2Rns5XhGXFcMT2fWIc10hmIiIhIP6dXEwNFR2NnI7m5jGDKSHaXVTOk8g3shp9Wexp/s1/KY9WjALgwsZhrnaupSJjEnrQF+EImiuvamJyfyLem5uG0WSKbi4iclNtvv53rrrvuS68ZMmRI18epqamkpqYyYsQIRo8eTV5eHmvXrmXWrFlkZmZSXV3d7WuPfJ6Zmdn157GuOXL+WBwOBw6H40TSEhHpGRYbpAzr3KT4s46sTG4uh3AQzHoZLb2sbh9se46OkImtjRYKm1YSF26h1RTPN9vvxo+Ny1IO8g3nLgjDzrRz2dKWRKbbwZUzCkiOtR//OURERESOQ6+CB4JAB2x6Cmp2EkoZwe6KZnIOv0FsuBWvJY6XXd/if6omYGDinIRylsa8TZ1rODsyFuMzbBysbWNsjpsrZhRoNYNIFEhLSyMtLe1rfW04HAY6ZxoDzJo1i5///OcEAoGuOcorVqxg5MiRJCUldV2zcuVKbrnllq77rFixglmzZp1EFiIip1DyYChe3f1YTDLY48DfBi3ln65UFukNbbWw6S/42+rZ4kkju3Et6YFyglj5tu+n1JLInIQKLo3fQUygiV1p57IuMJR4p4UrpueTkxgT6QxEREQkSmhWQbQLBWHb81D2MeGkIeyt6SC5bDnJoVqCJjtvxl/Cf1XPJISZGXHV/CR+Oa0xWWzPvIh2cxwHaj0My4jjqhn5uGNskc5GRHrRxx9/zMMPP8yWLVsoKSnhnXfe4YorrmDo0KFdjeArr7wSu93ODTfcwI4dO3juued46KGHuO2227ruc/PNN/Pmm2/y4IMPsnv3bn7xi1+wYcMGbrrppkilJiLy5dx5nSuUg95Pj312brI205Pe5G+HzU8RqjtAkTcNR8Mehvl2AHB38EY2h4cy3lXPjalFuP2VlCbOYK11KiaTiUum5jIiIz7CCYiIiEg0UTM5mh3ZoGP/Sgx3HvsbQ9jK3ic7UEIYM++7L+DnNXPwGRbGuxr4WeJKgtY4tmdcRKs9jYO1beQlx3DNzEGkxOnt5iIDjcvl4qWXXmLu3LmMHDmSG264gfHjx7N69equERRut5vly5dTXFzMlClTuP3227nnnnv43ve+13Wf2bNn88wzz/Doo48yYcIEXnzxRV555RXGjh0bqdRERL6cOwccCeBr7X68a27y19iET+TrCIeg6O+ED29gdyCDtoZKJravAeDJ8Lm8EDyDAnsrt2ZuI81bQnXcaNbEzqXVb3DBhCwm5ydFOAERERGJNppZEM0OvQ+7/oERm8KhNgu+0o2M8xYBsNl9DrfWno8nbGO4s5l/T1mFjTDb0s+nIaaAg7Ue0hOcXDNzEJluZ4QTEZFIGDduHO+8885xrxs/fjzvv//+l15z6aWXcumll/ZUaCIip5Y9tnMVcvVOiP3MWKAjK5NbKyAU6Fy9LHIq7V+Jsf9tDgWSqWxo4QzPu5gJsZZx/MJ/JclWLz/N3kq2r5hmZzbrks6j3GNm4ZgMzhqRjslkinQGIiIiEmW0MjlaVW7rHG9hsXPYH0dd6W7GtK8FYF/cVH7QcAVNIQd59jb+I/1D3OFm9qbMoyJuLCUN7SS6bFw9M5/8FFeEExERERGJgNQREPJ1P+ZM7FyxbISh+XBEwpIBpGIz7HiZap+DfU0G09pX4wi3c5gMvuu9Gac5zE+ztzEoVIrfEsumlPPZ0xrDaUNTOG98FmazGskiIiLS89RMjkaNh2DzUxDooIIUSktLmNS2GjMGFTEj+E7LjdQEYki3dXBP5lqyguUcTD6d4uTTONzkxWE1c8X0fIala76aiIiIDFDu3M45yeHgp8c+OzdZoy7kVGoqhS1/o7HNw7ZmJ2M9a3AHavEQw5W+u+jAyS2ZRYwyH8ZiBChKXcgGTzoT8xP55pRcbBb9miciIiKnRr95lbFs2TIKCwuZNm1apEPp2zx1sOEJaK2ixpbN/sPVTG55G6sRoNGexXc7bqLMH0+ixce/Z61nUPAgh92T2Zs6n8oWH5jgsml5jM1xRzoTERERkchx534yN7mt+/GuucnahE9OkY4m2PQUbXVlbG5NJK99Bzm+A4QxcaP/VkqNDG7M2MMUZzmxgXr2JZ3Jau8IRmTGc/m0fFx2TTIUERGRU6ffNJOXLl3Kzp07Wb9+faRD6bt8bbDxCajfR0PMIHYdbmBC0wpiwh7arW5+GLiVnd5UYs0Bfp69idHB3dTEjmRn+vlUe8L4AmEunpTLlILkSGciIiIiElmulM55yb7m7se75iZXQtB39NeJnIygH7b+DW/5Nra2pxLbfphR7RsB+FXgaj4Kj+Xi5GLmxJWR6D1MWfxklhvTyUmO4crp+STF2iOcgIiIiES7ftNMluMI+mHLM1CxmWbXILaVtzCq6V3coQb8Zid3Gj9iTUcuDlOIO7O3Mj68kyZnLkWZS6jy2WnxBjh/QhanDUuJdCYiIiIikWcyQdoo8Hu6H3e6O2cnY2husvQsw4BdrxE4+AE7OlLwtbcwxfM+JgxeCJ3Fn0MLOSO+kkuSDpLsLaHWNZzltjnEu2K4Yno+2Ykxkc5AREREBgA1k6NBOAw7X4FD7+Nx5bKtqoOCprVkBA4TwsLvzDfyD08hFsLclrWdaeykw5ZEUeZFVIXc1Lf5WDgmk7mjMrTjs4iIiMgRifmA0dnkO+o4GnUhPavkQ0K7Xmefx0WNJ8TM9lVYDT9bwsP4eeA7jIlp4nvpu0n2ldFqT2eVayF+WzyXTs3VXiciIiLSa9RMjgYH3oE9b9DhSGVrTZDkxm0M9u0G4En7ZTzWNgsTBj/K3Mls6x7CJis70y/gsDmbymYvc0als3BspnZ8FhEREfksdw7YYo9endw1N1mb8EkPqd1DeOtzlDYHOeCxM8P7Aa5gM9VGEt/130663cetWUUkBqoJmh2siV9IBSlcODGHSflJkY5eREREBhA1k/u7wxug6EV8FhfbGixYG/dT2NE5V/p12wL+s+V8AL6bvoeznPuwhdvZnbaAQ46RHG5s57RhnS9CrdrxWURERKS7+CyISQJfS/fjR1Ymt1VD0Nv7cUl0aavB2PQXqmtr2OlJYEJgK8m+w3ix8R3/TwhanPw0exvJRgP2cDtbE+ZQFC5gfmEmZw5PjXT0IiIiMsCog9if1e2DzU8TCAbZ3uzC11DOlPYPMAEbbVP4Yeu3AbgydT8L4vYTF6jjQPJZ7IubyqF6D9MGJXPp1DzsVv01EBERETmKxQYpw8DX2v24Ix5ikgEDmsoiEppECb8HNv2FhsN72dqeyqBwCfme7QD8xP999pPHT7O3kWVuJt5Xzd74WbwfHsfpw1M5d1ymRtSJiIhIr1MXsb9qqYSNTxD01FPUnkRTYx0z21dhMYIUW4dwWevNgInFSSUsce/H7S2n1D2dXYlzKK5vZ2JeIpdPz8dps0Q6ExEREZG+K3kwGKGjj3eNutDcZPmawiHY9gLNB9ezrT2VxFATo1s+BODh4IW8Hp7BzVk7GOJoItFbyuG4cbxpzGZiQQoXT8rVOwtFREQkIvQKpD/qaIKNTxBuPMTOQDpVjS3Man8He7iDeksaS9ruIoiVuQnlXJG8l6SOUqrjxrA9dSH76ryMykzgyhn5xDmskc5EREREpG9z53WuUP78OIuuTfg0N1m+puL38Ox+mx2eBMLhAJNb38FMiBWhyTwYvJTr0/cxyVVPckcJ9c5B/NMyh6HZKVwxLZ8YuxaEiIiISGSomdzfBLyw+a+Eq7azJ5hJWX0HM9vfIzbYRLs5jova/51m4pgRV8N30naT4i2hIaaArekXsqfBYEh6LFfPLCDRZY90JiIiIiJ9nzsHHAlHj7o40kz21ECgvffjimLLli2jsLCQadOmRTqUU6epDO+2lznQFKY5YGO6513s4Xb2hnO4NfBDLkgqY567Arf3MO3WZN6wfYPk1CyunFGA22WLdPQiIiIygKmZ3J+EQ7D9BcKlazkYyuBgnY/Jvo9J8lcQMNm4xvdTSo00xrsauCljBym+Mjz2VLZnLGFHk42cxBiunjmItHhHpDMRERER6R/ssZ2NY2/L0cddn2x+ptXJPWrp0qXs3LmT9evXRzqUUyPoI7TteaoqyyjxJzHFv454fy1NRizfDfyEcXGtXJZyEJe/Dkxm3nGeQzBxEJdPzyfT7Yx09CIiIjLAqZncXxgG7HkdY//bHA4msbchxKjgTrI69mFg4tbAUjaGhjHc2cytWdtJClQRNDsoSl/M1rZEUuMdXD2zgJzEmEhnIiIiItK/pI6AkO/o4xp1IV/H/pU07PuYvf50Co29pLfvI2iY+WHgZmIcDr6fsRtnqI2YYAvrnKdT4SrkW1PzGJoWF+nIRURERNRM7jdKPoKdr1Hld7Gj0URe8BBD2zYC8LvQlfwzOJ08exs/zd5GUrAOa9jPrrRFbPDlEu+0cdWMAgalxkY4CREREZF+yJ0LJhOEg92Pd23Cp2ayfEV1+2nb+hoH2+ykGPUMae1cff3r4NUcsgzmJ9nbicFLgq+CHc7JbIqZwYWTc5mQlxjZuEVEREQ+oWZyf1BVBFufpa4jxLYmOymhGsa0vA/A34xv8MfAeaTbOrg7ZyvJRhOuYCP7UuawNlyI3WLmsml5jMyMj3ASIiIiIv2UO/fL5ya314Hf0/txSf/ibyew9Tkqa6ppC1qZ0LIaEwbPBs/mJebw05xtxJt9JHWUUOocxbuOs5k/JpvTh6VGOnIRERGRLmom93WNJbD5KZqaG9ncFEdMqJlJLe9gJsz7TORnvmtJtPj4Wc4W0kwtJPgqKUmcyUe2GYQxcckUrWQQEREROSmuFIhNA9/n5ibbYiAuvfNjrU6WL2MYGLtfp3b/JvYF05niW4PV8LMpPIxfhb7NHdnbybB2kNRRSr09mzdt85g1Kp+FYzMxmUyRjl5ERESki5rJfZmnHjY+SWtNKZvakjGFvExrXYkt7GMPBdzovRmXOcTPcraSZWkj0VtGZfw4PnDNxRMwsWRSDtMHJ0c6CxEREZH+zWSCtFHHXn3sPjLqoqR3Y5L+pbqIpm2vc7AjluGhAyT6q/AYDm4N/JDvZ+5jmLOVBF8lXnMsr1vnMWLoMJZMysFq0a9rIiIi0rfo1Ulf5ffApidpr9jB5vZUfIEQ0z2riAm2UEMyV3nvwjBZuDN7G3n2VpI6DlHvGsKHCedS5zVx3rhMzhyeqpUMIiIiIj3hyEgLwzj2cTWT5Yt4m/Fufp6KhibCYYMhbZsA+FXwGmYktzM1ro6YQCPmcIAVtrNIKhjHt6bl4bRZIhy4iIiIyNHUTO6LQgHY8jc6StaxuT2VFp/BNO9HJPhr8BDDFb67aSSe27KKGO5sJqmjhDZHJmuSLqC0w8E3CjP5RqHeEiciIiLSY9w5YHMdvTo5MQ8wQUfj0TOVRQyD8I5XqSneTkkwjUkdH2IhxMrQJLbYJnFhUgm2UDsufz0fWmfgy57JVTPyccfYIh25iIiIyDGpmdzXGAbsfBXfvlUUeRJp9JmZGNpGasdBglj4rv82DhrZ/ChzJ+NjG0nwVRKwxLIu+Xz2tCdw1og0zh+fhdmsRrKIiIhIj4nPgpiko+cmW50Qn9H5sVYny+cd3kD99uUc8CUxJryL+EA9DUYcvwxdxw8zd2E1Ari95WyzjqMscy5XzhxEeoIz0lGLiIiIfKF+00xetmwZhYWFTJs2LdKhnFoH3sG/45/sao2hymtjlHGQ3NatANzpv5E14THcmL6HGfG1uPz1mI0QW1IWsdmbyayhqVw0WbPVRERERHqcxQapw4+9+rhrbrI24ZPP8NTRuul5ypu8xOAlr20bAD8P3MDitBrSrB0kdxyi2DKYrckLuWTaEAanxkY4aBEREZEv12+6jkuXLmXnzp2sX78+0qGcOuUbCWx9nv1NBmXeGAabaxja9CEADwUv5u/hM7kydT9z3JU4gi04g83sSDqH973DmFKQxKVTc3FYNVtNRERE5JRIGgRG6BjHtQmffE44RGDbi9SU7qXSSGF824eYMXg5dBotsQWcllCD21dBrSmVD+IXsmjqSMbluiMdtYiIiMhx9ZtmctSr209w418prW3mgDeBHFsroxpWYvrkRef/BL/J4qQSLkgqwxrqIN5XzQH3bFYEJzIuL5HLp+fjslsjnYWIiIhI9HLnda5QDno/dzwXTGbwNnc+REo+pK5oFcXBVCYEtuIKNVNpJPOQcTnXp+3DEWwlFAzwkfNMZk2awKyhKZGOWEREROQrUTO5L2itIrzxCSorDrPTm0qaPcCYhuVYjQAfh0dxZ+B7zE2o4PKUg5jDAZK8ZRyOn8i/jNmMyErkqhkFJDi1SYeIiIjIKeXOAUfC0aMuLPbOmcqg1ckCLRU0bniBw60GKbSQ3b4LgDsC/8a1mSXEmX3EeSvZYhlLxpgzmD9GG2eLiIhI/6FmcqR5mzE2PkH1oV1s96bhtsPYxhU4Qh4OhrP4nv82Jsc18J30vZgJk9xxiBrXcF4zn0NuehLXzCwgOdYe6SxEREREop89FhLzwdty9LnE/M4/1Uwe2EIBOjY9S01FKY0mN6NbO0fW/Tm4gFR3PKNimkn0HqaUTGrzF7F4Yh4WbZwtIiIi/YiayZEU9MHmp6nbv4FtvnScditjW94jLlBHgxHPdYGfUuDysTRzF2YMkjpKaHZk80/bApKSU7l6RoF2exYRERHpTakjIOQ7+njiZzbhM4zejUn6jPC+ldTt/pBDoXQm+jfiDHs4EM7iect5fDPlEM5AE94gbHPPZcHU0bhdenehiIiI9C9qJkdKOATbX6Rx92q2t6dgtjgY3b6BZG8JPsPKd/2343A4uTWrCKvJwO0rx2tN4A3nAizubK6aWUBesivSWYiIiIgMLO5cMJkgHOx+PCGnc26yrxW8TREJTSKs4SD1G1+itN1OrqmG9I4DBA0zdwb/jRsz92M3/Lh81WyyTWbYhNMpzEqIdMQiIiIiJ0zN5EgwDNj7Ji3b/8WOtjj8ZifDArvJatsBwC2BpdTasvlp9jac5jCx/lrAxDvOeXjihnDF9HyGpsVFNgcRERGRgcid+wVzk22QkN35sUZdDDyBDlo3PEtNTTV+SyzDWtYAsCy0hImpYbJs7SR6yzhAHt6hC/mG5iSLiIhIP6VmciSUrsGz+e/sbbbSYsQyyChnUFPnC87fBK5go2U8d+dsJc4SxBloxhFs46OYsymPHcO3puVRmK1VDCIiIiIR4UqB2DTwHWtu8mdGXciAEtj9BrV711NqZDC+fS0Ow8e28GA+sp/OOQmVuAINtIRs7E5dwHnTRhBjt0Q6ZBEREZGvRc3k3la9k471f+VAXTtVYTc51maGN6zCBDwdnMuzzOfu7K0kWf3YQu3E+mvZEjOTopipXDwll8n5SZHOQERERGTgMpkgbRT4PUef62oml2hu8kBSs4vaDa9R5otlmKmMFF8ZPsPGvaHv8p3M/VgNP3ZfA1uc05k8dRYFKbGRjlhERETka1MzuTc1leFb92dKKmsoCaWS5fAxuu4tLEaQd0MT+K/Q1fw0ezuZ9g4sYT+J3nL2OCfwUcyZLJ6Yy6whKZHOQEREREQS8zv//HzDOCEbzNbORnNHQ+/HJb3P10rDx89Q09iE1WZjUPN6AH4bvJwFGS0kmP0kdpSy11SAbfQiTh+WGuGARURERE6Omsm9pb0B/7r/x+GS/ewPZpAWY2J03XLs4Q52hfO5ObCUH2XtZqizFZMRIqmjhBLHCN6J+Qbzx+UxZ1S65qqJSK9bvHgx+fn5OJ1OsrKyuOaaa6ioqOg6f+jQIUwm01GPtWvXdrvPCy+8wKhRo3A6nYwbN47XX3+9t1MREek57hywuY5enWy2dm7EB9CouclRzzDwbn+VuuKtVJkyKGz9EBsBPgoVUhlXyITYBuL8tdSHYijJPo/zJg/FatGvXyIiItK/6dVMb/B7CG54gsr9W9gdyCTRZWNUw0pcwUaqjCSu99/BFRllTIxtAMMgueMQNbYc3rTP5/TCAhaOzVIjWUQiYs6cOTz//PPs2bOHv//97xw4cIBLLrnkqOvefvttKisrux5TpkzpOvfRRx9xxRVXcMMNN7B582aWLFnCkiVLKCoq6s1URER6Tnw2xCR9wdzkT1YtaxO+qGdUbKZ68+scDiYxKryfpEA1LUYMD5qu4fLUQ1hDXsz+ZrbGns5p06eTFu+IdMgiIiIiJ80a6QCiXihAeMuzVO/8gN2+dOJinAxv+ZBEXzkew8EN/js4O6WJsxKqwDBI9B6mxZzE646FTCwcweKJOVjMaiSLSGTceuutXR8XFBRw1113sWTJEgKBADabretcSkoKmZmZx7zHQw89xMKFC7njjjsA+NWvfsWKFSt4+OGHeeSRR05tAiIip4LFCqnDofj9o88lFgDvQ3Np5xgMLQiITu0N1Kx5hroWL/F2K3n1mwD4z+C3uTSnGrspREJ7GUXm4aROXMTk/MTIxisiIiLSQ7Qy+VQyDIxdr1Gz9U12exOxx8QyqGM7GZ49hAwTSwM/JifByuKkzh2/4/w1BAwLb9rnMXTkOL45OReb3gonIn1EQ0MDTz/9NLNnz+7WSIbOcRjp6emcfvrpvPbaa93OrVmzhnnz5nU7tmDBAtasWfOFz+Xz+Whpaen2EBHpU5IGgRE6+nh8FphtEOgAT22vhyW9IBymddMLNJTtod6azojmD7AQ5s3QNGISsyhweIj3VVIdjqd20AUsGJ+ndxmKiIhI1FCn8lQ6+C51619ib1sM2BPI8RdT8MmmHPcGr6PDlcO1afswmcAZaMIa6mCl7UySh03nsql5OG2WCCcgIgJ33nknsbGxpKSkUFpayquvvtp1Li4ujgcffJAXXniBf/3rX5x++uksWbKkW0O5qqqKjIyMbvfMyMigqqrqC5/zvvvuw+12dz3y8vJ6PjERkZPhzgOLDYLe7sfNFnDndn7cVNr7cckpFyz5iNrtb1NOKqMDO3AH66k1EviL5WIWJpVjC7UT9rezM/Ec5s6YTLzTdvybioiIiPQTaiafKuWbqF/7NAebwnjtSWRQx9CG1QD8KXguG+zT+GHGLswmsIXaifXX8aFlOqHBZ3PF9HxiHZpAIiKnxl133XXMTfM++9i9e3fX9XfccQebN29m+fLlWCwWvv3tb2MYBgCpqancdtttzJgxg2nTpnH//fdz9dVX88ADD5xUjHfffTfNzc1dj7KyspO6n4hIj3PngCMBfK1Hn0ss6PxTc5OjT2sV1WuepcYTJs3iJadtOwC/DF7PVVmHMRMmrv0wO62FDJ46n+EZ8REOWERERKRnqWN5KtQfoOmjJyitbaLRkkWG2cOImuVdb397yryYe7K2YjeHsYT9uL2H2WiZSE3uQq6fWUBSrD3SGYhIFLv99tu57rrrvvSaIUOGdH2cmppKamoqI0aMYPTo0eTl5bF27VpmzZp1zK+dMWMGK1as6Po8MzOT6urqbtdUV1d/4YxlAIfDgcOhjYpEpA+zx3Zutle9E2LTup87sglfcxkY4d6PTU6NUJCGj/9GY9Uh2u25jGl6HTMGzwXPZni6i2RrHe6OcirCyXSMvpCLRmdFOmIRERGRHqdmck9rrablw8coLy+lwpRHuiPMyJq3sBs+toSH8p/Gd/hZThGxliAmI0RSRwl7zMPYm3EeV80aQpY7JtIZiEiUS0tLIy0t7fgXHkM43NkU8fl8X3jNli1byMr69BfoWbNmsXLlSm655ZauYytWrPjCZrSISL+ROgLKNx19PD4TLPbOERhtNb0fl5wSvn2rqNv1PhWmTMZ0bCY+3ExZOI1VMfO4Nq4Ee7AVn9/PvvTFnD9jPA6rRtaJiIhI9FEzuSd5W2hb8/+oLN7JIXJIdpkZUfsWrlALZeE0fhy8mVtyd5Ni84FhkNxxiDJzNhtSFnPxzJEMTYuLdAYiIl0+/vhj1q9fz+mnn05SUhIHDhzgP/7jPxg6dGhXI/jJJ5/EbrczadIkAF566SUef/xxHnvssa773HzzzZx11lk8+OCDnHfeeTz77LNs2LCBRx99NCJ5iYj0GHcumM0QDoL5My+rTebOmcoNBzpHXcQkRS5G6RFG4yEq1j5Pjd9Grq2JnI7dhA0T/2Vcz2XphzEZIWLbK9jsnMq4md8gJ1ELRERERCQ6aWZyTwn66NjwF6p2f8wBI4vEWCfDGt7H7a+mxXDxveDtXJ9dSp6jHYBE72HqSeSD+HOZP20s43MTIxu/iMjnuFwuXnrpJebOncvIkSO54YYbGD9+PKtXr+42guJXv/oVU6ZMYcaMGbz66qs899xzXH/99V3nZ8+ezTPPPMOjjz7KhAkTePHFF3nllVcYO3ZsJNISEek57twvmZv8yagLbcLX/wV9VH/4V5rrqzAcSRQ0fgTAY6FFnJYZwmkO4e44TAmZmMZexIwhX+/dPyIiIiL9gVYm94RwGP/WF6jaupIDwTQS4mMpaNlAWscB/IaF7wduYVFGM6NimgGI89XgDZt5N3Y+M6ZMZdbQlAgnICJytHHjxvHOO+986TXXXnst11577XHvdemll3LppZf2VGgiIn2DK6VzXnJr5dGrj49swtdcBpnjej826TFtRW/QuH89NZYsxrV+TKzhYXc4j+L4aSx2VuAMNNHmD3M4bxEXTxmFxWyKdMgiIiIip4xWJp8swyC4+w0q17/KQZ8bV1wCme17yW3dAsDdgRsZlWJjWlwdAM5AE6aAh/ccZzFswunMK8zEZNILThEREZF+x2SCtFHg9xx9Li4DrE4I+aGjqddDk54RqtlD5bqXqA3GUmCqIst3EL9h4X/N13BeSiXmcBB7RzV74qYxfdY52khbREREop6ayScpXLKWio/+RonHhjU2iZRAJYMbPwDgoeDFhNz5fCOxAgBbqB2Xr5Y11um4x8xn8cRsrVwQERER6c+OjLMwjO7HTabOuckAntrejUl6ht9DxXt/oaWlCXtMLPmNawFYFrqIRZmtWAiT0FHKIVMuiZMuZmyuO8IBi4iIiJx6aiafBKN6JxWr/x+VzT5CsRm4w80Mq3sbC2FeCp3OppjZfCulGABL2E9Cx2E2mscTHLmYS6fla4dnERERkf7OnQs217FXJx8ZddGuZnK/YxjUb3yZltJtNNlzKGhaQww+NoWHEUgeQbrNi8tfT1PASv3gxZwzcYjebSgiIiIDgprJX1fzYarefZSaujpandnEm30Mr12O3fDzcXgUz1gv5rsZezGZwGSESGovYZdpKDVDL+KyWUOJdWhctYiIiEi/F5/VOS/Z13L0uSOrlj31EA72blxyUnyHt1C7+V/Ukkh+8BBZgTLaDQdP2b7F6Qm1WMJ+zB31HEiczRmnnYnLrtf2IiIiMjComfx1tDdQs+oRassPUm/PI94Ow2qXExtu5UA4i/tMN7I0ew9WkwGGQXL7IYqNTPblXsy3Zo8mWbPURERERKKDxQqpw8HXevS52DSwxYARgqay3o9Nvp6OJsree4pWTwfxDhsFLesAeCj8Lc7NaMSEQXx7KYdsQ8idfhGDU2MjHLCIiIhI7+k3zeRly5ZRWFjItGnTIhuIv5269x+j9uAWKq25xDmtDKl/l8RALfVGPD81fsQPsg/gNIcBSPQepjqcwPbMi1hy+kSyE2MiG7+IiIiI9KykQZ0N488zmcD9yerk+v29GlJf8c9//pORI0cyfPhwHnvssUiHc3yGQeXaZ+mo3IPHlU1uw4fYCbI6NJ70tAziLEFi/TXUBZ14RlzMaYV5kY5YREREpFf1m2by0qVL2blzJ+vXr49cEKEgjWufom7X+5Sbc0hwxZDXtI407yF8ho1bQj/mmpxKEqwBAOJ8NbQFYUPSIuaeNpNh6fGRi11ERERETg13HlhsEPQefS7pk7nJjcW9G1MfEAwGue2223jnnXfYvHkzDzzwAPX19ZEO60u17f+Ixu1vU2dJJ7tjLxmhKpqMWJbHnkdhbDPWkJdwexOlaXM4Z/YMbJZ+8+uUiIiISI/Qq5+vyjBo3fIyNVve4LCRRlxcHBmtO8j1FAHw0+C/sSirnQxb5y8RzkAThr+NdbHnMG32PCbmJUYweBERERE5Zdw54Eg49qiL1JEw+CyYekPvxxVh69atY8yYMeTk5BAXF8eiRYtYvnx5pMP6QuHWGg5/8FdafGESbSGGtm0E4CGuYGFqPRgGsZ5SDjlGMeq0C0lPcEY4YhEREZHep2byV9Sx9x0q175ARTCemLgkkr2lDGpeC8BvA5dTmOFisLMNAFuoHYe3lvWOmQyefgGnDUuJZOgiIiIicirZYzs32/MeYxM+eyy4UsBs6f24TtJ7773HBRdcQHZ2NiaTiVdeeeWoa5YtW8agQYNwOp3MmDGDdevWdZ2rqKggJyen6/OcnBzKy8t7I/QTFw5R9t5TeOtKCcRmkVv/IRbC/DM0kzGZsVhNBnHeSmrCCZjHX8qkwRmRjlhEREQkItRM/gp8pZsoe/cJajpM2OLTiA/WMaRuFWYMngmegzllKONjGwGwhP3EtZex1TKOhCmXsGBcFiaTKcIZiIiIiMgplTri2GMu+jGPx8OECRNYtmzZMc8/99xz3Hbbbdx7771s2rSJCRMmsGDBAmpqano50pPXsGMlLfvep9GRTUZrEWlGHVVGEjvdZ5Jjb8cWasfvbaMqdz5nz5iE2azX9yIiIjIwqZl8HMHaA5S8/X9pbGkjHJ9NTNjDkJq3sRNgdWg8O91ncLq78wWzyQjhbj/ELtNQAuMu54JJBVj0QlNEREQk+rlzwWyGcDDSkfSYRYsW8etf/5qLLrromOd///vfc+ONN3L99ddTWFjII488gsvl4vHHHwcgOzu720rk8vJysrOzv/D5fD4fLS0t3R69wV9fSsWa52gJ2kk2tTGiYwsAj1ou5/TERjDCxLSVURo7nolnXECC09YrcYmIiIj0RWomfwmjtZpDy/8/Wusr6IgvwGkOMbjmbeKMNnaF83jZ9U3OTar45GKDxPZDFIczqR95BRfPGoXT1v/ezigiIiIiX4M794vnJkchv9/Pxo0bmTdvXtcxs9nMvHnzWLNmDQDTp0+nqKiI8vJy2traeOONN1iwYMEX3vO+++7D7XZ3PfLy8k55HgT9FL/7JP7mKkyxqeTVfwjAc6FzmJ5hwmSC+PbDVJNC3JRvMSo76dTHJCIiItKHqZn8BQxvC8XL/z/aKnbTEjsYp9VMXs0qkkOdb3l72HY9l6Yd5sgEC7f3MFXBeEoHX8pFp08kzmGNbAIiIiIi0ntcKRCbBr7eWU0baXV1dYRCITIyus8OzsjIoKqqCgCr1cqDDz7InDlzmDhxIrfffjspKV+8l8jdd99Nc3Nz16OsrOyU5gBQsfGf+ErW0xqTR2rjZpJppjicQXPqBNzWAPZACx1+Pw2Dz+OMSWNOeTwiIiIifZ06nscS9FP2zmO0FW+gMaYAp91GVv1HZAVK8RgOfm36Ny7LrOLIBIs4bzUtPoO92Ys596zTSIlzRDZ+EREREeldJhOkjYL6/ZGOpE9ZvHgxixcv/krXOhwOHI7eex3tqdxD3YaXaSEWd7CeEf6dhAwTzzou4ey4NkxGCLungv3umcw4c5HedSgiIiKCViYfLRzm8AdP07x7FfX2bJwxLlKat1PQ0fni8pfGjVyU3YTNbADgDDQR8LayM3UBZ5+zgNwkV4QTEBEREZGISMzv/NMwIhtHL0hNTcVisVBdXd3teHV1NZmZmRGK6qsz/B6KVz2J39OEzelmSFPneIunWMSs9M6513HtZVRZssmadTl5KXGRDFdERESkz1Az+bMMg+qNr9G45TXqzSk4XQkktB1kROvHADwQvoqzcgxclhAAtlA71vYadsSfxsSzlzAiIz6S0YuIiIhIJLlzweYCvyfSkZxydrudKVOmsHLlyq5j4XCYlStXMmvWrAhG9hUYBgc/eolgxVbaY/NIbthAAh6KwgXEpA/DYQ7j8DfR5gvjHXkh0wqHRjpiERERkT5DYy4+o2HPB1Sv/RvNoRgc7hRcvhqGN64G4InQQoZlp5BsbQfAEvbjaiulyDGJgjOuZHLBF89/ExEREZEBID4LYpI65yY7+v9K1ra2Nvbv/3RsR3FxMVu2bCE5OZn8/Hxuu+02rr32WqZOncr06dP53//9XzweD9dff30Eoz6+huIttG77F22WZOK8lQwP7sNn2Hg79gJmODswh4NYPJVUpc3hzDPmYTky205ERERE1Ew+oqV0O2Wr/h/tviCWxFwcwRaG1L6NnSDLQ1MxpReSY+/cndtkhIj3FLPXOpz4Gd/mjFHZEY5eRERERCLOYoXU4VD8fqQj6REbNmxgzpw5XZ/fdtttAFx77bU88cQTXHbZZdTW1nLPPfdQVVXFxIkTefPNN4/alO9ELVu2jGXLlhEKhU7qPscSaG+idPVfCPjascdlMqrqLTDBX0znMy3FB4aBy1NCpWMQQ8+4nGTthSIiIiLSjZrJQHttCcXL/z/8bQ2E3cOwh33kVq8knna2hIdyIOUsJro+2ZnbMHB7DlFiZBGedA3fmDQUk0mrFUREREQESBoEB9+NdBQ94uyzz8Y4zvznm266iZtuuqlHn3fp0qUsXbqUlpYW3G53z93YMNi/+m9QuwdfwhCya97DZfKxPjySrKwszKYATl8DrUErTLyEsUNyeu65RURERKLEgJ+Z7G9tYO8bDxNsKMWXMASLOUxG9WrSjXrKwmmsSriQifEtXdcndJRRFYqjpfBKFs2cgNUy4L+FIiIiInKEOw8sNgh6Ix2JfE7Fzg/x7l5JmzMTR0sJQ8IltBlOtrrnkmIPYAn5wFNDffbZnDbrDC0YERERETmGAd0JDfna2fX6MoyqHXQkDMVisZBU/TH5oVJaDBd/c13JzKTWrutd3mqafQbVQ77JwrNOw2mzRDB6EREREelz3DngSABf6/GvlV7T3lRN5YdPEwiFsZlNTPB8BMCz1sWMSQyAYeBsK6XGNZwxc75FrENv4BQRERE5lgHbTDZCAXa8+SfCpWvxxBVgsdlx1RcxMrCTgGHhEds1nJ7a3nW9w9+Ev6OFspxzmTt3EQlOWwSjFxEREZE+yR4LifngbTn+tdIrjHCIvSufwtxUQjA+h8y6D7GbgqwOT2RwehIATm8NLYaLuKlXMCQrLcIRi4iIiPRdA7OZbBjsevdvhPa9jScmC4sjFmtTMRM61gLwR/PlzM40OPLONlvQg8lTTUnqWcyefylp8dqIQ0RERES+QOoIjbnoQw5uXEH40Ad0uHKxNOyngErqjASqUmfisoaxBDsIdzTRMmg+06ZMi3S4IiIiIn3agGwm7133Ot6tr9BhS8ISk4iprYZJLasA+CvnMj47Doupc7MRS9iPvbWUkvjJjPvGteSlxEUydBERERHp69y5YDZDOBjpSAa8xupSGtY9T8BkIxwOMtW7BoB/OM4nPzYEhoGjtZQ69xgmz/kmduuA/PVIRERE5CsbcK+WDhWtoWXt0/ixYYpLB28zYxvewmoK8VZ4BmlZBTjMYQBMRoiY1mIOx4ykYO4NjMxJiXD0IiIiItLnuXM1N/kkLFu2jMLCQqZNO7lVwqGAn30r/4zFU03IlcHQhtVYTAZvMZPh6Z0LRJwdFbRY3KTPuorM5ISeCF9EREQkqg2oZnJF8W6q3/0TRrADIz4HAh0MqV1BnMnLhvBIAllTSLB+soLEMIhtLabKkk3Cad9l4tC8yAYvIiIiIv2DKwVi08Cnuclfx9KlS9m5cyfr168/qfvs+ugfWMs34I3Lx1K3myzqKDdSCKSNx2IysAQ9hLxt+EZcwIQxY3soehEREZHoNqCayZW71mBvryCQMAiMEOlVq8mgkWIjk5L0c0ixB7qujfOUUG8kYJ5yHbPHj8Z0ZICyiIiIiMiXMZkgfTT4PZGOZMCqKN5N+5aXCdji8HnbmRHsbEy/G3suKU4DjDD2llIaUqYw7awLMZv1Wl9ERETkqxhQzWQIY5hsgImYqnUMpYx6I56Pk84nO+bTmXbOjmpaAyY6xlzGWbNm6MWliIiIiJwY9yfvajOMyMYxQJVtfB2bv5GAI4VxzZ17o/zLdBaDk50AONvKaLFnUHDmNbjjnJEMVURERKRfGWDN5E5G9U4mhnfiM2y8FX8xBfGfNottviYCHS00D72QOecsxGoZkN8iERERETkZ7lywubQ6OUKMgJcQNhy1W0k1NXPQyMaROQKTCaz+ZoLBAJZxFzNi6JBIhyoiIiLSrwy4TmlTR4DTgp27OL8ccxGDk+xd56xBD6a2Kupz5jJ7waU4bZZIhSkiIiIi/Vl8FsQkaW5yBDV5Q0wLbyNgWNiSOI9YK5jCQaxt5bRmzmLK6Qs0yk5ERETkBA2oZnJ92R7OCq0F4GXrIgrS3F3nzCEftpYS6tKmM+Xc63C7HJEKU0RERET6O4sVUoeDrzXSkQxIHR3tTA9uAOBN2zlkJXS+tne0ldISk8eIOVfjtNsiGaKIiIhIvzRgmsn7trzP6RVPYDEZrDTPJD0jp+ucKRzE0XyQ+vhCRi/8N9ITEyIYqYiIiIhEhaRBYIQiHcWAY4RDJJW9TYKpnZ3GINzpBQBYvY34Qybip15Obk7Oce4iIiIiIscyYJrJrSt+i8vkY5MxAnvW2E831TMMnC3FNDnzyJ33A/KzMiIbqIiIiIhEB3ceWGwQ9EU6kgHl4+cfYKKxiw7DTknKmdgsJkyhAFZPJd78Mxk/9cxIhygiIiLSbw2YZnLh0md5O2YhvpgsrOZPZ6M5W0tosySQdOaNjBw2NIIRioj0XT6fj4kTJ2IymdiyZUu3c9u2beOMM87A6XSSl5fH7373u6O+/oUXXmDUqFE4nU7GjRvH66+/3kuRi4hEkDsHHAkadXGCli1bRmFhIdOmTTvhrzXCYeKK3wTgXfNMEmMdYBjYWktoSxjG2HlXY7VqXxQRERGRr2vANJOdrjiSxs3HYTG6jtk8VfjCZuxTv8348ZMjGJ2ISN/205/+lOzs7KOOt7S0MH/+fAoKCti4cSMPPPAAv/jFL3j00Ue7rvnoo4+44ooruOGGG9i8eTNLlixhyZIlFBUV9WYKIiK9zx4LifkadXGCli5dys6dO1m/fv0Jf63JbGbUT1bwr4RvkRrT2TS2dNQRNNlJmXUVKckpPR2uiIiIyIAyYJrJn2fxNmL4WwmP/SZTZ8/TTs4iIl/gjTfeYPny5fz3f//3Ueeefvpp/H4/jz/+OGPGjOHyyy/nxz/+Mb///e+7rnnooYdYuHAhd9xxB6NHj+ZXv/oVkydP5uGHH+7NNEREIiN1BFjskY5iQLHabKRkDcZkNmEK+rB21BEaNp/R46dHOjQRERGRfm9ANpNN/jasnmp8Q+Yzbe43P52fLCIi3VRXV3PjjTfy1FNP4XK5jjq/Zs0azjzzTOz2TxslCxYsYM+ePTQ2NnZdM2/evG5ft2DBAtasWfOFz+vz+Whpaen2EBHpl9y5naMuJAIM7K2HaE8ezfhzLtPiEREREZEeMOCayeawH3trKZ7sWUxZ9B1sVmukQxIR6ZMMw+C6667j+9//PlOnTj3mNVVVVWRkdN+49MjnVVVVX3rNkfPHct999+F2u7seeXl5J5OKiEjkuHPBqWZyJDj8TQSs8eSd9W3i4uIjHY6IiIhIVBiQzeSOlHGMP+8HxMTERDocEZFed9ddd2Eymb70sXv3bv7P//k/tLa2cvfdd/d6jHfffTfNzc1dj7Kysl6PQUSkR7hSIC490lEMSEFLDNYxF1AwfHykQxERERGJGgNqWa7JZMaTVMiIc5fiTkqOdDgiIhFx++23c911133pNUOGDOGdd95hzZo1OByObuemTp3KVVddxZNPPklmZibV1dXdzh/5PDMzs+vPY11z5PyxOByOo55XRKRfMpkgbRQEvZGOZGCx2PBmTWHymUsiHYmIiIhIVBlQzeTBUxcSmjSX1Mz8SIciIhIxaWlppKWlHfe6P/zhD/z617/u+ryiooIFCxbw3HPPMWPGDABmzZrFz3/+cwKBADabDYAVK1YwcuRIkpKSuq5ZuXIlt9xyS9e9VqxYwaxZs3owKxGRPmz4fAgFIh3FgDL09G9hd7pwOPRORBEREZGeNKCayUlpWZEOQUSk38jP7/4Pb3FxcQAMHTqU3NxcAK688kp++ctfcsMNN3DnnXdSVFTEQw89xP/8z/90fd3NN9/MWWedxYMPPsh5553Hs88+y4YNG3j00Ud7LxkRkUiKSYx0BANOWnZBpEMQERERiUoDbmayiIj0HLfbzfLlyykuLmbKlCncfvvt3HPPPXzve9/rumb27Nk888wzPProo0yYMIEXX3yRV155hbFjx0YwchER6auWLVtGYWEh06ZNi3QoIiIiIvI5JsMwjEgHcSJaWlpwu900NzeTkKCdsUVkYBjotW+g5y8iA9NAr30DPX8RGZhU+0Skr9PKZBERERERERERERE5LjWTRUREREREREREROS4ItJM/uc//8nIkSMZPnw4jz32WCRCEBEREREREREREZETYO3tJwwGg9x2222sWrUKt9vNlClTuOiii0hJSentUERERERERERERETkK+r1lcnr1q1jzJgx5OTkEBcXx6JFi1i+fHlvhyEiIiIiIiIiIiIiJ+CEm8nvvfceF1xwAdnZ2ZhMJl555ZWjrlm2bBmDBg3C6XQyY8YM1q1b13WuoqKCnJycrs9zcnIoLy//etGLiIiIiIiIiIiISK844Wayx+NhwoQJLFu27Jjnn3vuOW677TbuvfdeNm3axIQJE1iwYAE1NTUnHayIiIiIiIiIiIiIRMYJN5MXLVrEr3/9ay666KJjnv/973/PjTfeyPXXX09hYSGPPPIILpeLxx9/HIDs7OxuK5HLy8vJzs7+wufz+Xy0tLR0e4iIiIiIiIiIiIhI7+rRmcl+v5+NGzcyb968T5/AbGbevHmsWbMGgOnTp1NUVER5eTltbW288cYbLFiw4Avved999+F2u7seeXl5PRmyiIiIiIiIiIiIiHwFPdpMrqurIxQKkZGR0e14RkYGVVVVAFitVh588EHmzJnDxIkTuf3220lJSfnCe9599900Nzd3PcrKynoyZBERERER6UOWLVtGYWEh06ZNi3QoIiIiIvI51kg86eLFi1m8ePFXutbhcOBwOE5xRCIiIiIi0hcsXbqUpUuX0tLSgtvtjnQ4IiIiIvIZPboyOTU1FYvFQnV1dbfj1dXVZGZm9uRTiYiIiIiIiIiIiEgv6tGVyXa7nSlTprBy5UqWLFkCQDgcZuXKldx000098hyGYQBoIz4RGVCO1LwjNXCgUe0XkYFItV+1X0QGnoFe+0Wk7zvhZnJbWxv79+/v+ry4uJgtW7aQnJxMfn4+t912G9deey1Tp05l+vTp/O///i8ej4frr7++RwJubW0F0EZ8IjIgtba2Dsi3/Kr2i8hAptqv2i8iA89Arf0i0veZjBP85653332XOXPmHHX82muv5YknngDg4Ycf5oEHHqCqqoqJEyfyhz/8gRkzZvRIwOFwmIqKCuLj4zGZTCf0tS0tLeTl5VFWVkZCQkKPxNMXKc/oojyjy9fN0zAMWltbyc7Oxmzu0QlF/cLXrf36exV9BkquyjO6qPZ/Par9X055RhflGX1U+0UkWp3wyuSzzz77uG+3uOmmm3psrMXnmc1mcnNzT+oeCQkJUf8/LlCe0UZ5Rpevk+dAXplwsrVff6+iz0DJVXlGF9X+E6Pa/9Uoz+iiPKOPar+IRBv9M5eIiIiIiIiIiIiIHJeaySIiIiIiIiIiIiJyXAOqmexwOLj33ntxOByRDuWUUp7RRXlGl4GSZ18xUL7fAyVPGDi5Ks/oMlDy7CsGyvdbeUYX5Rl9BlKuIjKwnPAGfCIiIiIiIiIiIiIy8AyolckiIiIiIiIiIiIi8vWomSwiIiIiIiIiIiIix6VmsoiIiIiIiIiIiIgcl5rJIiIiIiIiIiIiInJcUddMfu+997jgggvIzs7GZDLxyiuvdDtvGAb33HMPWVlZxMTEMG/ePPbt2xeZYE/Cfffdx7Rp04iPjyc9PZ0lS5awZ8+ebtd4vV6WLl1KSkoKcXFxfPOb36S6ujpCEX89f/zjHxk/fjwJCQkkJCQwa9Ys3njjja7z0ZDjsdx///2YTCZuueWWrmPRkOsvfvELTCZTt8eoUaO6zkdDjkeUl5dz9dVXk5KSQkxMDOPGjWPDhg1d56OlFvUVqv2fioafo4FY+6O17oNqv2r/qaPa/6lo+DlS7e8ULXmq9qv2i0j0irpmssfjYcKECSxbtuyY53/3u9/xhz/8gUceeYSPP/6Y2NhYFixYgNfr7eVIT87q1atZunQpa9euZcWKFQQCAebPn4/H4+m65tZbb+Uf//gHL7zwAqtXr6aiooKLL744glGfuNzcXO6//342btzIhg0bOOecc7jwwgvZsWMHEB05ft769ev5v//3/zJ+/Phux6Ml1zFjxlBZWdn1+OCDD7rORUuOjY2NnHbaadhsNt544w127tzJgw8+SFJSUtc10VKL+grVftX+/pbjZ0V73QfV/iOipRb1Far9qv39LcfPUu2PjjxV+0VkQDKiGGC8/PLLXZ+Hw2EjMzPTeOCBB7qONTU1GQ6Hw/jb3/4WgQh7Tk1NjQEYq1evNgyjMy+bzWa88MILXdfs2rXLAIw1a9ZEKswekZSUZDz22GNRmWNra6sxfPhwY8WKFcZZZ51l3HzzzYZhRM9/z3vvvdeYMGHCMc9FS46GYRh33nmncfrpp3/h+WiuRX2Ban90/Bx9XrTW/miv+4ah2n9ENNeivkC1Pzp+jj5Ptb//5qna3ymaa5GIDFxRtzL5yxQXF1NVVcW8efO6jrndbmbMmMGaNWsiGNnJa25uBiA5ORmAjRs3EggEuuU6atQo8vPz+22uoVCIZ599Fo/Hw6xZs6Iyx6VLl3Leeed1ywmi67/nvn37yM7OZsiQIVx11VWUlpYC0ZXja6+9xtSpU7n00ktJT09n0qRJ/OlPf+o6H821qC+K5u+3an+n/pzjQKj7oNoP0V2L+qJo/n6r9nfqzzmq9kdPnqr9IjIQDahmclVVFQAZGRndjmdkZHSd64/C4TC33HILp512GmPHjgU6c7Xb7SQmJna7tj/mun37duLi4nA4HHz/+9/n5ZdfprCwMKpyBHj22WfZtGkT991331HnoiXXGTNm8MQTT/Dmm2/yxz/+keLiYs444wxaW1ujJkeAgwcP8sc//pHhw4fz1ltv8YMf/IAf//jHPPnkk0D01qK+Klq/36r9id2u7485DoS6D6r9qv2REa3fb9X+xG7X98ccVftV+4983t9yFRE5whrpAOTkLV26lKKiom4zqKLJyJEj2bJlC83Nzbz44otce+21rF69OtJh9aiysjJuvvlmVqxYgdPpjHQ4p8yiRYu6Ph4/fjwzZsygoKCA559/npiYmAhG1rPC4TBTp07lN7/5DQCTJk2iqKiIRx55hGuvvTbC0Um0UO3v3wZK3QfVftV+6Umq/f2bar9qv4hINBhQK5MzMzMBjtoltrq6uutcf3PTTTfxz3/+k1WrVpGbm9t1PDMzE7/fT1NTU7fr+2OudrudYcOGMWXKFO677z4mTJjAQw89FFU5bty4kZqaGiZPnozVasVqtbJ69Wr+8Ic/YLVaycjIiJpcPysxMZERI0awf//+qPrvmZWVRWFhYbdjo0eP7nprXzTWor4sGr/fqv39P8eBWvdBtT+aalFfFo3fb9X+/p+jar9q/xH9MVcRkSMGVDN58ODBZGZmsnLlyq5jLS0tfPzxx8yaNSuCkZ04wzC46aabePnll3nnnXcYPHhwt/NTpkzBZrN1y3XPnj2Ulpb2u1w/LxwO4/P5oirHuXPnsn37drZs2dL1mDp1KldddVXXx9GS62e1tbVx4MABsrKyouq/52mnncaePXu6Hdu7dy8FBQVAdNWi/iCavt+q/dFT+wdq3QfV/mioRf1BNH2/VftV+/tbnsei2t//a5GISJcIbwDY41pbW43NmzcbmzdvNgDj97//vbF582ajpKTEMAzDuP/++43ExETj1VdfNbZt22ZceOGFxuDBg42Ojo4IR35ifvCDHxhut9t49913jcrKyq5He3t71zXf//73jfz8fOOdd94xNmzYYMyaNcuYNWtWBKM+cXfddZexevVqo7i42Ni2bZtx1113GSaTyVi+fLlhGNGR4xf57M7OhhEdud5+++3Gu+++axQXFxsffvihMW/ePCM1NdWoqakxDCM6cjQMw1i3bp1htVqN//qv/zL27dtnPP3004bL5TL++te/dl0TLbWor1DtV+3vbzkeSzTWfcNQ7VftP3VU+1X7+1uOx6La37/zVO0XkYEo6prJq1atMoCjHtdee61hGIYRDoeN//iP/zAyMjIMh8NhzJ0719izZ09kg/4ajpUjYPz5z3/uuqajo8P44Q9/aCQlJRkul8u46KKLjMrKysgF/TV85zvfMQoKCgy73W6kpaUZc+fO7XpBaRjRkeMX+fwLy2jI9bLLLjOysrIMu91u5OTkGJdddpmxf//+rvPRkOMR//jHP4yxY8caDofDGDVqlPHoo492Ox8ttaivUO3/c9c10fBzNFBrfzTWfcNQ7f+saKlFfYVq/5+7romGnyPV/k7Rkqdq/6eipRaJiBxhMgzDOLVrn0VERERERERERESkvxtQM5NFRERERERERERE5OtRM1lEREREREREREREjkvNZBERERERERERERE5LjWTRUREREREREREROS41EwWERERERERERERkeNSM1lEREREREREREREjkvNZBERERERERERERE5LjWTRT7nuuuuY8mSJZEOQ0REepFqv4jIwKK6LyIi8vVYIx2ASG8ymUxfev7ee+/loYcewjCMXopIRERONdV+EZGBRXVfRETk1DEZ+j+oDCBVVVVdHz/33HPcc8897Nmzp+tYXFwccXFxkQhNREROEdV+EZGBRXVfRETk1NGYCxlQMjMzux5utxuTydTtWFxc3FFveTv77LP50Y9+xC233EJSUhIZGRn86U9/wuPxcP311xMfH8+wYcN44403uj1XUVERixYtIi4ujoyMDK655hrq6up6OWMREVHtFxEZWFT3RURETh01k0W+gieffJLU1FTWrVvHj370I37wgx9w6aWXMnv2bDZt2sT8+fO55ppraG9vB6CpqYlzzjmHSZMmsWHDBt58802qq6v51re+FeFMRETkq1LtFxEZWFT3RUREjk/NZJGvYMKECfz7v/87w4cP5+6778bpdJKamsqNN97I8OHDueeee6ivr2fbtm0APPzww0yaNInf/OY3jBo1ikmTJvH444+zatUq9u7dG+FsRETkq1DtFxEZWFT3RUREjk8b8Il8BePHj+/62GKxkJKSwrhx47qOZWRkAFBTUwPA1q1bWbVq1TFnsR04cIARI0ac4ohFRORkqfaLiAwsqvsiIiLHp2ayyFdgs9m6fW4ymbodO7JjdDgcBqCtrY0LLriA3/72t0fdKysr6xRGKiIiPUW1X0RkYFHdFxEROT41k0VOgcmTJ/P3v/+dQYMGYbXqx0xEZCBQ7RcRGVhU90VEZCDSzGSRU2Dp0qU0NDRwxRVXsH79eg4cOMBbb73F9ddfTygUinR4IiJyCqj2i4gMLKr7IiIyEKmZLHIKZGdn8+GHHxIKhZg/fz7jxo3jlltuITExEbNZP3YiItFItV9EZGBR3RcRkYHIZBiGEekgRERERERERERERKRv0z+XioiIiIiIiIiIiMhxqZksIiIiIiIiIiIiIselZrKIiIiIiIiIiIiIHJeaySIiIiIiIiIiIiJyXGomi4iIiIiIiIiIiMhxqZksIiIiIiIiIiIiIselZrKIiIiIiIiIiIiIHJeaySIiIiIiIiIiIiJyXGomi4iIiIiIiIiIiMhxqZksIiIiIiIiIiIiIselZrKIiIiIiIiIiIiIHJeaySIiIiIiIiIiIiJyXP8/WXm/oczyAE4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABZMAAAHyCAYAAACebVAcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zV9d3//8fJSXKy92IkIRBW2LLEPVCquMVinSBoB+pl9ddWr34vV4e9uvS6Wmxrrzpaa8WJW0FL6wCZMsNKSCCE7D3P/Pz+eCeBQxYgJCR53m+3c4N81nmfKOe8z+vzer9eNsuyLEREREREREREREREuhDQ2wMQERERERERERERkdOfgskiIiIiIiIiIiIi0i0Fk0VERERERERERESkWwomi4iIiIiIiIiIiEi3FEwWERERERERERERkW4pmCwiIiIiIiIiIiIi3VIwWURERERERERERES6pWCyiIiIiIiIiIiIiHRLwWQRERERERERERER6ZaCySIiIoLNZuPRRx/t7WHISfboo49is9l6exgiIiIiItJPKJgsIiLSA7Zt28a8efNIT08nJCSEIUOGcMkll/C73/2ut4cmPeD9998/ZcH6xsZGHn30Uf71r3+dkuuLiIiIiIi0slmWZfX2IERERPqz1atXc+GFF5KWlsbtt99OSkoKBQUFfPnll+Tm5pKTk9PbQ6S5uZnAwEACAwN7eyj90t13383SpUs5FdOu8vJyEhMTeeSRR9oFrD0eDx6Ph5CQkJP+vCIiIiIiMvDoG6OIiMgp9rOf/Yzo6GjWr19PTEyM377S0tLeGdRRFGw8fXg8Hnw+H8HBwV/7WrpBICIiIiIiJ5PKXIiIiJxiubm5jBs3rl0gGSApKcnvZ5vNxt13383f//53Ro8eTUhICFOnTuXTTz9td25hYSF33HEHycnJOBwOxo0bx7PPPtvuuObmZh599FFGjRpFSEgIgwYN4rrrriM3N9fveY/Oaj3W6//ud79j3LhxhIWFERsby7Rp03jppZe6/b0cy7gaGhp44IEHSE1NxeFwMHr0aH7961+3y/Bt/b0tX76c8ePHt433ww8/7PD3tmjRIgYPHozD4SAjI4Pvfve7uFyutmOqq6u577772p43MzOT//7v/8bn87Udk5+fj81m49e//jXPPPMMI0aMwOFwMH36dNavX9923IIFC1i6dGnbOFsfR1/jqaeeartGdnY2LpeLhx9+mKlTpxIdHU14eDjnnnsuq1at8htDYmIiAI899ljbtVv/W3ZUM9nj8fCTn/yk7bmGDRvGf/7nf+J0Ov2OGzZsGFdccQWff/45M2bMICQkhOHDh/PXv/7V7zi3281jjz3GyJEjCQkJIT4+nnPOOYeVK1d28l9eRERERET6KqWqiIiInGLp6emsWbOG7du3M378+G6P//e//82yZcu49957cTgcPP3003zjG99g3bp1beeXlJRw5plntgVRExMT+eCDD1i0aBG1tbXcd999AHi9Xq644go++eQTbrzxRv7jP/6Duro6Vq5cyfbt2xkxYkSHYzjW6//5z3/m3nvvZd68efzHf/wHzc3NbN26lbVr13LTTTd1+hqPZVyWZXHVVVexatUqFi1axOTJk/noo4/4wQ9+QGFhIU8++aTfNT///HPeeOMNvve97xEZGcn//u//cv3113PgwAHi4+MBOHToEDNmzKC6upq77rqLMWPGUFhYyGuvvUZjYyPBwcE0NjZy/vnnU1hYyLe//W3S0tJYvXo1Dz30EEVFRTz11FN+z/vSSy9RV1fHt7/9bWw2G7/85S+57rrr2LdvH0FBQXz729/m0KFDrFy5kr/97W8d/j6ee+45mpubueuuu3A4HMTFxVFbW8v//d//8a1vfYs777yTuro6/vKXvzBnzhzWrVvH5MmTSUxM5A9/+APf/e53ufbaa7nuuusAmDhxYqe/+8WLF/PCCy8wb948HnjgAdauXcsTTzzBzp07efPNN/2OzcnJYd68eSxatIjbb7+dZ599lgULFjB16lTGjRsHmID1E088weLFi5kxYwa1tbVs2LCBTZs2cckll3Q6DhERERER6YMsEREROaVWrFhh2e12y263W7NmzbJ++MMfWh999JHlcrnaHQtYgLVhw4a2bfv377dCQkKsa6+9tm3bokWLrEGDBlnl5eV+5994441WdHS01djYaFmWZT377LMWYP32t79t91w+n8/veR955JHjvv7VV19tjRs37jh+G9Yxj2v58uUWYP30pz/12z9v3jzLZrNZOTk5fuMPDg7227ZlyxYLsH73u9+1bbvtttusgIAAa/369Z0+709+8hMrPDzc2rNnj9/+Bx980LLb7daBAwcsy7KsvLw8C7Di4+OtysrKtuPeeustC7Deeeedtm1LliyxOpp2tV4jKirKKi0t9dvn8Xgsp9Ppt62qqspKTk627rjjjrZtZWVl7f77tXrkkUf8nnfz5s0WYC1evNjvuP/v//v/LMD65z//2bYtPT3dAqxPP/20bVtpaanlcDisBx54oG3bpEmTrLlz57Z7bhERERER6X9U5kJEROQUu+SSS1izZg1XXXUVW7Zs4Ze//CVz5sxhyJAhvP322+2OnzVrFlOnTm37OS0tjauvvpqPPvoIr9eLZVm8/vrrXHnllViWRXl5edtjzpw51NTUsGnTJgBef/11EhISuOeee9o9z9HlD1odz/VjYmI4ePCgX1mHY3Es43r//fex2+3ce++9fvsfeOABLMvigw8+8Ns+e/Zsv0zriRMnEhUVxb59+wDw+XwsX76cK6+8kmnTpnX6vK+++irnnnsusbGxfq999uzZeL3ediVH5s+fT2xsbNvP5557LkDb8x6L66+/vq1cRSu73d5WN9nn81FZWYnH42HatGltv//j9f777wNw//33+21/4IEHAHjvvff8tmdlZbW9HoDExERGjx7t99piYmLYsWMHe/fuPaExiYiIiIhI36EyFyIiIj1g+vTpvPHGG7hcLrZs2cKbb77Jk08+ybx589i8eTNZWVltx44cObLd+aNGjaKxsZGysjICAgKorq7mmWee4Zlnnunw+Vob++Xm5jJ69OjjasJWVlZ2zNf/0Y9+xMcff8yMGTPIzMzk0ksv5aabbuLss8/u8jmOZVz79+9n8ODBREZG+m0fO3Zs2/4jpaWltbtGbGwsVVVVba+rtra221Ije/fuZevWre2Cu62Obpp49PO2BpZbn/dYZGRkdLj9hRde4De/+Q27du3C7XZ3e3x39u/fT0BAAJmZmX7bU1JSiImJOe7fKcDjjz/O1VdfzahRoxg/fjzf+MY3uPXWW7sstSEiIiIiIn2TgskiIiI9KDg4mOnTpzN9+nRGjRrFwoULefXVV3nkkUeO+RqtTeBuueUWbr/99g6P+TqBvOO5/tixY9m9ezfvvvsuH374Ia+//jpPP/00Dz/8MI899tgJj+FE2O32DrdbRzXr647P5+OSSy7hhz/8YYf7R40addKfNzQ0tN22F198kQULFnDNNdfwgx/8gKSkJOx2O0888YRfk8IT0VlW+tGO5bWdd9555Obm8tZbb7FixQr+7//+jyeffJI//vGPLF68+GuNU0RERERETi8KJouIiPSS1lILRUVFfts7KhewZ88ewsLC2rJlIyMj8Xq9zJ49u8vnGDFiBGvXrsXtdhMUFHRM40pMTDzm6wOEh4czf/585s+fj8vl4rrrruNnP/sZDz30ECEhISc8rvT0dD7++GPq6ur8spN37drVtv94JCYmEhUVxfbt27s8bsSIEdTX1x/Taz9Wxxq8PdJrr73G8OHDeeONN/zOP/rGw/FcOz09HZ/Px969e9syvME0XKyurj7u32mruLg4Fi5cyMKFC6mvr+e8887j0UcfVTBZRERERKSfUc1kERGRU2zVqlUdZqm21q8dPXq03/Y1a9b41cQtKCjgrbfe4tJLL8Vut2O327n++ut5/fXXOwyMlpWVtf39+uuvp7y8nN///vftjussc/Z4rl9RUeG3Lzg4mKysLCzL8ivLcLRjGdfll1+O1+ttd8yTTz6JzWbjsssu6/T6HQkICOCaa67hnXfeYcOGDZ0+7ze/+U3WrFnDRx991O6Y6upqPB7PcT0vmIB76/nHqjUr+Mj/TmvXrmXNmjV+x4WFhR3ztS+//HIAnnrqKb/tv/3tbwGYO3fuMY+v1dH/D0RERJCZmYnT6Tzua4mIiIiIyOlNmckiIiKn2D333ENjYyPXXnstY8aMweVysXr1apYtW8awYcNYuHCh3/Hjx49nzpw53HvvvTgcDp5++mkAv7IRv/jFL1i1ahUzZ87kzjvvJCsri8rKSjZt2sTHH39MZWUlALfddht//etfuf/++1m3bh3nnnsuDQ0NfPzxx3zve9/j6quv7nDMx3r9Sy+9lJSUFM4++2ySk5PZuXMnv//975k7d267WsdHOpZxXXnllVx44YX8+Mc/Jj8/n0mTJrFixQreeust7rvvPr9me8fq5z//OStWrOD888/nrrvuYuzYsRQVFfHqq6/y+eefExMTww9+8APefvttrrjiChYsWMDUqVNpaGhg27ZtvPbaa+Tn55OQkHBcz9vaUPHee+9lzpw52O12brzxxi7PueKKK3jjjTe49tprmTt3Lnl5efzxj38kKyuL+vr6tuNCQ0PJyspi2bJljBo1iri4OMaPH99hbehJkyZx++2388wzz1BdXc3555/PunXreOGFF7jmmmu48MILj+t1gWnSd8EFFzB16lTi4uLYsGEDr732GnffffdxX0tERERERE5zloiIiJxSH3zwgXXHHXdYY8aMsSIiIqzg4GArMzPTuueee6ySkhK/YwFryZIl1osvvmiNHDnScjgc1pQpU6xVq1a1u25JSYm1ZMkSKzU11QoKCrJSUlKsiy++2HrmmWf8jmtsbLR+/OMfWxkZGW3HzZs3z8rNzfV73kceeeS4r/+nP/3JOu+886z4+HjL4XBYI0aMsH7wgx9YNTU13f5ejmVcdXV11ve//31r8ODBVlBQkDVy5EjrV7/6leXz+Tr8vR0tPT3duv322/227d+/37rtttusxMREy+FwWMOHD7eWLFliOZ1Ov+d96KGHrMzMTCs4ONhKSEiwzjrrLOvXv/615XK5LMuyrLy8PAuwfvWrX7V73qN/nx6Px7rnnnusxMREy2azWa1TsK6u4fP5rJ///OdWenp62/8H7777rnX77bdb6enpfseuXr3amjp1qhUcHOz33I888oh19HTP7XZbjz32WNvvPTU11XrooYes5ubmdr+7uXPnthvX+eefb51//vltP//0pz+1ZsyYYcXExFihoaHWmDFjrJ/97GdtvycREREREek/bJZ1nF1pRERE5JSx2WwsWbKkw/IPIiIiIiIiIr1JNZNFREREREREREREpFsKJouIiIiIiIiIiIhItxRMFhEREREREREREZFuBfb2AEREROQwtTIQERERERGR05Uyk0VERERERERERESkWwomi4iIiIiIiIiIiEi3FEwWERERERERERERkW4pmCwiIiIiIiIiIiIi3VIwWURERERERERERES6pWCyiIiIiIiIiIiIiHRLwWQRERERERERERER6ZaCySIiIiIiIiIiIiLSLQWTRURERERERERERKRbCiZLv2Sz2Xj00Ud7exgiItJLHn30UWw2W28PQ0RE+gF9txARETlMwWTpM55//nlsNpvfIykpiQsvvJAPPvigt4cnIiI9IC8vj7vvvptRo0YRFhZGWFgYWVlZLFmyhK1bt/b28ERE5BQ4+ntASEgIo0aN4u6776akpKS3h/e1Pf300zz//PO9PQwREZFjEtjbAxA5Xo8//jgZGRlYlkVJSQnPP/88l19+Oe+88w5XXHEFAE1NTQQG6n9vEZH+5N1332X+/PkEBgZy8803M2nSJAICAti1axdvvPEGf/jDH8jLyyM9Pb23hyoiIqdA6/eA5uZmPv/8c/7whz/w/vvvs337dsLCwnp7eCfs6aefJiEhgQULFvT2UERERLqlaJv0OZdddhnTpk1r+3nRokUkJyfzj3/8oy2YHBIS0lvDExGRUyA3N5cbb7yR9PR0PvnkEwYNGuS3/7//+795+umnCQjQoisRkf7qyO8BixcvJj4+nt/+9re89dZbfOtb32p3fENDA+Hh4T09TBERkX5N37ikz4uJiSE0NNQvE7mjumZfffUVl112GVFRUURERHDxxRfz5Zdf+h3TuoTu888/59577yUxMZGYmBi+/e1v43K5qK6u5rbbbiM2NpbY2Fh++MMfYlmW3zV+/etfc9ZZZxEfH09oaChTp07ltddeazfulStXcs455xATE0NERASjR4/mP//zP/2O+d3vfse4ceMICwsjNjaWadOm8dJLL33N35iISN/zy1/+koaGBp577rl2gWSAwMBA7r33XlJTUzs8Pz8/H5vN1uEy4o4+MwoLC1m0aBGDBw/G4XCQkZHBd7/7XVwuV9sx+/bt44YbbiAuLo6wsDDOPPNM3nvvvXbXP5b38sLCQu644w6Sk5NxOByMGzeOZ5999hh+MyIiA9dFF10EmBJICxYsICIigtzcXC6//HIiIyO5+eabARNUfuCBB0hNTcXhcDB69Gh+/etft5vHO51Ovv/975OYmEhkZCRXXXUVBw8ebPe8CxYsYNiwYe22d1av/8UXX2TGjBltnwPnnXceK1asAGDYsGHs2LGDf//7321lPC644IKv+ZsRERE5dZSZLH1OTU0N5eXlWJZFaWkpv/vd76ivr+eWW27p9JwdO3Zw7rnnEhUVxQ9/+EOCgoL405/+xAUXXMC///1vZs6c6Xf8PffcQ0pKCo899hhffvklzzzzDDExMaxevZq0tDR+/vOf8/777/OrX/2K8ePHc9ttt7Wd+z//8z9cddVV3HzzzbhcLl5++WVuuOEG3n33XebOnds2niuuuIKJEyfy+OOP43A4yMnJ4Ysvvmi7zp///Gfuvfde5s2bx3/8x3/Q3NzM1q1bWbt2LTfddNNJ/q2KiJze3n33XTIzM9u9X58Khw4dYsaMGVRXV3PXXXcxZswYCgsLee2112hsbCQ4OJiSkhLOOussGhsbuffee4mPj+eFF17gqquu4rXXXuPaa68Fju29vKSkhDPPPBObzcbdd99NYmIiH3zwAYsWLaK2tpb77rvvlL9mEZG+KDc3F4D4+HgAPB4Pc+bM4ZxzzuHXv/41YWFhWJbFVVddxapVq1i0aBGTJ0/mo48+4gc/+AGFhYU8+eSTbddbvHgxL774IjfddBNnnXUW//znP9vm7yfqscce49FHH+Wss87i8ccfJzg4mLVr1/LPf/6TSy+9lKeeeop77rmHiIgIfvzjHwOQnJz8tZ5TRETklLJE+ojnnnvOAto9HA6H9fzzz/sdC1iPPPJI28/XXHONFRwcbOXm5rZtO3TokBUZGWmdd9557Z5jzpw5ls/na9s+a9Ysy2azWd/5znfatnk8Hmvo0KHW+eef7/fcjY2Nfj+7XC5r/Pjx1kUXXdS27cknn7QAq6ysrNPXe/XVV1vjxo3r+pciIjIA1NTUWIB1zTXXtNtXVVVllZWVtT1a34MfeeQR68hpTl5engVYzz33XLtrHP2Zcdttt1kBAQHW+vXr2x3b+tlw3333WYD12Wefte2rq6uzMjIyrGHDhller9eyrGN7L1+0aJE1aNAgq7y83G/7jTfeaEVHR7f7XBERGWha5+gff/yxVVZWZhUUFFgvv/yyFR8fb4WGhloHDx60br/9dguwHnzwQb9zly9fbgHWT3/6U7/t8+bNs2w2m5WTk2NZlmVt3rzZAqzvfe97fsfddNNN7T4nbr/9dis9Pb3dOI/+7Nm7d68VEBBgXXvttW2fC62O/K4xbty4dt8pRERETlcqcyF9ztKlS1m5ciUrV67kxRdf5MILL2Tx4sW88cYbHR7v9XpZsWIF11xzDcOHD2/bPmjQIG666SY+//xzamtr/c5ZtGiR3xK1mTNnYlkWixYtattmt9uZNm0a+/bt8zs3NDS07e9VVVXU1NRw7rnnsmnTprbtMTExALz11lv4fL4Oxx0TE8PBgwdZv359N78REZH+rfU9OiIiot2+Cy64gMTExLbH0qVLv9Zz+Xw+li9fzpVXXulXn79V62fD+++/z4wZMzjnnHPa9kVERHDXXXeRn59PdnY20P17uWVZvP7661x55ZVYlkV5eXnbY86cOdTU1Ph9foiIDGSzZ88mMTGR1NRUbrzxRiIiInjzzTcZMmRI2zHf/e53/c55//33sdvt3HvvvX7bH3jgASzL4oMPPmg7Dmh33NdZHbJ8+XJ8Ph8PP/xwu5r+HZXDEBER6QsUTJY+Z8aMGcyePZvZs2dz8803895775GVlcXdd9/tV8uyVVlZGY2NjYwePbrdvrFjx+Lz+SgoKPDbnpaW5vdzdHQ0QLtanNHR0VRVVflte/fddznzzDMJCQkhLi6OxMRE/vCHP1BTU9N2zPz58zn77LNZvHgxycnJ3Hjjjbzyyit+geUf/ehHREREMGPGDEaOHMmSJUv8ymCIiAwUkZGRANTX17fb96c//ant5uLJUFZWRm1tLePHj+/yuP3793f6udK6H7p/Ly8rK6O6uppnnnnGLyiemJjIwoULASgtLT0pr01EpK9rTSpZtWoV2dnZ7Nu3jzlz5rTtDwwMZOjQoX7n7N+/n8GDB7d9lrQ6+v16//79BAQEMGLECL/jOnqvP1a5ubkEBASQlZV1wtcQERE53SiYLH1eQEAAF154IUVFRezdu/ekXNNutx/zduuIxh2fffYZV111FSEhITz99NO8//77rFy5kptuusnvuNDQUD799FM+/vhjbr31VrZu3cr8+fO55JJL8Hq9gJng7t69m5dffplzzjmH119/nXPOOYdHHnnkpLxGEZG+Ijo6mkGDBrF9+/Z2+2bOnMns2bM5++yzu7xGZxlgre+5p0p37+WtNxFvueWWtlU3Rz+6e20iIgNFa1LJBRdcwNixY9tl+zocjnbbToXe+kwRERE5HSiYLP2Cx+MBOs5aS0xMJCwsjN27d7fbt2vXLgICAtplHJ+o119/nZCQED766CPuuOMOLrvsMmbPnt3hsQEBAVx88cX89re/JTs7m5/97Gf885//ZNWqVW3HhIeHM3/+fJ577jkOHDjA3Llz+dnPfkZzc/NJGa+ISF8xd+5ccnJyWLdu3QmdHxsbC0B1dbXf9taMtFaJiYlERUV1GLg+Unp6eqefK637W3X1Xp6YmEhkZCRer7dt1c3Rj6SkpBN5ySIignk/PnToEHV1dX7bj36/Tk9Px+fztTX1a9XRe31sbGy7zxNo/5kyYsQIfD5fW+mjzqjkhYiI9CUKJkuf53a7WbFiBcHBwW3L1Y5kt9u59NJLeeutt8jPz2/bXlJSwksvvcQ555xDVFTUSRmL3W7HZrP5ZSXk5+ezfPlyv+MqKyvbnTt58mQAnE4nABUVFX77g4ODycrKwrIs3G73SRmviEhf8cMf/pCwsDDuuOMOSkpK2u0/cvVHR6KiokhISODTTz/12/7000/7/RwQEMA111zDO++8w4YNGzp9nssvv5x169axZs2atn0NDQ0888wzDBs2rG1Jc3fv5Xa7neuvv57XX3+9wwB2WVlZl69LRES6dvnll+P1evn973/vt/3JJ5/EZrNx2WWXAbT9+b//+79+xz311FPtrjlixAhqamrYunVr27aioiLefPNNv+OuueYaAgICePzxx9v1STnycys8PLzD4LSIiMjpKLC3ByByvD744IO2TILS0lJeeukl9u7dy4MPPthpUPinP/0pK1eu5JxzzuF73/segYGB/OlPf8LpdPLLX/7ypI1t7ty5/Pa3v+Ub3/gGN910E6WlpSxdupTMzEy/yebjjz/Op59+yty5c0lPT6e0tJSnn36aoUOHtjVzuvTSS0lJSeHss88mOTmZnTt38vvf/565c+e2q/kmItLfjRw5kpdeeolvfetbjB49mptvvplJkyZhWRZ5eXm89NJLBAQEtKuVeaTFixfzi1/8gsWLFzNt2jQ+/fRT9uzZ0+64n//856xYsYLzzz+fu+66i7Fjx1JUVMSrr77K559/TkxMDA8++CD/+Mc/uOyyy7j33nuJi4vjhRdeIC8vj9dff71tmfWxvJf/4he/YNWqVcycOZM777yTrKwsKisr2bRpEx9//HGHNyBFROTYXHnllVx44YX8+Mc/Jj8/n0mTJrFixQreeust7rvvvrYayZMnT+Zb3/oWTz/9NDU1NZx11ll88skn5OTktLvmjTfeyI9+9COuvfZa7r33XhobG/nDH/7AqFGj/JqmZmZm8uMf/5if/OQnnHvuuVx33XU4HA7Wr1/P4MGDeeKJJwCYOnUqf/jDH/jpT39KZmYmSUlJXHTRRT3zCxIRETlelkgf8dxzz1mA3yMkJMSaPHmy9Yc//MHy+XxtxwLWI4884nf+pk2brDlz5lgRERFWWFiYdeGFF1qrV6/u8DnWr1/vt/2RRx6xAKusrMxv++23326Fh4f7bfvLX/5ijRw50nI4HNaYMWOs5557ru38Vp988ol19dVXW4MHD7aCg4OtwYMHW9/61resPXv2tB3zpz/9yTrvvPOs+Ph4y+FwWCNGjLB+8IMfWDU1NSf0+xMR6Q9ycnKs7373u1ZmZqYVEhJihYaGWmPGjLG+853vWJs3b2477uj3XcuyrMbGRmvRokVWdHS0FRkZaX3zm9+0SktLO/zM2L9/v3XbbbdZiYmJlsPhsIYPH24tWbLEcjqdbcfk5uZa8+bNs2JiYqyQkBBrxowZ1rvvvut3nWN9Ly8pKbGWLFlipaamWkFBQVZKSop18cUXW88888xJ+s2JiPRdnc3Rj9TRvLxVXV2d9f3vf98aPHiwFRQUZI0cOdL61a9+5ff9wbIsq6mpybr33nut+Ph4Kzw83LryyiutgoKCDj8nVqxYYY0fP94KDg62Ro8ebb344osdfvZYlmU9++yz1pQpUyyHw2HFxsZa559/vrVy5cq2/cXFxdbcuXOtyMhIC7DOP//8Y//liIiI9DCbZXWzLlREREREREREREREBjzVTBYRERERERERERGRbimYLCIiIiIiIiIiIiLdUjBZRERERERERERERLqlYLKIiIiIiIiIiIiIdEvBZBERERERERERERHploLJIiIiIiIiIiIiItKtwN4ewPHy+XwcOnSIyMhIbDZbbw9HRKRHWJZFXV0dgwcPJiBg4N0H1Hu/iAxEeu/Xe7+IDDwD/b1fRE5/fS6YfOjQIVJTU3t7GCIivaKgoIChQ4f29jB6nN77RWQg03u/iMjAM1Df+0Xk9NfngsmRkZGAeWONiorq5dGIiPSM2tpaUlNT294DBxq994vIQKT3fr33i8jAM9Df+0Xk9NfngsmtS9yioqI0qRSRAWegLvPVe7+IDGR679d7v4gMPAP1vV9ETn8qwCMiIiIiIiIiIiIi3VIwWURERERERERERES6pWCyiIiIiIiIiIiIiHRLwWQRERERERERERER6ZaCySIiIiIiIiIiIiLSLQWTRURERERERERERKRbCiaLiIiIiIiIiIiISLcUTBYRERERERERERGRbimYLCIiIiIip42lS5eSlZXF9OnTe3soIiIiInIUBZNFREREROS0sWTJErKzs1m/fn1vD0VEREREjqJgsoiI9IilS5cybNgwQkJCmDlzJuvWrevtIYmIiIiIiIjIcVAwWURETrlly5Zx//3388gjj7Bp0yYmTZrEnDlzKC0t7e2hiYiIiIiIiMgxCuztAYiISP/329/+ljvvvJOFCxcC8Mc//pH33nuPZ599lgcffPCUPKdlWTS5vafk2iIiJyI0yI7NZuvtYYiIiIiInDAFk0VE5JRyuVxs3LiRhx56qG1bQEAAs2fPZs2aNR2e43Q6cTqdbT/X1tYe9/M2ub387rElXGlfQz0h1Fuh1BNKvRVKXcuf9ZhHnRVGQ8sxR+5rIARLi3hE5CTJfnwOYcGafouIiIhI36XZrIhIT7EsyPkYnHUw/rreHk2PKS8vx+v1kpyc7Lc9OTmZXbt2dXjOE088wWOPPfa1nzvVVkpWwP6vdY261sCyFdISeD4clK7ncPC5oYt99YTh1keuiIiIyMDg88L2NyEsFjIv7u3RiIicVPpmKyLSUwrWwrZXIXl8b4/ktPfQQw9x//33t/1cW1tLamrqcV0jNMjOtUueoHzHCmr2fApeNwE+NzYb2CwfAZaPAMuD3XJj9zkJ9DYT5Gsi0NtMsLeBAMuUyIi0NRFJE3zNleleWxCuwHDc9ghcgeG47OG4A8NxBUbgtofTFBRLQ0gSDY5k6h3JNDiScQVGgpbEi/R5jiA7541MJDTI3ttDERGRU82yYOc7sPMtGDO3t0cjInLSKZgsItITSnfB5pegrnjABZMTEhKw2+2UlJT4bS8pKSElJaXDcxwOBw6H42s9r81mI3TQGEIbDpHgLjQZIpavZa9lJvptf2/5s/Vnn2WOtTzg84HlBZ/HXMPnOfx3m80c17rN0wzuZnA3grsJ3A3mT8BuuQl1VxPqrj72FxEUDlGDWx5DIHrI4b9Htfw9NFYBZxEREZHTgWXB3hWQ/ZZZjSgi0g8pmCwicqrVFMKmF6C5FsKTens0PS44OJipU6fyySefcM011wDg8/n45JNPuPvuu0/9ADIvMg+fD7xO8LQ8vE7wuFoCwE3grAVXPTjrzeTfWWuO8wsie1sCzEf83BqEbgtOt/79iJ+xjghKe9sHpy2f+bunGZqrobEKnDUmGF2x1zw6ExTmH3COGnJU8HmIAs4iIiIiPSH/c9j2GjiizBxPRKQfUjBZRORUaqqGjS9ATQEkjoXKvN4eUa+4//77uf3225k2bRozZszgqaeeoqGhgYULF/bcIAICICAUgkJP/BqWBV5XSzC6JRDdUXDa42wJTNdBcw00VflnNLcFpo8MKrvB6zHBXywg4IjtLvA0tQScneCqM/9vOWtNFnRFjnl0JjC0mwznIRAWp4CziIiIyIk6uAG2/APsQRCZAk2VvT0iEZFTQsFkEZFTxd0MX70IpTsgYRTYAgZshsL8+fMpKyvj4Ycfpri4mMmTJ/Phhx+2a8p32rPZINBhHl+Ht6Ukhl9AutlkrztrTQC69hDUFR0OVrce1xq0jg8Am/1wmY22IHfLfnejuZazzgSiK3PNozOBIUcEmAd3nOEcFq+As4iIiMjRirfDpr+aOV7sMLNNwWQR6acUTBYRORV8XrPEreBLiBsO9mBorIA975sM2QHo7rvv7pmyFn2BPRDsEcd2rMfpH2RurjF/b6iAhlJoKD8iiHxkprTbnB9gP1xGoy3L2Xm4vIerwWRRe5qhcp95dCYoHIacAUOnQ+pMSJ1hMppFREREBqryHNj4vJlPxWWaG+8H15mSFyExMOnG3h6hiMhJ1WeCyUuXLmXp0qV4vd7eHoqISNcsC/Z8CDkrTTZnUBi4GmHbqyaIV7DeBPYC7L09UukLAh0QkWgeHfF5D9d4bq45HHhuqoL6EhNsdjX4B5pbg8+tDQkty5TcaMtydh8+rq2ZYKOp4Zz/mXm0ih95OLCcOtNk4Q/QGyYiIiIywFQXwIa/QEMZJIw2geSiLZD7T7Nf830R6Yf6TDB5yZIlLFmyhNraWqKjo3t7OCIinTvwJexYbpqehcSYwNz210xjtaBwmHyTJpZy8gTYITTGPDpiWSYQ7Jfd3PJnQxnUl5r/N48MMntbMph9XvOlyGYz1/E0mxsjzVWHaza3Ngjc/KJ5vpBo/8zlIVPBEdkzvwsRERGRnlJXAuv/AjUHIXGMmS+V7TJJJQBxI2DUZb07RhGRU6DPBJNFRPqE0p2m8YbNDhHJJgC3612oO2Rq0g47F4LDe3uUMpDYbOb/ueBwYFDHx3hcLc0Cq1sCzi3B5sZKU0qjscIEpD1Ok6XsG2rO83lNBnRTpfmzucqcl/OxeYCpFZ48riW4PNMEmmOHqfayiIiI9F2NlbDhWXNDPXGMme9U7oOdbwMWDJoE0Wma74hIv6RgsojIyVJz0DTecNaZpf8Aef+C8t0muDzuusN1bEVOJ4HBEBgP4fEd7/f5wFXX0hiwCKr3mxsn9aWmDEdkMtgd5gtTc625edJYYYLM7iYo3mYe6//PXC8sAdLOPBxgHjQJgkJ67vWKiIiInChnHWx4Dkq2t5T3CjTfA3a8YUqGJY6BkXNMlrKISD+kYLKIyMnQVAUbX4CaAkgca4JqhzZDwVqzf/TlEJMGFbm9OkyRExIQYMpXhESb/4/TZpqs+4YyqD5gHqXZUFdsgsKx6ebfQXC4KY1RexBqWwPM1dBYbjL2d73bcv0gSB4P6bMOB5kjU3r1JYuIiIi0424yySOHNkF8pmmyXV9ieqP4PKbx9pgrTaayiEg/pWCyiMjX5W6CTX8zwbSE0YeXue39yOwfdq5Z5i/Sn9hsEJFkHkOngXWtWfJZcwCq9ptsnNpCUx4jJAbCk00wOjDEBJerD0BdkQkwe11Q9JV5fPm0uX5kCgyZBhnnmQBz0jiwa9oiIiIivcTjgs0vwf7VEDvczGkaK2HrMtNzInooZF2r3igi0u/pW5mIyNfh88K210wGctwIsAeZpf/ZywHLZFumndXboxQ59Ww2UyYjPB4GTzGZy83Vpst5TYEJLlcdgLpC8+8mNgMGTQZHFLjqoSrPHFdfYspp1BX7Zy8HOiAxy2RFZ1xg/gyL673XKyIiIgNH65x/3yqISYfgMFPaa+vL5sZ5RDKMn2e+C4iI9HMKJouInCjLgt0fmEZj0akQFGpqqG1/1WRaxqSZDs5qvCEDkc0GobHmMWgijJlrvnTVFJgAc/keqGwJIPvcJms5OtX8ic1kNVfnQ02haQLocR7OXl77R/McUUNMveW0WTDiYkgaa0pyiIiIiJwsPh9kv21WHUYOAUckuBpMINlZC6FxMGG+yVQWERkAFEwWETlRB9ZA9ltmAhkSbQLI218zAeWweMi6TsvcRI4UEgUh40zZl9HfMF/EWjOXy/dCZa6prexpNiUtkrIgdZb5ctZU0XLsAXOMs9YEnGsLYff7sPK/IDAUEkfDyEtg1t0QGtPbr1hERET6MsuCvStg59umgXBojJmnbFtmGg07omDijSZTWURkgFAwWUTkRJRkw5Z/mGBxRJLp3Jz9llmiHxQG428wjchEpHPB4ZA0xjxGXmLqj9cUQvV+06yyYi/UF5svbbYAU0c5cRQEhZtjawtb6i+3lMfwNEHRZvNYsxTGXglnf99cXysERERE5HjlfwbbXzdB4/AE8LpNuYv6UjPnn3ijuVkuIjKAKJgsInK8ag7CV38DZz3EjzQZCzkfm6zKgEBTL00ZkSLHLygUEjLNI/Ni0+imNVhcuQ/KdkNDGbj3m+BycGRLk77zzb/DhlKoyofCjaYO89Zl5gtg2iyTqTz8At3kERERkWNzcANs/gfYg80NbZ8Xdrxp5iZ2B0ycr/4NIjIgKZgsInI8Githw/MmoJzYku14cB0c2mT2j7kSogb36hBF+o3AYIgbbh7DzzfZQLWHTFmMynwoyzb/JmsKzPHBEaY0xpBpUL4bDnwJjeUmqyj/c1MCY+pCk7EcNVjZyiIiItKx4u2w6a8mgByXZlYh7noHqvZBQBBMuME03RMRGYAUTBYROVbuJvjqRSjbCQmjTWZk+R7I/afZP/xCE6wSkVPDHgSx6eYx7BzzBa+uyGQuV+835Wcaykxw2REJZ9wO1Qeg4EuzrWwXfPgjWP2/MOZymHAjpIxXtrKIiIgcVp4DG58zvR3iRpjVT3s+MvMIWwCMuw6ih3Z9DXcjWF6z6kpEpJ9RMFlE5Fj4vLD1FShYayaV9iCoLTLNOAAGT4GhM3p3jCIDTYDdfJmLHgrps0y39YZSk02U+4m52eOIMMtQ60vNv9/y3abW8ro/w7bXIW0mTPoWDJkKUUOUrSwiIjKQVR+ADX+BhgpIGGW27VsFxVsAG4y9CuIyur6Gu8mU50o7CzJnn/Ihi4j0NAWTRUS6Y1mw+32TgRydajIMmqth+2vg85jgcuYl3QehXI2mQVikymCInBIBLU36IlMg7UyTkZzziam17Igw5S2azzelaYq3mS7suz+AvE8heTyMmQvp50DyOGUri4iIDDR1JbD+L/7l7PavNvMGgNGXme1dcTeZPipps2DqAtNsWESkn1EwWUSkO/tXQ/ZbEBoHIdHgaTZdnN0NEJFkMhRsAV1fw9Nsaqylnw1jr+iZcYsMZI4Ikw2UOhMOrDWZyq1B5czZpkxG4UZT79zVYLKWizabm0Nps2DEhWbFgbKVRURE+r/GShNIrshpCSQHmHlC/qdm/4iLIWVi19doDSSnzjSBZEfEKR+2iEhvUDBZRKQrJTtgy8um0UZE0uEuzo3lEBwJ42+AQEfX1/C6oGKvaQp2xq3KeBTpSY5IGDnblLPwCypHmps7qWdC0RYoXA/OOijNNuUx9q2ClEkwdJrJck4ep7qHIiIi/ZGzDjY8C6U7TF+UgEAo2Q45K83+9LNh6PSur+FuNoHkoTNg2kIFkkWkX1MwWUSkM9UFpouzqwHiM025i70fmkZf9mCYMM8EpLri85jAVPKElgyFbo4XkVOjq6DykDNMzeTSbJOh3Fhuah1W5cOhjebYxDEmY3nwFFOjWdnKIiIifZ+7CTa+AIe+MvN9exCU74Vd75n9Q6aaElhd8TRDZY65AT1toeb7ItLvKZgsItKRxkozsaw95F8zrXgbpvnG1RCR3PU1LJ8JJMdnwrQ7ICyuR4YuIl3oKqicNNbUTq7MNUHlmgLTiKf6gDnm0GaIHQbJWSajOWW8spVFRET6Ko8Lvvo7HFgDccMhMASq9kP2csAyc4IRs7u+gexpNsHnodNg2iIIieqp0YuI9BoFk0VEjuZqhE1/g7KdZqmbLcBkLLbWTBt5CcSP6PoalmUCydFDTSA5spvAs4j0rA6DyrvAEWUCxvGZUFtogsrle8zfawtNoLkyFwrWmX/fylYWERHpe3xe2PYq5P0LYtIhKMwkkex4HSwvxI+E0Zd3H0iuaMlInq5AsogMHAomi4gcyeuBra+Yrs1xI8xSt+qCw0vdhs6AwWd0fQ3LMsGmsHiYuhBi00/9uEXkxHQVVI4aDOOug8YK855QvB3qS8wjNNbcbKrMg90fKFtZRESkr/D5IPtt2PMRRA4xc4GGMtj2iul1EpMOWVd33WDb4zSB5MFTTOJISHTPjV9EpJcpmCwi0sqyYPf7pvFWdKoJCDVWHs5QSBgFwy/s/jrVB8y5U2+HxFGnftwi8vV1FFQu320abUYNhlGXQfq5ULjB1FVsqoKCLyE4wjTna66FgxvMsWlntmQrpypbWURE5HRiWbD3I9j5FoQnQmgMNFXD1mUm0zhyMIy/3jTh64zHaZprD5psMpJDY3pm7CIipwkFk0VEWu3/wmQphMWb7AJ3I2x/tWViOQjGXNl9YKj2EGDBlFtg0KQeGbaInER+QeUvIfef/kHl4ReY0hZFm03w2FVnSmHYgyFlIhBgVjfs/tDUYE4709RcDA7r5RcmIiIi5H0K218HRzSEJ4CzDrb+A1z1Jrg84Qbzmd6ZtkDypJZAcmzPjV1E5DShYLKICJjl61teNmUtwhPB5zETzaYqE1geP8/s60p9qQlAT77JBJBEpO9yRJr66GlnmqByzlGZyqkzYcg0U0+9YC00lrdkLW+CpHGQlAWFm6BwI0SmHK6tHJOmbGUREZHeULC+Zb7vMJ/N7iaTkdxcAyExMGF+16WqvC4TSE6ZCNMXq7m2iAxYXRQBEhEZIKoPwFd/M433olPN8rdd75lmW4EOGH8DBId3fY3GSmiqhHHXwIiLemTYItIDWoPKF/0Yzrjd3Fwq323eN7AgZYLp3j5+nmnCZ/mgZBtsW2b+DHSAs940+fnXE7D6d6Z5n6uxt1+ZyClXUFDABRdcQFZWFhMnTuTVV1/t7SGJyEBVvA2++qv5nI4eajKMt71ibgYHR8KkG8ER0fn5XpdpyJsyEWbcqUCyiAxoykwWkYGtsRI2Pm/KUySOMRmD+/4NZTtN042s68wSuK4010J9MYy5AkbPVdahSH/UGlROnWkykY/OVI7PNI+aQji41nzhrMgxj6gh5jxHlKm33FpbeeyVkH6W3jOk3woMDOSpp55i8uTJFBcXM3XqVC6//HLCw7u5QSsicjKV7zXzfVejabDt85ieKHVFEBgKE+ebzOTOtAaSk8crI1lEBAWTRWQgczXCpr9C2W5IGG2Cx0VboGCN2T/qMohN7+YaDVBzADIvgfHXQYAWfIj0ayFR7YPKZbtMoDhqMEQPgejroLHCZCCXbDerHHa8YeqxD51hmnnWl8CGv5h9WVebDGaRfmbQoEEMGjQIgJSUFBISEqisrFQwWUR6TvUB2PAsNFSYz1/LB9nLzXZ7MEz8ZteJI163CSQnjTMZyeHxPTZ0EZHTlaIeIjIweT2mRtrB9RCXaeohV+Wb7s4A6Web5etd8TRDVR4MO8csjeuuprKI9B+tQeUL/xOmLjDlL8p2QXWByXgKi4fRl8HM70LqmaY+Y2MF7PnABJHrS00W1M63Ye2fzJdckdPMp59+ypVXXsngwYOx2WwsX7683TFLly5l2LBhhISEMHPmTNatW9fhtTZu3IjX6yU1NfUUj1pEpEVdMaz/C9QchISRZtvu982qoYBAU6IqclDn53vdZhVSUlZLILmb1YoiIgOEgskiMvBYFux6F/atgug0CAqBhjLY8abJVkgaB+nndH0Nr8tMRIdMhSm3mmuIyMBzZFD5jNshJNI/qOyIgOEXwJnfg+EXQnCE6Ri/75+w/wvzHlSwFlb/r1mGK3IaaWhoYNKkSSxdurTD/cuWLeP+++/nkUceYdOmTUyaNIk5c+ZQWlrqd1xlZSW33XYbzzzzTE8MW0TElLJb/yxU5pqMZGyQsxJKd7SUsrvGNMXtTGsgOXGsCSRHJPbUyEVETnsqcyEiA0/+57DzHQhLMIGg1uZYXqdpwDf6sq5rmPo8h+umTV3QdbMOERkYQqJg1KWQdiYc+BJyW8tfREPUIFPGInUmDJkGxVvNF9qyXebG1JgrzcqI1b+DCTeY1Q6qoyyngcsuu4zLLrus0/2//e1vufPOO1m4cCEAf/zjH3nvvfd49tlnefDBBwFwOp1cc801PPjgg5x11lldPp/T6cTpdLb9XFtbexJehYgMOM21prRF6Q5Tyi4gEPI+hUObzP4xV5g+B53xeVoCyaNbAslJPTNuEZE+QpnJIjKwFG8z5S3sDghPNIGc7a+BsxZC42DcdWbC2RnLZyaX8Zkw7Q414BARf61B5Qt/3HGmcoAdBk8xS2sDAqFyn6mnHDPMZEFtfN7c3HI39/YrEemSy+Vi48aNzJ49u21bQEAAs2fPZs0a03vAsiwWLFjARRddxK233trtNZ944gmio6PbHiqJISLHzd1keqIc+srM1+1BZgXQgdVm/8g5pmxFZ3we87mdMBpmfBsik3tm3CIifYiCySIycFTth01/A3cjRA81geGdb0N9MQSFmozAoNDOz7csqNhrspenL9LkUkQ6111QOW44TJhvbmzVFMC2ZeYGV2gcZL8N655RHWU5rZWXl+P1eklO9v8sTE5Opri4GIAvvviCZcuWsXz5ciZPnszkyZPZtm1bp9d86KGHqKmpaXsUFBSc0tcgIv2MxwVf/R0OrDGfs4EhULTZlLYDyDjf3NDtjM/T0ph7FMy8S3N9EZFOqMyFiAwMDRWw8QWoK4LEMWYJec4npu6xzQ7jrofQ2M7PtyxTcy0s3mQkd1VjTUSkVZflLwbDpG+Z1RJ1RbD57zDxRvMFuGAtNJTDlFsgcVRvvwqRE3LOOefg8/mO+XiHw4HD4TiFIxKRfsvrMSt79v0LYtIhKAxKd8KeD83+1DMhbVbn57eWtojPhBl3QWRKjwxbRKQvUmayiPR/rkb46q9mgpgwyjTdKNxgHgBjrzSZyl2p3m8mpWfcfrgbtAAwbNgwbDab3+MXv/iF3zFbt27l3HPPJSQkhNTUVH75y1/20mhFesnRmcqOCPOeFJ4Ik282jfkay2Hzi6Z+e+IYqDkAa35n6jxaVm+/AhE/CQkJ2O12SkpK/LaXlJSQkqIgjIj0IF/LasO9KyBqCDgioSIXdr1j9g+abLKSOz3faz6T40aYjOSoQT0ybBGRvkrBZBHp37wek/V3cAPEZZoapeV7TVYyQMYFJmjTldpC8+eUm2HQxFM52j7r8ccfp6ioqO1xzz33tO2rra3l0ksvJT09nY0bN/KrX/2KRx99lGeeeaYXRyzSS1qDymfdYzKnyneb2uuTb4GQaGiuNkt0m2sgfhR4vaaO8pZlqqMsp5Xg4GCmTp3KJ5980rbN5/PxySefMGtWF9l/IiInk2XB3o9MMDk8EUJjTEmp7DdNSbvEsTDy0s4b2/q8ZsVQ7HCTkRw1uEeHLyLSF6nMhYj0X5YFO9+B3FWmLEVQCNQVm8kmFgyaBKkzu75Gfalp5DHlZrNMXToUGRnZaSba3//+d1wuF88++yzBwcGMGzeOzZs389vf/pa77rqrh0cqcpqISYUZi2Htn6B8j1k1MfkW2PoyNFaYkhcTvmmOa6oy2VX1Jea9KDyht0cvA0R9fT05OTltP+fl5bF582bi4uJIS0vj/vvv5/bbb2fatGnMmDGDp556ioaGBhYuXNiLoxaRASXvU9j+uikfFRZv5vrbX2vpTzACxlxhViV2pC0jOcNkJEcP6dmxi4j0UcpMFpH+K+9T2PWuyVJwRJlMv+2vgs8NsRmQ2UWWAkBjJTRXwbhrYfiFPTfuPugXv/gF8fHxTJkyhV/96ld4PJ62fWvWrOG8884jODi4bducOXPYvXs3VVVVHV7P6XRSW1vr9xDpd2KHwfTFpi5jxV5T6mLyzRCRYhqFbvkH1Bw09dzjRsDBdfDF/5jmQCI9YMOGDUyZMoUpU0zDqvvvv58pU6bw8MMPAzB//nx+/etf8/DDDzN58mQ2b97Mhx9+2K4pn4jIKVGwDra8bJrZRqaYm7HblplyUdGpkHUNBNg7Prc1kByTDjPu7L7knYiItFEwWUT6p6KtsPUV08U5PAE8zSZLwdVggstdTS4BmmuhvhhGX24eXQWdB7h7772Xl19+mVWrVvHtb3+bn//85/zwhz9s219cXNwusND6c3FxcYfXfOKJJ4iOjm57pKamnroXINKb4keYgHJYggkoB4bCpBshaqj5Mrx1GVTmQVCoWapbcxBW/x72/dvUiBQ5hS644AIsy2r3eP7559uOufvuu9m/fz9Op5O1a9cyc2Y3K36OwdKlS8nKymL69Olf+1oi0k8VbYVNfzOlLKKHmqSRrS+bFYURKTB+HtiDOj63LZCcZgLJaqwtInJcFEwWkf6nKh++etEEkKOGmAlj9nJoKDOZf+NvgMAuusW7GkzjqxEXm6zkgIH3Vvnggw+2a6p39GPXrl2AyVS74IILmDhxIt/5znf4zW9+w+9+9zucTucJP/9DDz1ETU1N26OgoOBkvTSR00/CyJaAchxU5JgMq4nzzQoKn9vcCCvfY26AxY80X5w3Pm8Cze6m3h69yEm3ZMkSsrOzWb9+fW8PRUROR+V7YdMLZhVPTLqZu299GZx1ptTFxG92Pte3fOYzNSbVBJJj03t27CIi/YBqJotI/9JQARtfgLqiw4319q4wAeaAIJOlEBLV+fmeZqjKg2HnmOzAzjIa+rkHHniABQsWdHnM8OHDO9w+c+ZMPB4P+fn5jB49mpSUFEpKSvyOaf25szrLDocDh6OLgL9If5M0BqbdAev+DJW5pqzF+OtN3ffy3bDjTRgzF5LHmwyspipTxqe+2NRajkjs7VcgIiJy6lXthw3PmpIW8aMOr+JpqjJl7SbOh6Cwjs+1fKZUVPQQmH6nKTclIiLHrceDyQUFBdx6662UlpYSGBjIf/3Xf3HDDTf09DBEpD9yNZgshfI9JpBsC4ADX0LxFsAGY68y9dQ643WZrMCh02DKraZh3wCVmJhIYuKJBac2b95MQEAASUlJAMyaNYsf//jHuN1ugoJMcH7lypWMHj2a2NjYkzZmkT4veRxMWwjr/2JuasVmQNbVsPsDKNlmgsdeFww+w9RRDgyFgxvMTbQpt5iAtIiISH9VW2Q+I2sOmrm+zw3bXoWGUggKh0nfMgHljrRmJEcPMRnJcRk9O3YRkX6kx9duBwYG8tRTT5Gdnc2KFSu47777aGho6OlhiEh/4/XAlmVQuBHiMyEgEEp3Qt6/zP7Mi81S8s74PGaCmTwepi4AR0RPjLrPW7NmDU899RRbtmxh3759/P3vf+f73/8+t9xyS1ug+KabbiI4OJhFixaxY8cOli1bxv/8z/9w//339/LoRU5DgyaZ96BAh1lRgc3UbR8y1ezfuwIOrDF/Dwo5XEd5ze8hd5XqKIuISP/UUAEb/gKV+yBhtAkO73gTagvNZ+bE+eZGa0daA8mRKaasVFzHq+tEROTY9Hhm8qBBgxg0aBBgljcnJCRQWVlJeHh4Tw9FRPoLyzJLwfetMnXTAkNMcGXXu2b/kGnm0en5LRPM+JEwfVHnE1Fpx+Fw8PLLL/Poo4/idDrJyMjg+9//vl+gODo6mhUrVrBkyRKmTp1KQkICDz/8MHfddVcvjlzkNDbkDFPrfeNzpn57TDqMmG1qKR9YDXn/Bo8LMs4zdZQTRpkv05v+CrWHYPx1pmGfiIhIf9BcY0pblO40gWSbDbLfNqt4AoJgwjchIqnjcy2fqbEcmQIz7jKNb0VE5Gs57szkTz/9lCuvvJLBgwdjs9lYvnx5u2OWLl3KsGHDCAkJYebMmaxbt67Da23cuBGv10tqaupxD1xEpE3epyZwHJ4EjkhTM23H62B5TYB4xEWdn2tZZoIZPRSm39H5RFQ6dMYZZ/Dll19SXV1NU1MT2dnZPPTQQ+3qHU+cOJHPPvuM5uZmDh48yI9+9KNeGrFIH5E63ZTbAaguMF+cM86DjAvMtoI1kLPSvIfZbOY9LDwJdr8PX/4B6kt7a+QiIiInj6vB9EMp2mzm9QGBsOdD00/AZjf9BaKGdHyu5YOKvWZ+P/1OBZJFRE6S4w4mNzQ0MGnSJJYuXdrh/mXLlnH//ffzyCOPsGnTJiZNmsScOXMoLfX/UlNZWcltt93GM888c2IjFxEBKNoCW18x2cjhCeBuMrXT3E0mA2HslaZ2ckcsyzS6Co83ja9i0np27CIiXUmfZWohWx6oKTTb0s6EkXPM3w9tgt3vmS/LAKExEJdpyv188T9Qkt0rwxb5upYuXUpWVhbTp0/v7aGISG/yOOGrv0PBl6YxrT0Y9v0TircCNsi6qvMmeq0JI+GJprRFQmZPjlxEpF+zWZZlnfDJNhtvvvkm11xzTdu2mTNnMn36dH7/+98D4PP5SE1N5Z577uHBBx8EwOl0cskll3DnnXdy6623dvkcTqcTp9PZ9nNtbS2pqanU1NQQFdVJcX0RGRiq8mHNUmisNBNMywtbXzYlLhxRcMZtENxF7eOqfDMpnXEnDJrYU6M+IbW1tURHRw/Y976B/vplALMsU9biq7+bhntRplQYJTtaSvlYpszF2KtMthaYEhmVuRAcbkpeZFwAAT3eJkNOgoH+3jfQX7/IgOb1wOaXYO9HJmAcHAH7v4D8z8z+0ZdDSifzd8syGclh8Waenzi6x4Z9Mui9T0ROdyf1m4XL5WLjxo3Mnj378BMEBDB79mzWrDHNYizLYsGCBVx00UXdBpIBnnjiCaKjo9seKokhIoBpwrHxBagrPtxEY/f7JpBsd8CEG7oOJNcWmqXhU2457QPJIjKA2WyQcT5Mmg/uBvOeB5A8DsZda5b4lu+B7a+D12X2BdjNUmAL2PQ382Xc1dhrL0FEROS4+Hyw4w1Tzik61czpCzceDiSPuPgYAslxJiO5jwWSRUT6gpMaTC4vL8fr9ZKcnOy3PTk5meJi8+Xniy++YNmyZSxfvpzJkyczefJktm3b1uk1H3roIWpqatoeBQUFJ3PIItIXuRpg0wsmgJIwypSxyP8MSrPN38dda5a0daa+1JTBmPhNSJvZc+MWETkRNpv54jzhBnDVHa6HnDDKbAsIMk2Itr4CnubD50QPMXWU93wAa/8IdSW99xpERESOhWWZEk6734eIFAiJNqtxclaa/elnw9BOSuC0BpJDY00gOWlMz41bRGQACezpJzznnHPw+XzHfLzD4WjXyElEBjCvB7Ysg8INh5twFG+FA6vN/pFzOq+dBqYkRnMVjJ8Hwy/skSGLiHxtNhuMmgM+D2x/zfwcnmje7ybeCNtfgdqDsOUfMGE+BIeZ80JjICjEZHQ1lsPkm01Ws4iIyOnGsiD3E9ixHEJiTXZx+d6Wsk7AkKmQfk7n51bkmM+96YsgaWxPjVpEZMA5qZnJCQkJ2O12Skr8M19KSkpISUk5mU8lIgORZcHOd2DfKogZZpruVeWbjs4AabNg0KTOz2+ugYYSU2Nt9OUmGCMi0lfYbOa9K+taaKwwDzAZyJNugqAwqC+BLX8HZ93h8wJDIHEs1BbBmqch5xOzhFhEROR0cmCNWWUTFAYRSVC9H7KXA5a5ETpidsfz99am2iHRMG2RbpqKiJxiJzWYHBwczNSpU/nkk0/atvl8Pj755BNmzZp1Mp9KRAaivE9h1ztm2bYjEhrKYcebYPlMoGTYeZ2f62qAmgKzVHzcdWpGJSJ9U0AAjL3SPBrKzGoLgIhkk3XsiDRB5s0vQlPVEee11FG2BcBXf4PNf1cdZREROX0UbjLNZm12iBoMdUWmH4DlhfhMGNVJIkhrINkRCdPvgJTxPT92EZEB5rijKfX19WzevJnNmzcDkJeXx+bNmzlw4AAA999/P3/+85954YUX2LlzJ9/97ndpaGhg4cKFJ3XgIjLAFG01mQqBoRCeYILD218FrxOihsKYuZ1nGrubTT3RYefAxPlg7/EKPyIiJ09AS234MXNNJnJTtdkeFg+TbzG1IptrTMC4oezweTab+YIekWxWdHz59OGGfiIiIr2lJBs2/RU8TtNwr6HczPu9LohJg6xrzE3Ro1kWVO0DRwRMWwgpE3p86CIiA9FxR1Q2bNjAhRcerjN6//33A3D77bfz/PPPM3/+fMrKynj44YcpLi5m8uTJfPjhh+2a8omIHLOqfJNJ52mGuBHgdZuaoc01Jmgy/jpTO7kjXpdpxJE6HabcamqHioj0dQF2s8rC6zaBYZvNLO8NiTYZyluXmUDy5pdMs9HIQYfPDYkxpS8OfWWymCffrEwuOa0sXbqUpUuX4vV6e3soInKqVeTCxufMvD5+JDhrzWeYpwkiU2Dc9R3P81sDyUFhMHVh16XuRETkpLJZlmX19iCOxZGTyj179lBTU0NUVFRvD0tETrWGCljze9NQI7GlI3P2cijfY4IhU24zzTk64vNA2S5IHg9nfscEnvuo2tpaoqOjB+x730B//SKd8rph8z9g7wqISQVHy78PdxNse8UsE7YHm6ajMWn+5/q8ULnP3GQbdx2MuEglgE4zA/29b6C/fpF+r+agWSVTUwgJo8xnV2uZprAEmNzSD+BolmVWHQaFwLQ7YPCUnh/7KaT3PhE53fWZbwxLliwhOzub9evX9/ZQRKSnuBpg0wsmcJwwytT63Pcv87PNDuOv7zyQbPnMcfEjTUfnPhxIFhHplD0IJt0ImRdDdcHhxntBoTDxRohOMys0tr1iAsdHCrCbOpQ2u/ny/tXfzPuuiIjIqVZfCuv/AlUHzHzd6zIZyU1V5sboxPldBJLzIdABUxf0u0CyiEhf0GeCySIywHg9sGUZFG4wwY6AQDi0CQ6uM/vHzDU11TpiWVC+F6KHmkByRFLPjVtEpKcFBpvsreEXQPX+wwHhQAdMuMGUB/J5THmgsl3+57bVUU6BvR/BmqehtqjHX4KIiAwgjZUmkFy+BxJHmyZ7216FhlIICodJ3zIN9TpSfcDcSJ26AIZM7dFhi4iIoWCyiJx+LAt2vgP7VkFMuilnUZELe1ea/cPOg6Sszs+tzIXweJi2yCz7FhHp7wIdMOUWGHauWfrrajTb7UGmhEXiWLNiI/stKN7a/vyQaIgfBcVbYPX/QvG2nh2/iIgMDM462Pg8lGw3Kw+xwY7lUFtoPssmzu98RWH1AXMT9IxbYei0Hhy0iIgcScFkETn95H0Ku96F8CSzzK2+BHa+BViQMhHSZnV+bvX+lkYcCyAhs6dGLCLS+4JC4IzbIP1s05TI3WS2B9hh7JWQMgmwYPf7cHBD+/MDHSboXF8CX/7B3MDzqQGaiIicJO4m2PRXKNx4eOXhrnfMZ1ZAEIy/ofMVhTUHzU3RKTdD2pk9O24REfGjYLKInF6KtsLWV0w2cniC6ei87VVTRy0mHUbOMRkJHakpPJytkDKhZ8ctInI6CA4zAeXUmaZxqbvZbLcFwKhvwNDp5ufcj2H/F2Y1x5FsARCXCbZA+OpF2PJy+2NERESOl8dlGsbuXw2xw8HuMOWVynaZz55x15oSdR2pPWS+C0z+lrlhKiIivUrBZBE5fVTtN8ELTzNEDQGPE7a9Bq5609F53LUmw64j9aXgaTJL41Jn9Oy4RUROJ44ImLYQUqdDZY55TwVzs234RZB+jvk5/zNTTqhdQNkGUYMgIhly/wmHvurZ8YuISP/ia6mJvO+fJjkkOAzy/gVFWwAbjL0K4oZ3fG5dsclonnQjZJzfeVKJiIj0GAWTReT00FBh6qfVFbVMJi1T27O1EceEG0y2ckeaqqCp0gSbh1/Qg4MWETlNOSJh2h2my31Fjrk5B+ZL+LBzYMRF5ueD60xmmOVrf43WmpXZb5kalyIiIsfL54Pst2HPRxA5xHw+HfgSCtaa/aO+AYljOj63vsQklUy8wXxuKZAsInJa6DPB5KVLl5KVlcX06dN7eygicrK5GmDTC6ajc2sjjr0rW+qnBcL4eaY5VEecdSYAPeoyGH25JpkiIq1ComH6Ihg0CSr2miXCrYbOMO+bAEWbTZ36juojx6SbYPSej3pkyCIi0o9YlrlhufMtCE+E0Biz2iXvX2b/8AvNZ1RHGsqguQbGXwcjL9UcX0TkNNJngslLliwhOzub9evX9/ZQRORk8npgyzIo3HC4EcfBdVDUsqx67FVmuXVH3E2m4d7wC2DC9RDQZ97SRER6RmgsTF8MyePNDTuv+/C+QZNg7NWmVmVpNmS/CT6P//n2IFPuIucTKNvTs2OXAUtJJCL9RN6/Yfvr4Ig2vVBKs01wGUxD7dSZHZ/XUH541aGSRURETjuKvIhI77Es2PkO7PuXyX4LDDFNOPatMvtHXNSSqdwBj9Nky6WdCZO+ZQIeIiLSXlgczLgTEsdC+W7/gHHSWBh3nbmRV5FzuOGp3/kJ4G6E7OWHy2WInEJKIhHpBwrWmYQRuwMiU6Ai16yCAVOCadh5HZ/XWAmN5eZm55grFEgWETkNKZgsIr0n71MzqQxPBEcU1BYeMck8A4Z0kpHk85gl24Mnwxm3mSYeIiLSufAEE1BOGA1lRwWU4zNNXXp7sFntseVlcDcf3m+zQewwKN5mbv6JiIh0pWgLbPqbqccfPRSqC8zqF8sHSVmQ2UnZiqYqUyd57BWQdZVWHYqInKb07iwivaNoK2x9BQIdJsjRVG2Wwfk8EDcCMmd3PMm0fIdrK09d2HktZRER8ReZbALK8SNaAspH1EiOSYeJN5oVInWHYMvfTT37VoEh5v129wdQU9jzYxcRkb6hbA9sfMGsaIlJh7pi2P7a4Tn+6Lkdz/Gbq6G+2JS1GHcdBNh7fOgiInJsFEwWkZ5XtR++ehE8zRA11GTAbX/VTDojkiGrpYbn0SzLZCRHD4Vpd0BEYs+PXUSkL4saZALKcRktJS+OCChHDYZJN0FQuGl8tPlF0/yoVeRgsz17ecfN+kREZGCryocNfzGlKuJGmEzjba+A12nm71nXdBwkbq6B2kMmY3nCPAWSRUROcwomi0jPaqgw2Qp1RRA33GQa73gDGivAEQnj55ml1kezLKjaB6FxJpAck9rzYxcR6Q+ih5qmfDGpZqWH5Tu8LyIJptxiSg81VZm69pZl9rWWuzi4HgrW9srQRUTkNFVbBOv/YoLCCSPBWQdbXz6cLDJ+Xsc9Tpx1UHsQRlwMk+aDPbDnxy4iIsdFwWQR6TmuBtj0gsmGSxgF2GDP+1BzwASQx99gAsodqSkwDTzOuM1MUEVE5MTFpsP0O0028tEB5dBYmHyTacpXexAq9x3eFxwBAcEmyNxY2fPjFhGR009DuQkkV+aZ2vzuJhNIdtaaRJAJ8025pKO56k2t/uEXwWQ11BYR6SsUTBaRnuH1mI7OhRshLtMEKfZ/ASU7AJtZ9haR1PG5dcWmztrkm0zTPRER+friMkyGckQylO89nIEMEBJjGqEC5H/qvy8mDaoPwM53/beLiMjA01wDG56Fsp0mWcTnNqUtmirNKpeJ8ztulu1qMGUxMs43c/xAR48PXURETkyfCSYvXbqUrKwspk+f3ttDEZHjZVmw613Y9y8ThAgKgZLtsP9zs3/kHFPyoiONFeCsMfXT0s/qsSGLiAwICZkwfRGEx0NFjn9wOO1Ms2qkvsSsKGkVYIeoIZD/GRRv7fkxi4jI6cHVABueh0ObIb5l5eD2183nRlCYaezaUbNsd6MpXzfsHDjjVvPdQERE+ow+E0xesmQJ2dnZrF+/vreHIiLHK/8zsyQ6PNFkKFQfgN3vm32pMzvPNm6ugfpSGHMFZF7ScednERH5ehJHw7RFEBoNlbmHA8pBYTC05SZ+/mftS2H4vLDjLRNMEBGRgcXjNA21D66D+JZVh9nLD5emm/BNCItrf567yZRPSjvLlK8LCu3xoYuIyNfTZ4LJItJHFW015S0CHRCeYDKNd7xhghKJYyDjgo7PczWYyWjmxS2dn/V2JSJyyiRnmeamjgiTLdYaUB463dS5bKxoKUt0hNhhJmN578oeH66IiPQirxu2vAx5n5nPgsAQ2P2euSEZEGia7UWmtD/P0wyVOTB0BkxdAMHhPT1yERE5CRSdEZFTp2q/yVjwNEPUUHA1wrZXzc+Rg2H03I6zjT3NUJVnlr5NVFdnEZEekTLBfLkPDDXvwZZlAgSpM83+/Z+bbORW9iCz4mTvSqjI7ZUhS/+k8nYipzGfD3a8CTkfQ/RQCAqHnBVQmg22AMi6FmJS25/ncULFXhgyDaYtNDcvRUSkT1IwWUROjYYK2PgC1BWZesg+D2x/DZqrTe208dd33LHZ6zZ1OwefAVNuUQ01EZGeNHiKCSjbg6F6v9k2ZKoJFjTXtK+RHJ4EzloTWPC4eny40j+pvJ3Iaaq1D8qu9yAixczp8z+FQ1+Z/WOugPgR7c/zukwgedAUswomJKpnxy0iIieVgskicvK5GuGrv5rlzwmjAJuZeNYdMlluE77Z8bI2nxfK90Di2JaMhcgeH7qIyIA3dKqpY2kLgOoCE1hOm2X27V9tbg62stkgNsMEmfM/653xiojIqWdZkPOJqYscGmfqIReshQNrzP6RcyApq/15XpeZ36dMNA1fQ2N6ctQiInIKKJgsIieX1wNbl8HBDRDX0owj718msGwLgHHXQVh8+/Msn8lYiB0G0+/ouGGH9Lif/exnnHXWWYSFhRETE9PhMQcOHGDu3LmEhYWRlJTED37wAzwej98x//rXvzjjjDNwOBxkZmby/PPPn/rBi8iJS5sJk+aDu8GUHho82TRQddXBoU3+xwaFQnCkyVSrLeqV4YqIyCm2fzVsewWCIiAiCYq2wL5VZl/G+WZly9G8bhNITh4P0xdrfi8i0k8omCwiJ0/r0rfcVRCTZkpUHNpsshYARl9utnd0XmWuqb05bSFEDe7RYUvnXC4XN9xwA9/97nc73O/1epk7dy4ul4vVq1fzwgsv8Pzzz/Pwww+3HZOXl8fcuXO58MIL2bx5M/fddx+LFy/mo48+6qmXISInIu0ss1y5ptDcGEw/22w/8KXJNDtS1GCoL4Xst0w9TRER6T8KN8Lml8Bmh6hBULYL9nxo9qXOPLx65Ug+j0kmSRxrAsnhHSSTiIhIn6RgsoicPPmfwc53IDzBZLBV7oO9LQHD9HNMVkJHqvebshdTF3RcZ016zWOPPcb3v/99JkyY0OH+FStWkJ2dzYsvvsjkyZO57LLL+MlPfsLSpUtxuUyw6Y9//CMZGRn85je/YezYsdx9993MmzePJ598sidfiogcr8BgGH4h+FwmeJw8HkJjwd1oVp8cyRZgbhYWrIWDqnMrItJvlOyATX8znwPRqVCZBzvfBiwYNAkyLmh/TmsgOWEUzLgTIhJ7eNAiInIqKZgsIidH8TbY+goEOkyGcX2pqamGZQIQrRltR6s9ZGpuTr4FUjoJNstpa82aNUyYMIHk5OS2bXPmzKG2tpYdO3a0HTN79my/8+bMmcOaNWs6va7T6aS2ttbvISK9YOg0iE4z79UBdnNjEEzQ2N3sf6wj0mQw73wLmqp6fqwiInJyVeTChuegudbUx68thB1vmPJ0iWNMnWSbzf8cnxfKdkPcCBNIjkzu+NoiItJnKZgsIl9f1X6TseBugqih4KyD7a+2ZDCkwajL2k80ARrKTIbbhBtMfU7pc4qLi/0CyUDbz8XFxV0eU1tbS1NTU4fXfeKJJ4iOjm57pKamnoLRi0i3gkJhxAXgajCZZkljISwBvE44uK798THp5jNh1/umhJGIiPRN1QWw4S9mvh4/wvy5/VXwuSF2OIy50qxKOZLlMxnJscNMIFml60RE+qU+E0xeunQpWVlZTJ8+vbeHIiJHaqiAjS9AXRHEDTcTzO2vmYByWLxpuBdgb39eUzU0VsDYq2DERT0+7IHswQcfxGazdfnYtWtXr47xoYceoqampu1RUFDQq+MRGdCGzjABgbpiEzjIONdsP7jeBJmPFGCHyMGQ928oze75sYqIyNdXVwIbnoWqAxA/EpprTINtj9Mkjoy7pv383vKZjOSYVBNIjh7aK0MXEZFTL7C3B3CslixZwpIlS6itrSU6Orq3hyMiAK5G+OqvLc01xpht2W9BfQkEhcH4G0wTvqM566GuEEZdDmOv6DhrWU6ZBx54gAULFnR5zPDhw4/pWikpKaxb55+dWFJS0rav9c/WbUceExUVRWhoaIfXdTgcOByOYxqDiJxiIVEw/HzTfClqMMSPgsgUE1w+8CVkXux/fFicyWDbsdwsiw4O65Vhi4jICWisNIHk8j1mfu9uhC3/AHcDhCfBhHlgD/Y/x/KZ46MGm2Z7sem9M3YREekRfSaYLCKnGa/HZCgc3ABxmaa7c85KqMw1NTPHz4PQmPbnuZugOs80dZowr+OsZTmlEhMTSUw8OY1QZs2axc9+9jNKS0tJSkoCYOXKlURFRZGVldV2zPvvv+933sqVK5k1q4PO3yJyekqbBTkfm5uFkYNg2Hmw7RU4tAlSp5umq0eKyzCZybmfwNgre2fMIiJyfJx1sPF5KNlumud5XbD1ZXDWmgasE+dD4FGJIpYF5XshItkEkuOOLSFBRET6rj5T5kJETiOWBbvehdxVEJNmso8LN5igAsCYKzqukeZ1mWDz0Jkw+SYIDG5/jJxWDhw4wObNmzlw4ABer5fNmzezefNm6uvrAbj00kvJysri1ltvZcuWLXz00Uf8v//3/1iyZElbZvF3vvMd9u3bxw9/+EN27drF008/zSuvvML3v//93nxpInI8wuJg2LmmPJFlmYzj6KFgeWH/6vbH24NNbeU9K6Aqv8eHKyIix8ndZHqgFG6E+EzzXr/tFfO+HxwJE2+E4HD/cywLKnIgPB6mL4KEzN4Zu4iI9CgFk0Xk+OV/BjvfgfAEk41Wvsdkn4HJOG4teXEkn8cclzwBpt7WfjIqp6WHH36YKVOm8Mgjj1BfX8+UKVOYMmUKGzZsAMBut/Puu+9it9uZNWsWt9xyC7fddhuPP/542zUyMjJ47733WLlyJZMmTeI3v/kN//d//8ecOXN662WJyIlIPwtCW0pY2GwmOxmgeKupg3+0iGRoqoIdb4LX3aNDFRGR4+B1w5aXYf8XprleQCDseN2UMwoKNRnJIUeVmrQskyQSGg3TFkHi6N4Zu4iI9DiVuRCR41O8Dba+AoEOCE+E2iLY+bbZN2iyadR0tNY6avGZMG2hWSYnfcLzzz/P888/3+Ux6enp7cpYHO2CCy7gq6++OokjE5EeF5kCaWfC7vfN+39MmslQrsqD/Z+bVSlHstlMuYvCr0yAYvgFvTJsERHpgs8L216DnE/M+3qgA7LfhOoDZpXJhPkmgeRIlgVV+8ARAdPugOSs3hm7iIj0CmUmi8ixq9pvlr+5m0wn5+Zq2P6ayTqOHQ4jL23fTK+1jlrUYDPZjEzulaGLiMhJMOwck53WVNXyc0t2cskOaChvf3xQmFmJsvNdqC/tuXFKn7Z06VKysrKYPn16bw9FpH+zLPP+vOdDM1cPjoQ975vSFTY7jL/e3Eg8+pyqPAgMhakLIGVCrwxdRER6j4LJInJsGipg4wtQd8g01vA6TRaDu8FkqGVdDbaj3lJaJ5uhsTB1oTo7i4j0dTFpMGQq1BeZn6MGQfxIwDIlkDoSPRTqiiD7bfD5emyo0nctWbKE7Oxs1q9f39tDEem/LMtkI+98C8LiISQGcj82NwexQdY1EJPe/pzq/SZjeeoCGDyl58fdR7g8PnJK6ymvd/b2UERETjoFk0Wke65G+OqvUL4bEkabieSON6GxHIIjYMINZknc0WoPgj0IzrgFkjqooywiIn2LzQYZ55mM4+Yasy2jJTu5fLepr9nunACIToUDq+GQyt2IiJwW9q82DfaCIkxiyP4vTPM9gDFzIWFk+3NqCiDADmfcBkOn9ux4+4B6p4dtB2t4c9NBfvHBTv73kz18sbeDVTsiIn2caiaLSNe8Hti6DA5ugLhMs+Rtz/smKyEgCMbPM034jlZfAl6XmWwO0WRTRKTfiM+ElIlQsM6UvAhPhKQsKM022ckTbmh/Tki0uQGZvRwSMts3chIRkZ5TuAk2v2Ru9kUNMkHk/Z+bfZmzIXl8+3NqDpo+KGfcDmkze3a8pynLsqhocLGvrIFdxbXsKqqjusmFZUFkSCCNLi9ey+rtYYqInHQKJotI5ywLdr0LuavM0uagEJPFULyNtuVvR9dRA2isNPWUJ3wThp3bw4MWEZFTymYzzfQOfQWuerNCJf0cKN0Jlbkm4BA9tP15MelQtgt2fwgTv9m+xr6IiJx6pTtNDxSP05SuK9kBOSvNvvSzYci09ufUFoLPDVNugfSzena8pxmfz6Kwuol95Q3sKKwhv6KB2iYPAQE2YkKDGBYfTpDdLACvbfL08mhFRE4NBZNFpHP5n8HOd0wHZ0dUS9bZp2Zf5iUQP6L9Oc5aqC+GsVfCqG8oWCAi0h8lZUFyFhRtg8TREBZnmjAVbzWfE5Nuan9OQCBEpMC+VTBoksofiYj0tMo82Pi8SfqIHwmV+2D3e2bf4DPMjcGj1RWBpxkm3zRgk0ScHi8HKhrJLatn68EaimuaaXR5CAoMIDYsmOTIEAIC9J1HRAaOPhNMXrp0KUuXLsXr9fb2UEQGhqKtsGWZqYUcngjVBbCrZbI5dDoMOaP9Oa5GqD5glseNuxYCVJZdRKRfCggw2cnF28DdBEGhJqOtZIf5HKjKh9hh7c8Li4fyclN3P/b7ZsWLiIicerWHYMOzUFtkbgLWHoTsN03piqQskyhydBJIXTG4GmDSjTD8wgGVJFLv9LCvrJ49JXXsOFRLeZ0Tt9ciLNhObHgwQ2NDsXXz+2hyealvVnayiPQ/fSaYvGTJEpYsWUJtbS3R0aqzJ3JKVeXDVy+aLIS4EaZsxY7XwfJCwigYflH7czxOqNoHabPMhNMe1OPDFhGRHpQyyTRlrcgxdZRDomHwZFN7M+9TU9bi6C/aNhvEZkDpDpOhPPqyXhm6iMiA0lAO6581mciJY6GhDLa9Bj6PmeuPntv+/bq+1Kw4nPhNkyjSzwPJlmVRXu9iX1k9u4rr2F1cS3WTu63+8eCYUEKC7F1ew2dZlNQ2s6+sgbyKBirqXUSGBnLbWcN65kWIiPSQPhNMFpEe0lABG18wS9oSx4CnCba/agLLkYNgzJXtJ5NeN1TshUGTTcO9oNBeGbqIiPQge6DJTi7bZW4oBjrMDcWiLVB3yASZE0a2Py/QASGxsPsD0+QpJrXHhy4iMmA015iM5LKd5gagsxa2vgJeJ0QNNT1QAo4KkjaUm1IY46/r12XrvD6LQ9VN5JbVs72whgOVjdQ2e7DbbESHBpERH06gveuVlq0lMPIqGsgvb6TJ7b+SurrRfSpfgohIr1AwWUQOczXAphegfI8JJFs+2P46NFWZmsnj57XPOPZ5oWKPWS43bSGERPXO2PsIq6Wjc3fL4kRE+oTBU0w5i9pDEJdhmvENmQYFX5rayfGZHQchIgeZOvzZy2Hmd01gWkRETi5Xo0kSKdpiaiR7mmHry+BugPAkmNDB3L6xAhrLTcm6jjKW+zinx8v+ikZyS+vZWlhNcY2TRpcHR6Cd2LCgY6p/XNPkJq+8gX3l9RRWNeGzDu8LDgxgWFwYGYnhuD0WV0wadIpfkYhIz9PMXUQMrwe2vAyFG8xk02aHnW+b7s12B0z4JgSH+59jWSYjOSYNpt1hGvVJO16fxcGqRnJK69lysJrU2DBumKZMPBHpB4JCYMSFsP7/zCoVexCkzoRDX5ll1GW7IGls+/NsNhOEPrgBBq2BjIHZ1ElE5JTxOGHz36FgrSllYflg2ysmUzkkxpSvCDyqbn1TNTSUmkbaY6/qN/1P6prd7CtrYE9JHdmHaimvd+L2+ggLDiQuPJjUbuof+3wWRbXN5JU3kFfeQGWDy29/TFgQGQnhDE8IZ1B0KPaWYPTu4rpT+rpERHqLgskiYoLCO9+Bff+CmGFmYrnv32Y5nC3AZCYcHSi2LKjMNdun3gHRQ3tj5Kctj9fH/spGckrq2HKwhqKaJhpdXpxuHxHBeusVkX5k6HTY85EpjxSTZkodDZ0O+z+H/M/MyhVbBwGJ4HDzebPzHRNw1g1JEZGTw+uBra9C3r/N3D7ADluXmZt8wREw8Ubz55Gaa02JolGXQVbfbqRtWRZl9U72lTWws6iWPSV1VDe5wYKokCCGxITi6Kb+sdPtZX9lI/vKG9hf3kCzx9e2z2aDIdGhZCSGk5EQTmxY8Kl+SSIipxVFNETETDR3vWuWuzkizVK4gjVm36hvmOyxo1UfgKAwUyM5IbNHh3u6cnq85Jc3srekji0HqymtdeL0eAkLDiQ+3EFqrJ39FY29PUwRkZMrOByGX2jKJPm8JmgxdLppxNdUCSXbIWVix+fGpJlyFzvfham397vl1CIiPc7nM6sLc1ZA1BBzg2/7a2a1YWAITJwPoTH+57jqoeYAZF4CE2/ok6WHvD6Lwqomcsvr2VFYw/6KRuqaPdgDICYsmOHHUP+4qtHVln18qNq/fIUjMIBhCeFkxIczLD6s22C0iEh/1vc+JUTk5CraYjIXAkNMVlhVPuz9yOxLO6vjAEBtEeCDyTfBoEk9OdrTTrPbS25ZPXtK6tl2sJqyOrNsLsIRRFKUgzBlIYvIQJA6A/augPpiE7wIdEDambBvFez/ApLGtW/wBCZjOWoo5H8OgyeZGswiInJiLMvM43e+3ZIkEmX+XpUHAUEw/gYIT/Q/x91o5v8Z58Pkb7WvoXwaa3ab+sc5pXVsK6yhpLaZRpe3rf5xSnQIAV3cpPT6LIpqmtjXEkA+ulleXFiwyT6OD2dQdPe1lEVEBgpFOUQGsqp82PQ304wjboRZ+rbjTVNTLSkLhnVQw7KhHFx1JpCcdmaPD/l00OD0kFNaz+6SOnYU1lBe78JrWUSFBB7TsjkRkX4nNAYyzjPLqCMHmSDx4DPg4DpTn7NoCww5o/NzG8tgx1umYZ8jsidHLiLSf+R9appnO6IhNM4Elst2tZStuw6ih/gf72mGyn2QNgum3GJuBJ7mLMsiv6KRjfsr2VZYQ0W9C4/XR7jj8ErAruofN7u95FeY4PH+ikacR5SvCLDBkNhQMuJN+YqYEyhf0ez2UtXooq7ZQ4ANgrrJhhYR6YsUTBYZqBrKYcPzUF8CiWPA1QDbXgWv09Q/Hn15++XGzdUm4DzuWsicPaCWI9c0uckprWdXUS07i2qpbHRhWRAdGkRaXBjBgd1PFGub3eSW1ROqYLOI9EdpsyDnE/M5EZFsstvSzoKclXBgNaRM6DzjLWYYlO822c3jr+/RYYuI9AsF600zbbsDIlNMYLlos9k35kqIy/A/3uOEihwYOs2UGQoO6/EhHw+fz2JPaR2rc8rZXlhLg8tDTGgwQ2NDcQR2Pre2LIuqRjd55Q3sK6+nqLqZI6pXEBpkZ1hCGBnx4aTFh3V5rc6uX+f0UN3opsnlITgwgPhwBzMy4shMimRUckT3FxER6WMUTBYZiJz1sPEFqNhrAsk+j6ml5qyF0FgYdz0EHPX24KqHmoOmKcfYKwdEILmywUVOaT07DtWYxh2NbmyYumsZx1B3DaCqwUVOWT05pfWU1jkBcHl93ZwlItIHRSTCsLMh+y2zvNpmg0GToWCt+Xw5tAlSZ3Z8rj3InJPziSmvlDCyR4cuItKnFW+Hr/5m6tbHpZlVIQdWm30j55gmp0fyus33gEGTYOrC03pFiNvrI/tQLZ/vLWd3SS0er0VyVAhDY0M7zUD2+iwKq5va6h/XNPmXr4iPMHP54YnhJEd1XQqjIx6vj5omN9VNbjw+i/BgO0NjQ5kwJJrhieGkxh1/UFpEpC9RMFlkoPG6TdbCoU1mObEtALKXmzqXQaEw4ZvmzyN5mltqqZ3XZ5tyHAvLsiirc5JTWs/2QzXkltZT0+TBHmAjJiyI4YnhBHbT2bq1e3RuaQM5ZfVUNrj89seHBzM8IfxUvgwRkd6TfrbJhmusMHX4A+ww7BzY/T4c+NIElztbRh2eaJZj73gTzv6PPrHcWk6NpUuXsnTpUrxeb28PReT0V54DG583iR9xmVC8DXL/afYNO699LXqfx6wEScqCaYvaN+M7TTS7vWw9WMPne8vILWsAYFB0COGOjr+HNLn8y1ccmbxht9kYGhtKRoIpXxEVevx1oY8sXwEQExbE5NQYxg6KYnhiOClRIV2W1xAR6U/6Z0RIRDpmWSZjLO/fEJNumu7lfGyWuNnsJiM5NNb/HK/b7B8yFSbf3O++3FuWRVFNMzml9WwrrCG/vIG6Zg+BdhtxYcFkJoVg76bZRts1yurJLa2ntmWSCab2WmpcGJmJEWQkhFNW52Tc4KhT/bJERHpH9BAYOt2UqwiLN9nJyeNNILmpEgo3mIBzR2w2swy7eJsJSI+8pGfHLqeNJUuWsGTJEmpra4mOju7t4YicvqoLYOOzprxQwmiTbbz7fbNv6HRTfuhIPi+U7Yb4kTB9MYTH9/yYu1Hv9PDVgSo+31tOQWUjdrsJBIccVSbOsiwqGlxt2cdFNc1++8OC7QxrqX18rCXpjr5+XbOHqkYXzW6vKV8Rcbh8RUZCONEnEJQWEekPFEwWGUj2/ctMMCOSzXK2wg3mATDmClMr+UiWDyr2QOJYmLoAHP2j5pfPZ3Gwqomcsjq2FNRwsKqReqeX4EAb8eGObjs/w+Hlczml9eSW1dPoOpw9FRhgIz0+jMykCDLiw/0a8pW1lLoQEem3Ms6FA2tM473QGLMCZtg5sPNtKFhnGvMdvQKmVWCIaRy16z1IHgdRg3t06CIifUZ9KWx4FqoOmLJ1NQdM0ggWJE+A4Rf5l6WzfFC+B2KHwYzFEJncWyPvUFWDiw37K/kip4LimmZCg+2kx4e3CwLXOz1sLqhmb0mdXwIHQGKEoy37ODnKcdyZwn7lK7wW4Q47qXFhbeUr0uLaj0dEZCBSMFlkoDi02TTYCwwz2WLle01tSoCM89vXUrMsk90QnQrTFkJYXI8P+WTyeH0cqGwkp7SezQXVFNU00+jyEBpkJzY8mCExnddda3eNsnr2lTX4dX8OtgeQkRhOZmIE6fFh6twsIgNXbIYpZ7H/i8PLpxPHmgBzQ5mpoTz8gs7PjxoMpTtgx3KY+W1TKkNERA5rqjKB5PI9JpDcUAbbXwfLa7KOR192VCC5ZV4fNQimL2qfQNKLSmqbWZ9XyZp9FZTXO4kMCWJEYvveJNWNLjbur2JnUR1ey7TQswfYSD2ifEVkyImXr6htcmMLsBETGsSUlvIVGSpfISLSoT4TTFbtNJGvoXIffPUieF0QOxzqik2GGBakTILUM9ufU5UHIbGmKUf0kB4f8sng8vjIr2hgb0kdWw/WUFzbTLPbS1hwIHHhwaR20bijldPjJb+8kdyyevIrGnB7D/d/Dg2yMyIxnBFJEaTGhnVbDkNEZECw2UywuHAjOOvMShibzdTu3PG62T50GgR3strFZoOYYXBwvan1mT6r4+NERAYiZ72pkVy8DRJGmVUg25aZeX50GmRdbVaEtLIsU7IuLMGUtojL6LWhHx6SWSX45b4KNuRXUtXoJi48mFFJkQQcNZ8uq3OyYX8le0vqaZ2FD4oO4Yy02BNK4DiyfEWT24vjiPIVI5MiGabyFSIi3eozwWTVThM5QfVlsPEFsxQucQw4a2H7q+Bzm+yxkZf6Zy4A1BRCQCBMuQUSR/XOuE9Qs9vLvrIG9pTUsfVgNWV1TtxeHxGOIJIiHYQFd/+21+Tysq+8npzSegoqm9qyHwAiHIFkJkWQmRjBoJjj7/4sIjIgJIwytZIPbTKfPWCavkYOgroik6Wc2UVNZEcENASZG5+Jo/v86hgRkZPC3Qxf/Q0ObjDN9tzNsHUZuJsgIgXGX2/m8K0sC6r2QUiUWWmYMLL3xo4J5OaW1bM6t4ItBdXUOz0kRDgYkxLZLsHjUHUT6/Mrya9obNuWHh/G9PQ4hsR2UiqpEx6vj+omNzUt5SsiVL5CRORr6TPBZBE5Ac562PSCyUZIHANeJ2x/DVwNEJ5oMheOXj7cUAaeJphyMwyd2jvjPgGF1U18mVvO1oM1lNc78VoWkY4gBse0b9jRkfpmD7ll9eSU1VNY3cQR8WNiQoNMADkpgqTI46+/Bmby3OD00uDydH+wiEhfFxAAIy6Aos3gaoTgMHPjMuN82PqyKb00dAaEdJEgEJMGpdmw633zmaSbdyIykHndsOVlyP/cJITgMxnJzloIjYMJ32zfKLt6v6lFP/V2U4e+l3h9FjuLavkip5ydRbU4PT6SIh3tysxZlsX+ikbW76/kULVpqGcDRiZFMG1YHImRx94IvLV8RV2zB2xmPn9GWixjUiJVvkJE5GtSMFmkv/K6Ycs/4NBXJhsMG2QvN8Hi4HAYP89MLo/UXAONFTDuWhh+YW+M+rgdqm7ii5xy1udXUtPoJiY8+JizC6obXeSWNZBTWk9xrX8H6MQIByOSTA3kuPDgE5ps+lqW0VU2uHB6vIQHBzImJYop6bHHfS0RkT4nebypx1+663A2XEy6WYZdcwAOrIZRl3V+foDd1PXM+zcMmmgeIiIDkc8HO96E3E/Me2hAIGz9h5m3OyJh4nxz0+5INQWm3MWUW03JoF7g9HjZXmiCyHtK6vBZFilRIe1qG/ssi5zSejbkV1FWb5pVB9hg7KAopqbHEhsW3O1zdVS+IiHCwcyMODKTTAA56gRqKouISHsKJov0R5ZlAsd5n5q6k3YH7PkQqvIhIAjG39A+G8zVaCadIy+FMVec9hlgxTXNfJFTxtq8Smqa3CRGOBjdwRK5I1mWRUWDi5zSenLL6imvd/ntHxQdQmZiBCOSIk64VprXZ1HT5Kaq0YXHaxEZEsjIpAjGD40mMzGCITGh7WrBiYj0SwF2c2OyZAd4ms0NTJsNMs6DzS9C0VZTsz+0ixtsobHmJmj2cogfYW6GiogMJJYFu9+DXe+ZUhbBYaapdl0xBIXCxBvbz+tri0xiyRm3QtrMHh9yo8vD5oJqPt9bTn5FA3abjUHRIe3KzXl8PnYV1bFxfxXVTW4Aguw2xg+J5ozUWCJCug5XdFS+Ii0+jPGDoxmeGEFaXJjKV4iInAIKJov0R/tWmWXBEcmm7uSBNVC8xewbexVEpvgf73GaemrpZ5nMBvvp+9ZQWtvM5znlrM2rpKrBRWKkg9HJnQeRLcuipNZJTlk9uaX1bRNVMDGNoTGhjEiKYERiBBGOE3vdHq+PqkY31U0uLAuiQ4OYnBpD1qAoRnyN0hgiIn3eoEkmCFx1wPwJJts4brhpDpv/OYy9sutrxA6Dst2w92MYd/UpH7KIyGnDsiD3nyYrOTQOQmPMzbXq/WAPNqUtwuL9z6kvAXc9TLoJhp3bo8OtaXKz6UAVX+wt52B1E47AANLiwnAE+pecc3l8bD9Uw6YDVTQ4vQA4AgOYnBrDpNQYQrsoUWdZFtWNbpPBfFT5iuGJESRHad4tInKqnb4RIxE5MYWbYOurJnsrLB5Kd5olwgAjZrdvvOHzQMVeSJloGu4FhbS/5mmgtK6Z1TkVfLmvgqoGF/GdNOsA8PksDtU0tWQgN1DvPFyn2B5gIy0ujMzECDISw7ucrHbF6fFS1eCmpslFQICN2LBgZg2PZ+ygKEYkRhAb3v1yPBGRfi8w2GQnr/8zeF0m+AEw7DwTTC7dAWlnmjr+nbEHm/17V0DK+MNBaRGR/u7Al7D1FQgKN++Dez6A8j1gs8O460xT0yM1lENzNUy4ATIv7rGVhuX1TjbkV7I6t4KS2mYiHIEMTwgnyO6fFdzs9rK5oJotBdU0e3wAhDvsnJEWy/jB0V1mEVuWRXm9i4oGJ1EhQZydmcCEIdEqXyEi0gsUTBbpTypyYfPfweeG6FSoOQi73jX7hkyFodP8j7d8JpAcn2k6PHfVCKmXlNc7WZNTwerccioaXCR0Us7C67M4UNlIblk9+8oaaHJ72/YF2W1kxIczIimCYfEn3q250eWhqsFNvctDYICN+Ihgpg1LZnRLJsSJZjaLiPRrQ6fBno+g9pDJMgazQiZhNJTvhvzPTFCkK+FJUJYNO5bDWfeYILWISH92aLOZ12ODqMGQuwqKt5qfs64+/H7aqqkKGsvNvlGX9Ugg+VB1E2v3VbAur5LKBhfRYUGMTIrEflRJt/pmD5sKqtheWIPba7pcR4cGMS09ljGDIgkM6Hxu7vVZlNU7qWpwERcezKVZyZw5IoEhMaGn9LWJiEjnFPkQ6S/qS2HjCyYjIWG0yUrY8TpYXhMsHnGx//GWBZW5phTG1AUQkdQbo+5URb2TNbkVrM6toLzeSXxEMKNTIgnoIIi841AN6/Or/DKQQwIDyEg0DfTS4sIItB9/ANmyLBqcXiobXTS6PIQE2UmKdHD+qEQykyPISAgn5AQzm0VEBoygUBhxAWx43qyGCWiZfg471wSTy/dAXVH7DLsj2WwQOxyKtsD+z2HERT0xchGR3lG2Gza9AO4miBthMpQPrjX7Rl8GCaP8j2+uMe+jo+eaYHIXwdmvy7Is8isaWZNbzlcHqqltchMf4WBUB/P0qkYXG/dXsauoDq9lgsgJEcFMHxZHZlJEu+OP5PH6KKl1Uud0kxjp4OrJg5meEUdS5Om5ilJEZCBRMFmkP3DWmUByZS4kjjWNjra9aiagESmmTrLtqEllzQGzZO6M2yAuo3fG3YGqBhdrciv4IrecsjonceGdB5F3FtWyLr+SumYTRA4Ltrc10BsSE9ouK+JY+Fo6QVc2uHB6vIQHBzIkJpSJQ6MZkWQC00cv2RMRkW4MnQF7VpiGUdFDzbbwBEgeZxr05X0GE7/Z9TWCQiE4wjShSspqX/9fRKQ/qMqHDc9CY5UJGhdvgbx/mX3DLzSl6Y7krIPag5B5KUy43jQ/PQV8Pos9pXWszilne2EtDS4PSZEhDIoOabdisKzOlL3YW1qP1bJtcEwI09PjSI8P67Kmscvjo7i2mSaXl0HRIVw2IYWp6bHEhGlFiojI6ULBZJG+zuOCzf+Aos0QPxKwTEZyUyU4omD8vMM1KlvVFYPPawLJKRN6Y9TtVDe6WLuvgs/2llNa5yQ2PJjRyZEEHBUQ9vksdhbXsi6vktqWIHJ4sJ1pw+IYPzjqhDKQvT6LmiY3VY0uPF6LyJBARiZFMGFoNCMSTWD66HGIiMhxCImC4efD5pfMcu3WG5zp55ja/lX7oKbAlGjqSvQQKM2G7Ldh+uJTmn0nItLj6oph/bOmLFDiGLN6Y89HZl/qLEid6X+8q9E04xt+IUyaD/aTXzvY7fWRfaiWz/eWs7ukFrfXIiUqhKGxoe2CwoVVTazfX8n+isa2bcPiw5g2LK7bshTNbi+Haprwei1S48M4JzOBKWmxKiMnInIa0juzSF/m85mOzvmfmbpp9mDY9Y6plWx3mOYbjgj/c5qqwFkDE+dD2qzeGLWfmkY3X+ZV8PneckrrmokJ7TyIvLukjrV5ldQ0uQGTiTwtPZYJQ6KPO4js8fqoanRT3eTCskzdtsmpMWQNiiIzKYLESHWCFhE5qdJmQc7HUF9yuKRFaKzJsivaDHmfwqSbuq7zaQuAmDQ4sAYGT4bUGT0xchGRU6+xEtb/5fBKw6r9sPNtwIJBkyHjPP/j3c3mRlz62TDlZgh0nNThNLu9bD1Yw+d7y8gta8AGpESHEH5UcLe17MWG/EoO1TQDYANGJkcwLT2OxMiux9Xg9FBc04wFjEgM55yRiUwcGq1SciIipzEFk0X6sn3/hN0fmFIWwRHmi3hptvmynXWN6fp8JGf94XpqI+f0WIfnjtQ2u9sykUtqmjtt2OGzLPaU1LF2XyXVLUHk0KCWIPLQ6OMqOeH0eKlqcFPb7CbABjFhwZw1IoExKZGMSIwgNlzL5472s5/9jPfee4/NmzcTHBxMdXV1u2M6Crr/4x//4MYbb2z7+V//+hf3338/O3bsIDU1lf/3//4fCxYsOIUjF5HTTlicqZO8/XXzudX63pF+FhRvM5nJVfndl15yREF9GWS/ZZaAh8ac6pGLiJxazbWw4S9mHp8w2tx02/GGaZadOAZGXuo/b/c4TRPt1JlmpWHQyWtG1+jysHF/FZ/vLaegspFAewBDY0PbBXd9lsXekno27K+kvN4FgN1mY+ygyGMqS1Hb7KakpplAu42xg6I4e2QC4wZHqZyciEgfoGCySF9VuBG2vWaCyGFxprvzgdVm38g57b+Me5qhOh+GXwDjr+u1pcF1zW7W51fy6Z5yimqaiAoJYmRy+yCyZVnsLa3ny30VVDWaIHJIUABT02KZODSG4MBjG3+jy0NVg5t6p4dAu42ECAfTM2IZlRzJ8MQILZ3rhsvl4oYbbmDWrFn85S9/6fS45557jm984xttP8fExLT9PS8vj7lz5/Kd73yHv//973zyyScsXryYQYMGMWfOnFM5fBE53aSfBbmroKHscONXRxQMngKFGyD/32alTXc3O2PTTXmMXe/D5G/16s1REZGvxd0Em/4KhzabptnN1bDtFfC5zfvhmCv8e594XSaQPGQKTFvQfhXiCbIsswrwnS2HyC1tIDTYTnp8eLs5t8fnY2dRHRv3V7WtFgyy25gwJLrbshSWZVHd5Ka01klosJ0pabGcnZnA6JT23wVEROT0pSiKSF9UkQtf/d3UPY5JN5lcez40+1JnwaBJ/sd73VCRA0OmwuSbILDnM3DrnR4TRN5dxqGaJiJDOs5EtiyLnNJ61uZVUtFgshwcgQGckR7L5GMIIluWRb3TQ1Wjm0aXh5AgO0mRDi4YnUhmcgTD4sO1bO44PPbYYwA8//zzXR4XExNDSkrHzbD++Mc/kpGRwW9+8xsAxo4dy+eff86TTz6pYLLIQBOZAmlnwu73zeqZ1iBw2iwo2mLqhVbsNRnHXQkINLWX8/5tyl0kZ53yoYuInHQel5nTH1gDccNN8sfWZebPyMEw7jrzftfK54HyPZA8HqYtgpDokzKMBqeHj3eW8O89ZTjdPoYnhrfLEHZ5fGwvrGHTgSoaXF4AQgIDmJwaw6TUmC7n15ZlUdHgorzOSWRoEGdnxnNWZgLDE8JVVk5EpA9SMFmkr6krgY3PQ2OFWQbXUA473mxZBje2fT01ywcVe8y+qQsgOLxHh9vg9LBhfxX/3l1KYXUTkY4gMpMiCDwqM9qyLHLLGlibV9G2VC44MIAz0mKYnBqDI7DrALDT7aWothmn20tYcCBDYkKZODSazKQI0uLCTqgxnxy7JUuWsHjxYoYPH853vvMdFi5c2PblYM2aNcyePdvv+Dlz5nDfffd1ej2n04nT6Wz7uba29pSMW0R6wbBzYP8XpoZ/WJzZFhwOQ6eZgEr+Z6ahbHcBhrB4aGz5DIzLOKnLvEVETjmfF7a9Cnn/MskhlmUCya56CEswvU+ObKLt85qGfAmjYfqiw++fX4NlWewpqeedLYfYW1pHYoSD1Ngwv2Oa3F42F1SzpaAap8cHQIQjkClpMYwfHN1loofPZ1FW76SywUVseDCXjEtmZkZ8h837RESk71AwWaQvcdbBphegcp8JDrsbYfur4HVC1FAYM9f/y7dlmQyv6FSYtvCkTDqPVWu9tX/vLuNgVSPhjkAyEyPaBXUtyyKvvIEv8yopqzPBw2B7AJPTYjgjNQZHN1nEzpbOzx4fDE8IZ9qwWEYkRjAkJrRdEz85NR5//HEuuugiwsLCWLFiBd/73veor6/n3nvvBaC4uJjk5GS/c5KTk6mtraWpqYnQ0PYBoCeeeKItK1pE+pmYNLNSZt8q/8+loTOhcJMpgVG2E5KOIds4ZhiU7TY1l9WMT0T6CsuC7Ldh7wqIHAL2INjykrnJFhJtGmUfeYPM8plAcmwGzFh8uEzQ19Do8rAy+3A28ojECL9s5LpmN18dqGZbYQ0enwVATGgQU4fFMiYlsl1iyJE8Ph8ltU7qmt0kRji4atJgZmTEkRQV8rXHLSIivU/BZJG+onUZ3KHNZvmv5YPtr0FzDYTGttRBPuqfdFUehMTC1IUQPaRHhtnk8pog8p5SCiqbCAu2M6KTIHJ+RSNf7qugtCWIHGS3MTk1hjPSYrstReEXRE4M54JRicdVS3kge/DBB/nv//7vLo/ZuXMnY8aMOabr/dd//Vfb36dMmUJDQwO/+tWv2oLJJ+Khhx7i/vvvb/u5traW1NTUE76eiJxGbDaziqZgrfkMa12mHRRiAsL5n5lH4hj/OqEdCXSADSjermCyiPQNlmWCyDvfNhnIweGwbRnUl0JQGEyYD47II473mdIW0UNh+mJT4udr2lNSx9tbDrG3pH02clWji437q9hZVEtLDJnESAfT02MZkRRBQBcZxW6vj6KaZprcHlKiQpkzLplp6XFqci0i0s8omCzSF/h8Zhlv/uemnpo9CLKX///s3Xd8VGX2+PHPTMokk957JQklQAhFBFRAUEBAUcHGrmDBdRd/a8OyX1dF3bWs4tpwdXUFdXXBLnYRxYJ0CC0QQiC99zKZfn9/PGTCkNCkw3m/XnlB7n3unWcCmblz7nnOgZYK8PSBvtPUxee+mspUcDn7dxBxiNqTx4DZ5mBDUQPLd1ZTXNeOr7dHt/XWNE2juN7Eqt31VDabARVEzopXQWRfbwkiH2933303M2fOPOiY1NTU33z+oUOH8thjj2GxWDAYDERHR1NVVeU2pqqqisDAwG6zkgEMBgMGg+E3z0EIcYoLS4Po/lCyxr3mZ9xg1YivvUFlG+/fA6A7PiFQtRUsrcesEZUQQhw3hb+oJtqGQJUQsu0jaCoFD4PKSN53xYamqb4n/pEqkBySdFQPbbLa+S63mh93VmPeLxvZ7nCycncdG4sb2RtDJi7YlyHJISSGGg9alkJdn5uxOZwkhPpyXloc2YnBBPh4HdV8hRBCnJpOm2Dy/PnzmT9/Pg6H42RPRYgTr+B72PkVBMSo7IWCZSpDQecBmVd2LV/RVgP2dsieDvGDjuvUzDYHG4sb+XFnNUV1Jgye+gMGkUsa2lm1u46KJhVE9tTr6B8fxKCkEIzeB385kiDysRMREUFERMRxO39OTg4hISGuYPCwYcP48ssv3cYsXbqUYcOGHbc5CCFOcTodpI6C8o2qPqj33iCwp0E1kt39vaqrHJXZddXN/oxhUF+gloDHHd/3PCGEOCpl62HT/0DvBf5RsONz9fql94S+U9W2Dpqm9vkGw+AbIazHUT30/tnI8ftkI1c0tbM0t4oGkw2A5DAjQ5JDiQ0+eC16k9Xuuq5PDvfjvLRwBhyiGZ8QQojT32kTTJ49ezazZ8+mubmZoKBj07VWiNNC6XpVzsI7UAWNyzZA6Vq1r+clELzf0n9zk2rOl3k5pI4+btOy2B3kFDeyfGc1hbUqiJwc5tdtcLe0QWUilzW2A+Ch19E/TgWR/QyHCCLbHZQ3ShD5ZCkuLqa+vp7i4mIcDgc5OTkApKWl4e/vz2effUZVVRXnnnsuPj4+LF26lMcff5w5c+a4znHrrbfy0ksvce+993LjjTfy/fff89577/HFF1+cpGclhDglRPaBqD5QsQUienZuj82G0jVgaYaKHJWtfDAeXmoZeNV2CSYLIU5dVbmw4W1w2FS994LvoHoboIM+U9yv6TUNGgrVysNBMyGy929+WJPVzvfbq/khr/ts5FW769lQ3IAG+Hl7cGGvSFIjDr7Ko8Vso7LJjIdeR8/oAM5LCyfzEM34hNhfs9mG2XrikgV9vD0IlGx5AHbs2MHMmTPJycmhV69ers94p7LCwkJSUlLYuHEjAwYMONnTOeudNsFkIc5Ktbsg57+qe3NwjFrmtmup2pd8vsrY2pfVBE0lkH4x9Jrk3ozvGLHanWwqbWR5XjV7atrw8jhwELmsUWUilzZ0BpH7xQYxOFmCyKeLhx56iDfffNP1fXZ2NgA//PADo0aNwsvLi/nz53PnnXeiaRppaWk8++yzzJo1y3VMSkoKX3zxBXfeeSfPP/888fHxvP7664wbN+6EPx8hxClEr1fZyZVbwNbe2WzKwwuSRkD+N1C0EqKz1LaD8QlRgWfrFeBtPPhYIYQ40ep3w/qFKukjLB2Kf1VZyqCu2cPS3Mc3lYCHJwy8/vDK/RxAflULn20qJ6+qhXB/A3HBvq5yFftnI/eKDmBkRsQBs4o1TaOp3UZ1iwWDp2qWPSItnF7RgXhI02txhJrNNl5clk99m/WEPWaonzf/b0z6EQWUR40axYABA3juuefcti9cuJA77riDxsbGwzpPcnIyd9xxB3fcccfhT/g4evjhh/Hz8yMvLw9/fykRJo6cBJOFOFW1VKmLTlM9hPeE1irI/RTQIKofJA53H2+3QMNuSBqu6q15HNtfb6vdyebSRpbvrGF3dSueHnoSw4wYPLtecFY0tbNqdz3F9SYAPHQ6MuMCGZIUir/PoYPIZY3tOJyQGu7HqJ4SRD6ZFi5cyMKFCw+4f/z48YwfP/6Q5xk1ahQbN248hjMTQpwRorPUe1zdLvdgSnR/KFmlAi9l6yHx3IOfxy9MNZ2tyz+qwIs4NUh5O3FGaS6HtW9AS6VahVG+UTUZBUgb2zU5pLkMNAdkz4CEIb/pIdutDpZtr3JlI6eG+7uupe0OJ6v21LOhSGUjG709GHOQbGRN06hrs1LbaiHA4MmwHmEM7xFGjwj/g9ZRFuJgzFYH9W1WDJ4eGA/RM+dYMO19PLPVccpmJzscDnQ6HXr98f/cW1BQwMSJE0lK+u112K1WK97e0lzzbCXRGSFOReZmFUhu2KOyF6wtsOV9cNogOAkyxrtnHTvt6gN0dH/VcM/L55hNRdM0csubeen7fN5YsYfiujYSw4ykhPt1CSRXNpn5JKeM99aVUlxvQq+DvnGBXD88idE9Iw8aSLbYHeyubaW4vp2kUD9uHJHMn8ekMzg5VALJQghxpvLwVNnJTru6KdpB7wFJ56m/l6wCu/kQ5/FW56jecdymKk6c2bNnk5uby9q1a0/2VIQ4Om21sPY/0FgI4RlQswN2fav2JY3oWsanpRJsZsi6RiWI/Ab5VS38a/kuPttcjo+XBz0iOlcQVjaZeXdNMev3BpJ7RQfw+3OTug0kO50aVc1mdlS2YHc4GdM7itvHZvD7c5NIiwyQQLI4JozeHvgZPI/71/EMWM+cOZMpU6bwzDPPEBMTQ1hYGLNnz8ZmU1n/o0aNoqioiDvvvBOdTuf63Vm4cCHBwcEsWbKEPn36YDAYKC4uZu3atVx00UWEh4cTFBTEyJEj2bBhg9tj6nQ6Xn/9dS6//HKMRiPp6eksWbLEtb+hoYHp06cTERGBr68v6enpLFiwwHXs+vXrefTRR9HpdMydOxeALVu2cOGFF+Lr60tYWBi33HILra2tXZ7n3//+d2JjY+nZsyeFhYXodDree+89zj//fHx9fRkyZAg7d+5k7dq1DB48GH9/fyZMmEBNTY3bc3j99dfp3bs3Pj4+9OrVi5dfftlt/5o1a8jOzsbHx4fBgwdLYtIpRjKThTjV2C2Q8w5UblaBZKdddXy2toIxXNVC1u/zZqg5oTZfZXQNvgF8jl1NcbPNwXe5VXy/oxqr3UliiBFDN0vfqprNrNpdR2GdykTW6aBPTCDnJIcS6HvwO7+SiSyEEGe52GwISVbZe6EpndujMlUg2VSnegUkn3/w8xiCoXwDZE5RjfyEEOJkMjfBugUqgBzeU9VA3vG52hc7sPOGWYe2GlUrvv9Vqu/JEQZrO7KRl+dVY7I5fnM2smNvELnZbCPc38Dk/rGckxpKVOCxS1YR4kzzww8/EBMTww8//MCuXbu4+uqrGTBgALNmzeKjjz4iKyuLW265xa0UIIDJZOKpp57i9ddfJywsjMjISHbv3s2MGTN48cUX0TSNefPmcckll5Cfn09AQIDr2EceeYR//OMfPP3007z44otMnz6doqIiQkNDefDBB8nNzeWrr74iPDycXbt20d6uSk9WVFQwduxYxo8fz5w5c/D396etrY1x48YxbNgw1q5dS3V1NTfffDO33Xab2yrVZcuWERgYyNKlS92ex8MPP8xzzz1HYmIiN954I9dddx0BAQE8//zzGI1GrrrqKh566CH+9a9/AfDOO+/w0EMP8dJLL5Gdnc3GjRuZNWsWfn5+zJgxg9bWViZNmsRFF13Ef//7X/bs2cPtt99+nP71xG8hwWQhTiVOJ2z9SHWwD0lRNSK3fABt1eDlB/2mguc+F3IdXZ4DolRzDv/IYzaVknoTH28sY1t5ExH+BhJCu9agrGmxsGp3Hbtr2wB1zdsrOoBzkkMJNh58yYsEkYUQQgBqNU2P0bD2ddWYqqM+sk6vAsi5n6hgctzgzrrK3fELg8ZiVTJj/2XjQghxIllNsOEtVcs9LB1aqyH3Y5UEEtkH0i5yDxab6vc20L6i6wrEw7CruoUlm8rJq2wlzM+b2H1qI1c2mVmaW0W9SdWmPVht5EaTlYomM7HBvoztE8WQ5FBC/WQZuxCHEhISwksvvYSHhwe9evVi4sSJLFu2jFmzZhEaGoqHhwcBAQFER0e7HWez2Xj55ZfJyuos0XXhhRe6jfn3v/9NcHAwP/74I5MmTXJtnzlzJtdeey0Ajz/+OC+88AJr1qxh/PjxFBcXk52dzeDBavVDcnKy67jo6Gg8PT3x9/d3zee1117DbDbz1ltv4efnB8BLL73E5MmTeeqpp4iKigLAz8+P119/3VXeorCwEIA5c+a4+uHcfvvtXHvttSxbtowRI0YAcNNNN7kFpR9++GHmzZvHFVdcAageO7m5ubz66qvMmDGDd999F6fTyX/+8x98fHzIzMyktLSUP/7xj0f4LyOOFwkmC3Eq2bVUNRwKiFXdm/O/VXWQ9Z7Qdyr4BLuPbypWQeaB17tncx0Fu8PJrwV1fLWlgsZ2W7flLGpbVRC5oGZvEBnoGR3AOSmhhBxGELm80YzdqZEa7sfInhFkSRBZCCHObvFDYOc30FIBwYmd28N7qhulrdVQvEoFnQ/E00cFo6t3SDBZCHHy2K2Q8y4Ur4TQNLC0wNb31WrD0FToOdE9WGxuVL1Rek+C3pOPKJDcbnXw/Y4qfsirwWSxkxru95uyke1OJyX1JnQ6HWN6RzI+M4Yg46lZV1aIU1FmZiYeHp2fmWNiYtiyZcshj/P29qZ///5u26qqqvjrX//K8uXLqa6uxuFwYDKZKC4udhu373F+fn4EBgZSXV0NwB//+EeuvPJKNmzYwMUXX8yUKVMYPvzApXO2b99OVlaWK5AMMGLECJxOJ3l5ea5gcr9+/bqtk7zvXPYdu++2jrm1tbVRUFDATTfd5JapbbfbCQoKcs2nf//++Ph0JtINGzbsgPMXJ54Ek4U4VZSuU1nJhiDwDYGS1VCxty5Q70shMMZ9fEslOB0qkBzdr+v5foPaVgtLcspZV1iPn8GT9Ej3xhp1rRZW76knv7qzdlLPqACGpoQScoisBVcQ2eEkNcJfgshCCCE6efupZd0b3lTvbR3lnHQ6SL4Atn4A5etV0NlwkK7jhkA1rs+lnRnOQghxojgdqs/JnuUQnKxucG1ZrOq+B8RCnynu5eosLarhXsYElZV8BI23dlW38tmmcnZUtqhs5H2u2/fPRu4ZHcCoQ2QjJ4cbmdgvlv7xQVIPWYi9AgMDaWpq6rK9sbHRFfgE8PJyv+bQ6XQ4nc5Dnt/X17fL79uMGTOoq6vj+eefJykpCYPBwLBhw7BarW7jDvaYEyZMoKioiC+//JKlS5cyZswYZs+ezTPPPHPIOR3MvsHmA82l4/nsv61jbh11mF977TWGDh3qdp59A/Li1CbBZCFOBbX5sPEdVbYiIFrVVtv9g9rX40LVsGNf7Q1gaYL+V0Pi0d+h0zSNnJJGPttUTmlDO4mhRvwMnS8PDW1WVu2pY2dVZxA5I9Kfc1JCCfM/eF1KCSILIYQ4LAnnqBU5rVUQGNu5PbQHBMapgEvxr5B+8YHP4ReuxtXvhoiex3/OQgjRQdNg+2fqdSwgTq0szPmvChgbw6DfNNUstIO1DRqLoMeYvfsO76O52ebg++3VfJ9X3W028uo99a4Ge0ZvDy7sFUkPyUYW4jfp2bMn3377bZftGzZsICMjo5sjuuft7Y3D4TissStWrODll1/mkksuAaCkpITa2trDfqwOERERzJgxgxkzZnD++edzzz33HDCY3Lt3bxYuXEhbW5srYLxixQr0ej09ex7b66moqChiY2PZvXs306dPP+B83n77bcxmsys7edWqVcd0HuLoSDBZiJOtuQLWLwRzA4RlqA/B+zbniBviPt7SqpYB95wI6eOOuKba/lotdr7eWsHPO9UbVEZUAB56dU6nU2NNYT1rCuvRNDU+LcKfoamhhEsQWQghxLHkGwwpF8DmxerGqm7v+0VHdvLm/6n6owlDD9xs1stXNbKt2SHBZCHEiaNpsOs7yP1UNcz2NsKmRaoOsiEA+l3tXvPd1g4Ne1Rd+AHXgefh1SUuqGllSU45OyqbCfMzuGcjN+/NRm6TbGRx+jBZDy/AerIe549//CMvvfQSf/7zn7n55psxGAx88cUX/O9//+Ozzz477PMkJyfz008/cc0112AwGAgPDz/g2PT0dN5++20GDx5Mc3Mz99xzD76+B+kZ0Y2HHnqIQYMGkZmZicVi4fPPP6d3794HHD99+nQefvhhZsyYwdy5c6mpqeH//b//x+9//3tX2Ypj6ZFHHuHPf/4zQUFBjB8/HovFwrp162hoaOCuu+7iuuuu44EHHmDWrFn85S9/obCw8KizqsWxJcFkIU4mc5NqztFQCBG91fdbP9xbU60HpI11DxbbzdBYCKmjoO+RLYXrzq7qVj7JKWNnVQsxgT5uTfOa2m18s62SiiYzACnhfgxLDSMiQILIQgghjpPEYbBrGbTVgP8+H15CkiA4SWXxFa2Anpcc+BwGfyjbAL0muS8nF0KI46XoV1XewhCgytVt+xBaylUt935Xg09g51i7WTXQThgKA3+vmpAeQkc28g951bRZ7KSG+3dmIzudrN4t2cji9OLj7UGonzf1bVYs9hMTUA7188bH+8iuC1JTU/npp5944IEHGDt2LFarlV69evH+++8zfvz4wz7Po48+yh/+8Ad69OiBxWJB68jU6sZ//vMfbrnlFgYOHEhCQgKPP/44c+bMOaJ5e3t7u4Kwvr6+nH/++SxatOiA441GI9988w233347Q4YMwWg0cuWVV/Lss88e0eMerptvvhmj0cjTTz/NPffcg5+fH/369eOOO+4AwN/fn88++4xbb72V7Oxs+vTpw1NPPcWVV155XOYjjpxOO9j/4lNQc3MzQUFBNDU1ERgYeOgDhDhV2cyw7j/q4jM8A5xOyHlbZTD4R8GA6e5L4Rw2qM2DuEEw9A+qvuRvZLU7WZ5XzdLcKtqsdpLD/PDyUBekmqaxo7KF5Xk1WB1OvD30jO4VQa/og/++SRD5+DrbX/vO9ucvxFll83squy8y0/2GanMZbHwb0MGQWWAM7f54a5sqlTHqfgjrcUKmfLyc7a99Z/vzF6eJsg2w9j+gOSEoQa0wrN4Gei/IukaV6engsEJNHsQPhiE3uweZD6CgRtVG3l6hspHD/b0PnI0cFcDInhH4Sjbyae1see1rNtswn6DMZFAB7EAfuXkixLEgmclCnAxOh8pALvoVQlJB5wHbPuhcCtd3qnsgWXNC3U6VvTxo5lEFkiubzHy8sZRNpU0E+3qRFtG5PM5sc/D9jmpXg73YYB/G9Ykm0PfAb7rdBZH7xwdh8JRsMCGEEL9B0gjY85N6T/TbZxloYJxatVNfAIU/Q5/Luj/eywg2kwrYnObBZCHEKa56B2x4GxwWCE6B3d+rQLJOr5rtuQWSbVC7E2KyYPANhwwkm20OfthRzfc7VDZySrif6/ralY1c3ICmHWE2ct8Ygg5ybS/EiRLo4yXBXSFOUxJMFuJE0zTY+bVqzhEYr+qn5X0OTcUqgNx3mgoo7zu+Ll9lOgy+4cCZWIfQUf/4i80VVLeYSQrzc8taKKk38W1uFa0WO3odDE0NY3BSCPoDZCxIEFkIIcRxERQH8UPU+6QxzD07OeUCFUyu2Q6tw8A/suvxOh14+0PZesgYf9QloYQQolsNhbB+gWqMHZ4BJauhdK3a1/MS95tZTsfexJCeMOQmVQrjIHbvk40c6mcg7SC1kTOi/BnVM1KykYUQQpwwEkwW4kQrXgnbPlEXkb7BUPgLVG0DdCqDYf8Pxg17wCcEBt2gPmD/Bk0mG59tLmfV7jq8PfRkRAW4gsQOp8bK3XWsL2oAINjXi3F9o4kO7L5+mwSRhRBCHHcp56v3S3OTeq/s4B8FEb1Ug73Cn6HvAWrnGcOgqVTdqA1JPhEzFkKcTZorVGmL5nL1mlS1BfYsV/tSL4Sovp1jNafKSA5OhsE3ua+42I/Z5uDHvGq+266ykZMPko3s66WykdMiJRtZCCHEiSXBZCFOpKpcyPmfagjkHwVVW6HoF7Uv/WIITXUf31QGek/I/h1EZBzxw2maRm5FM0s2lbOnpo24EF+3pUT1bVa+2VZJdYsFgL6xgVyQEeGqn7wvCSILIYQ4YUJSIGaAara3bzAZIPl8VcKiLl8FcgJjux7v7Q+NxVCzU4LJQohjy1QP696A+t2qBF1dAeR9pfYlDIWEczrHahrU7YKAaBhy40ETQ/bUtrEkp4zcimZC/bzdspGr9mYj10k2shBCiFOABJOFOFEaS2DDm6oxUFia+pCb96XaFz8UYrPdx7fVgL1dBZLjBx3xw5ltDpbmVvHDjmpsDifpUf546jub7G0pa+Ln/FrsTg0fLz1je0d1W2dN0zTKGttptzokiCyEEOLE0OkgdZQqVWFpcS//ZAxTWX9VW6DwJ+h/TffHe/mq49Mvci+VIYQQv5WlRQWSq3MhvCe0VMD2TwENovpByqjOsZqmAs4+QapU3f5JI3t1ZCMv21FNi7lrbeQ1e+pZVyTZyEIIIU4dEkwW4kQw1auaah1L4drrYdtHatlbeE/1gXlf5ibVeCjz8q77DkNJvYmPN5axrayJiAADYf7GzqlY7Xy3vZo9tW0AJIYauahPFP6Gri8HZpuDwro2IgMMXDkwnkHJIRJEFkIIcWKEZ6igcflGVWd0X0kjVJOrhkJ1czY4sevxxjC1r7kMguJPyJSFEGcwWztseAvKNkB4OpgbYev74LSr5qA9J7jfuGoqAU8DDLweInt3e8o9tW18tqmc3PImQozepB8qGzkjEl/vg2cjT+ofS784yUYWQghx/EgwWYjjzWpSGck1eSpwbDPDlvfBboaAWOg1yf3C02pSF5/pF3fddwh2h5NfC+r4aksFje02UiL83IK/hbVtfJtbRbvNgYdOx4i0MAYkBHe52NQ0jdpWK/VtVrLig7l8YBwxQb5H/aMQQgghDpteDz1GQUWOem/07rwxim8wxGSpQPOen2DA9K7vl4ZA9X5akyfBZCHE0XHYYNMiKPpVBY7tFti8WP0ZGK/6nuj2KRPXXAGaQ60wjBvY5XRmm4Mfd9awbHsVLeautZElG1kIIcSpTILJQhxPDru68CxdC6HpatvWD1Qmg0+Qahzksc8Fn90CDbshaTj0vxo8Dv9XtLbVwpKcMtYVNuBn8HTLbLA7nPyyq5ZNpU0AhPl5My4zmogAQ5fz2B1OCutM+HrpuTw7llG9IiUbWQghxMkR1Vdl9FXvUJmA+0ocDpVboLkUWqtUTdJ96XTg6QPlOdDjQil1IYT4bZwO2PIhFHyvVkHoUIFkaysYw6HvVPfr+bYasLVC1rXqmn4/hbVtLNlUTm55MyFGr4NnI0furY0s2chCCCFOIRJMFuJ40TTYvgR2/wDBSWqZW+4n0FKuPtz2uwq8/TrHO+2qmVB0f5XF4OVzmA+jkVPSyGebyiltaCcx1IjfPiUralosfL2tkvq9F6UDEoIZ0SMMz26a7DW12yhvbCct0p8p2XFkRAV0GSOEEEKcMHoPSB0NVdvUih7Pfd4bDQHq/bW+ABqLugaTQZW6qN/dfbBZCCEORdNgxxew8ysIiFGvQZv+p0rWGQJV8se+1+ztDXtL1V0BaWPdbmLZHU5+yKtmaW5HNrLxoNnIo3tFkB7Z9Vrc7nRSXG9CL9nIQgghTpKu0SQhxLGxezns+Bz8ItXF5p7lUJunlsBlXqE+4HbQnFCbrxrzDb5BZS0fhlaLnQ83lLJwRSF1rVYyogJcgWRN09hQ1MDitSXUt1kxenswZUAsIzMiugSSnZpGUV0bdW1WLuwVyR9H9ZBAshBCiFNDTBaE9YCmsq77OmolNxZ3f6xPEFiaVKkLIYQ4EpoGBcsg91PwDVXX89s+Vk33PH1VIHnf5qCWZtUfJWMC9HYvVWey2lm0toSPNpSh1+lIj/R3BZKrms0sWlPC2kIVSM6I9Of35yZ1G0huNFnJr2olJsiHm85L4arBCRJIFqcvcxO0VJ64L3PTyX7GR2358uXodDoaGxsP+5jk5GSee+654zanA/ktcz0VffLJJ6SlpeHh4cEdd9xxsqdzWBYuXEhwcPBxfQzJTBbieCjfqOoiexrBL1wtsS1Zrfb1vMS9UZCmqayqgCgYNBP8Iw/rIXZVt/JJThk7q1qICfQh2Ojt2tdqtvNtbiUlDe0ApIb7MaZ3JEbvrr/y7VYHRfVtxAT5MKl/LIOSQmSJnBBCiFOHp7fKTl77Gjis4NH5fkdwkvqzqUTdmNXtlyeh04PeGyo2QerIEzdnIcTpr2Q1bH4fvIzgFwE7PoOGPaD3gn7T3BNDrCZ1UyttLPS7Uq2q2Ku21cLiNSVsKmskIdiIv4+6Hnc4NdbsqWdtUX1nNnLPCNK7SejYNxt5bJ8oxmVGSxBZnN7MTfDjP1Qm/4liDIOR9x524tbMmTN58803AfDy8iIxMZHrr7+e//u//8PT8+wKpS1cuJA77rjjuAeGCwsLSUlJYePGjQwYMOC4Ptbh+sMf/sANN9zAn//8ZwICJOGuw9n1GyDEiVBXABv/qz7whqSq5bX536h9Seep+o/7aioGLz/V6Tk05ZCnt9qdLN+7RK7Naictwh+vfTKN86tb+H57NWa7E0+9jgsyIugbG9htk73qFgtN7TYGJYUwZUAckYGHV1pDCCGEOKHiB8POb1TWX0hy53b/SFVGym5RWUeBsV2PNYaq1T9tteoGrxBCHErFJnU9j06VtyhYBtW5nSsM932tsZv39jwZAVnXuNVP3lPbxqK1xeypaSN1n8bY1c1mvt1eRV2rKkOXHunPqJ4R3SZ+SG1kcUaytatAsqevumFz3B/PpB7P1n7YwWSA8ePHs2DBAiwWC19++SWzZ8/Gy8uLv/zlL8dxsuJQrFYr3t7ehx54lFpbW6murmbcuHHExnZzjXmYTtR8TyQpcyHEsdRaDevfVB9YQ1JVA47cTwBNBZGTRriPb6lUTT0GXAvR/Q55+somM//5ZTcfbSzDQ69zCyRb7U6W5lbx5ZZKzHYnkQEGrjsnsdsLTpvDya7qVpyaxtRB8dwwIkUCyUIIIU5dXr7QYxRY21SPgQ46PQQdotSFbwiYG6TUhRDi8NTsVNfztna1mrBkFZStU/t6TnRP/nBYoW4XxA2Cgb9Xr1V7bSxu4PWfd1NSZyI9SpW1cDg1VhbUsWhdCXWtVny9PLikbzSX9IvpEki2O53srm2lsd3G2D5RzB6dTv/4YAkkizOLlxEM/sf/6zcGrA0GA9HR0SQlJfHHP/6RsWPHsmTJEkCVcTjnnHPw8/MjODiYESNGUFRU5Dr2008/ZeDAgfj4+JCamsojjzyC3a6uYQoLC9HpdOTk5LjGNzY2otPpWL58uWvbl19+SUZGBr6+vowePZrCwsIuc/zwww/JzMzEYDCQnJzMvHnzuoxpaWnh2muvxc/Pj7i4OObPn++2/9lnn6Vfv374+fmRkJDAn/70J1pbW13P84YbbqCpqQmdTodOp2Pu3LkAWCwW7rvvPhISEjAYDKSlpfGf//zH7dzr169n8ODBGI1Ghg8fTl7ega/HUlLU62t2djY6nY5Ro0YBKkt8ypQp/P3vfyc2NpaePXsC8PbbbzN48GACAgKIjo7muuuuo7q62nW+jlIby5YtO+AcNm3axOjRowkICCAwMJBBgwaxbt06li9f7spEvvDCC93+bQ71M09OTuaxxx7j+uuvJzAwkFtuucVVeuLzzz+nZ8+eGI1Gpk6dislk4s033yQ5OZmQkBD+/Oc/43A4XOeyWCzMmTOHuLg4/Pz8GDp0qNv/EVCZ44mJiRiNRi6//HLq6o5/xr8Ek4U4VszNsH6hKlkRlq46PG99X11kBiWq+mn7Xvy1N4C5ETIvh8RhBz2106mxancd83/YRU5JI4mhRqICfVwXk5VNZt5dU0xuRTMAg5NCuGpwAiF+Xe9+NZisFNS0khbpzx9G9mBM7yi3zGYhhBDilBR/jsoGbKl03+6qm1zU9RhQAWedJ1RuOb7zE0Kc/hqLYf0C1WAvtAdUboY9P6p9PcZAVGbnWKcdaneqhJFBM131k51Oje+3V/H2yiLaLHbSIv3x1OupabHwv7XFrClUZS3SI/353bmJ3Za12L828rRB8VLWQohTgK+vL1arFbvdzpQpUxg5ciSbN29m5cqV3HLLLa7P5z///DPXX389t99+O7m5ubz66qssXLiQv//974f9WCUlJVxxxRVMnjyZnJwcbr75Zu6//363MevXr+eqq67immuuYcuWLcydO5cHH3yQhQsXuo17+umnycrKYuPGjdx///3cfvvtLF261LVfr9fzwgsvsG3bNt58802+//577r33XgCGDx/Oc889R2BgIBUVFVRUVDBnzhwArr/+ev73v//xwgsvsH37dl599VX8/f3dHvuBBx5g3rx5rFu3Dk9PT2688cYDPuc1a9YA8N1331FRUcFHH33k2rds2TLy8vJYunQpn3/+OQA2m43HHnuMTZs28cknn1BYWMjMmTO7nPdgc5g+fTrx8fGsXbuW9evXc//99+Pl5eUWdP7www+pqKhg+PDhh/0zf+aZZ1w/8wcffBAAk8nECy+8wKJFi/j6669Zvnw5l19+OV9++SVffvklb7/9Nq+++ioffPCB6zy33XYbK1euZNGiRWzevJlp06Yxfvx48vPzAVi9ejU33XQTt912Gzk5OYwePZq//e1vB/wZHytS5kKIY8FugZx31JK4sHTQHLD1A7C0qIYdmVe41U7D2gYt5Sq7IWO8e5B5P00mG59vKWdlQR3eHnoyogLQ7x3vdGqsLapn9R51Uepv8GRcZhTxIV3vvDqcGiX1JtDBRX2imNA3xtWsTwghhDjl+QSqusc576qgckd9ZFfd5FK12mff99sOxlC1RL29QWUqCyHE/lqqYO1/VA32iN5Qlw87v1b7EoZB/JDOsZpTBZLD0mDwjeo1BjDbHHy2qZzledUE+HgRtXflX35VC9/mVmF3agevjexwUtwgtZGFONVomsayZcv45ptv+H//7//R3NxMU1MTkyZNokePHgD07t3bNf6RRx7h/vvvZ8aMGQCkpqby2GOPce+99/Lwww8f1mP+61//okePHq6s1549e7Jlyxaeeuop15hnn32WMWPGuIKVGRkZ5Obm8vTTT7sFVUeMGOEKRGdkZLBixQr++c9/ctFFFwG4NZZLTk7mb3/7G7feeisvv/wy3t7eBAWp1c7R0dGucTt37uS9995j6dKljB071vU89/f3v/+dkSNV34r777+fiRMnYjab8fHpujI6IiICgLCwMLfHAvDz8+P11193Kxexb1A4NTWVF154gSFDhtDa2uoW1D7YHIqLi7nnnnvo1asXAOnp6a7jIiNVP6vQ0FDXfA73Z37hhRdy9913u77/+eefsdlsrn9XgKlTp/L2229TVVWFv78/ffr0YfTo0fzwww9cffXVFBcXs2DBAoqLi11lNubMmcPXX3/NggULePzxx3n++ecZP368K/ifkZHBr7/+ytdff93l53ssnTbpiPPnz6dPnz4MGTLk0IOFOJGcTtj6ERStgJAUVSct91NorVLLafpdBV77vFDaLap5R9J50PdK0Hf/a6hpGtvKm3j5x138mFdDRICBhFCjK5Dc1G7jgw2lrNqtAskZUf78bmhit4HkNoud/OoWwvy9uWFEClcOjJdAshBCiNNP4jBVJ7m1qnObX4Squei0QUtF98f5hqpAcs3OEzNPIcTpxVQP695QJSvCe0JTGWxfAmgQ3R9SLugcq2mqDntQPAy5STXRRiWAvL2yiO+2VxER4ENUoA+aprG2sJ4vt1Zid2okhRkPno1cLdnIQpxKPv/8c/z9/fHx8WHChAlcffXVzJ07l9DQUGbOnMm4ceOYPHkyzz//PBUVndcgmzZt4tFHH8Xf39/1NWvWLCoqKjCZTIf12Nu3b2fo0KFu24YNG9ZlzIgR7qU0R4wYQX5+vluphP2PGzZsGNu3b3d9/9133zFmzBji4uIICAjg97//PXV1dQeda05ODh4eHq4g7YH079/f9feYmBgAt1IUh6tfv35d6g6vX7+eyZMnk5iYSEBAgGsuxcXupc8ONoe77rqLm2++mbFjx/Lkk09SUFBw0Hkc7s988ODBXY41Go2uQDJAVFQUycnJboHvqKgo19y2bNmCw+EgIyPD7f/Sjz/+6Jrn4fw/OR5Om2Dy7Nmzyc3NZe3atSd7KkJ00jTI/1Y12AuIVcHjXd+pUhd6TxUs9g3uHO+0qyyH2AGQPV11qO+G2ebg880V/OfnPZQ3tJMe5U+gj9feh9TYXtHMu6uLqWgy4+2hZ1yfKMZnRmPwcs/G0jSNiqZ2yhvbGZoSyp9GpzEgQWqtCSGEOE0ZQyH5fNVER9PUNp1un1IXB6ibrPdQmcxVW0/MPIUQpw9LqypVV7UVwjNUYHnrB+q6PSzdfRWhpqnrfL8wlZG897WnrLGd137ZzdrCepJC/Qjy9cLuVP1Mfi1QtSsHJARzaf/YrrWRHVIbWYhT1ejRo8nJySE/P5/29nbefPNN/Pz8AFiwYAErV65k+PDhLF68mIyMDFatWgWoxm2PPPIIOTk5rq8tW7aQn5+Pj48P+r0JZVrHtQyqZMPJUFhYyKRJk+jfvz8ffvgh69evd9VUtlqtBzzO19f3gPv25eXVeVNM51ph7TzieXb83Du0tbUxbtw4AgMDeeedd1i7di0ff/wx0HXeB5vD3Llz2bZtGxMnTuT777+nT58+rvMcjf3nu/88OubS3baOubW2tuLh4cH69evd/i9t376d559//qjneDQkNVGIo1GyBrZ9BIYgtWy2dC2Ub1D7ek2CwLjOsa7lcOkwcKarrlqXU9ab+HhjGdvKmogIMBDm35lpbLE5+D6vmp1Vqhh+TJDPAZe/We1OCuvaCPL14upzEhnRIwxPqY0shBDidJc0HAp+UE1u/dXyQ4IToTZP1U1OGt79cb4hqm6yuVmVzBBCCJsZNr4NZetVyQqrCba8Bw6LyjzufWlnSR1QrzHeRlUjOVwthd5e0czitSVUNZtJi1TNsdutDj7fXE55kxmdDkZlRNA/PrjLwzearFQ0mUkO92NS/5huG2cLIU4ePz8/0tLSDrg/Ozub7Oxs/vKXvzBs2DDeffddzj33XAYOHEheXt4Bj+0o51BRUUF2djaAWzM+UGUzOpr9degIVu87ZsWKFW7bVqxYQUZGBh4eHgc8btWqVa6yHOvXr8fpdDJv3jxXkPu9995zG+/t7e2WdQsqU9jpdPLjjz+6ylwcrY7M4/0fqzs7duygrq6OJ598koSEBADWrVv3mx43IyODjIwM7rzzTq699loWLFjA5Zdf3u3Yw/2ZHwvZ2dk4HA6qq6s5//zzDzif1atXu23b/9/7eJBgshC/VfUOVScZHQREq0BxwTK1L3U0RPTqHNuRxRAQA4Nngn9El9PZHU5+Lajjyy0VNJqspET4YfDsfDEqbTDxzbYqWi12dDo4NyWMwUkh6PVdLzjr26xUt5jpExPIlOw4ksK63hUTQgghTksB0ZB4LuR9qUpc6HSddZOby1Q2ob6bS1zfUKjfpZanxw86sXMWQpx6HHbYtAgKf1Gl6pwO2LJYNdH2i4C+U1X5ug5Nper1Jvv3EN0PTdNYWVDHJzlltFsdpEX6o9fpqG+zsmRTOU3tNrw99FzSL7rLtbjURhZiL9vhlXw41R5nz549/Pvf/+bSSy8lNjaWvLw88vPzuf766wF46KGHmDRpEomJiUydOhW9Xs+mTZvYunUrf/vb3/D19eXcc8/lySefJCUlherqav7617+6Pcatt97KvHnzuOeee7j55ptZv359lyZvd999N0OGDOGxxx7j6quvZuXKlbz00ku8/PLLbuNWrFjBP/7xD6ZMmcLSpUt5//33+eKLLwBIS0vDZrPx4osvMnnyZFasWMErr7zidnxycjKtra0sW7aMrKwsjEYjycnJzJgxgxtvvJEXXniBrKwsioqKqK6u5qqrrvpNP9fIyEh8fX35+uuviY+Px8fHh6CgoG7HJiYm4u3tzYsvvsitt97K1q1beeyxx47o8drb27nnnnuYOnUqKSkplJaWsnbtWq688soDHnO4P/NjISMjg+nTp3P99dczb948srOzqampYdmyZfTv35+JEyfy5z//mREjRvDMM89w2WWX8c033xz3eslwGpW5EOKU0lQGG95U2U3BSdBcsbeuGhAzQHWcdxtfAl5+MPB6CEnucrraVgtvrSpi0ZpiHE6NjKgAVyDZ4dRYsauWDzeU0WqxE+TrxVWDEjgnJbRLINnh1Nhd20qrxcYl/WK45YIeEkgWQghx5kk+D3yCVB1kAGOYep912qG5vPtjPLxAA6q2nbBpCiFOUU6nWl1YsAyCEtQNqC3vq9cUnyDV88Rzn54nrVUqWznrGkg4B5vDyeebK/jf2hI0DVLC/dDrdBTVtbF4XQlN7TYCfTy5anB8l2vxztrIvtx8XqrURhZnJy9f9d5tb4f2uuP/ZW/fe61weKUZDsVoNLJjxw6uvPJKMjIyuOWWW5g9ezZ/+MMfABg3bhyff/453377LUOGDOHcc8/ln//8J0lJSa5zvPHGG9jtdgYNGsQdd9zB3/72N7fHSExM5MMPP+STTz4hKyuLV155hccff9xtzMCBA3nvvfdYtGgRffv25aGHHuLRRx91awQHKgC6bt06srOz+dvf/sazzz7LuHHjAMjKyuLZZ5/lqaeeom/fvrzzzjs88cQTbscPHz6cW2+9lauvvpqIiAj+8Y9/AKpJ4NSpU/nTn/5Er169mDVrFm1tbb/55+rp6ckLL7zAq6++SmxsLJdddtkBx0ZERLBw4ULef/99+vTpw5NPPskzzzxzRI/n4eFBXV0d119/PRkZGVx11VVMmDCBRx555IDHHO7P/FhZsGAB119/PXfffTc9e/ZkypQprF27lsREVWbp3HPP5bXXXuP5558nKyuLb7/9tsuNieNBp+1bpOU00NzcTFBQEE1NTQQGyhJFcRK0N8DKl6Fmu+r0bGmGDW+DrQ1CUqHfVPflcK1VYG2DwTd0WXqraRqbS5v4NKeM0oZ2EkONbo3xGtqsfL2tkuoWCwCZsYFckB6Bt2fX+0CtZjulDSYSw4xcNiCOzNhAWSZ3BjnbX/vO9ucvhNiPpqlmWbt/gMhMtS33U/XenHSeCjZ3p6USPDzhokfB+9S/2Xq2v/ad7c9fHCeaBju+UHWRjRGq7M2WD6CxUAWaBvxe1WfvYKpTX/2mQc8JtFodfLShlF8L6ojwNxDqp5Zlby5tZPnOGjQNYoN8mNg/xq0+stOpUVTfhk6nY0RauGQjiwM6a177zE1gaz9xj+flq24WCSGOmpS5EOJI2NpV4Lg6V3V6dljVxaetTS2H63OZeyC5vVEFn/tfpTrQ78Pp1PhxZzWfbarAvjcb2WNvprGmaWwta+an/BrsTg2Dp54xvSNJj+xaZ1nTNMobzbTbHAxPC+fSrFhC/Lpv7CeEEEKcEXQ6SLkASlarD6M+Qapucs12VdOUAwSTjaFQv1uVuogdcCJnLIQ4VexeDts+Bp9gVUt9+xIVSPbwVhnJ+waSzY3QWg19LoWM8VS3Wli8poQtZU2uJBCnpvFzfi05JY0A9IoOYEzvSDz1nZ8JrHYne+paiQv25bIBcVIbWQhQ790S3BXitCTBZCEOl8MOmxarD66hPVTQeOsHYKoFb3+VreBp6BxvbYOWMsi4xL0LNGBzOPlqSyXf5lbib/AkIbBzGZ3JamfZ9mp216rlIQkhvlzcJxp/n66/rhabg8J6E2F+3lwxMI6hqWGugLQQQghxRgtLg+j+qhmuT9A+dZPLwWFzr3XawcNbNcSt3i7BZCHORiVrYPNi8PQFv0jYtVTdhNLpIfMK1d+kg6VV1WFPHw99plBQZ2LRmmKK60yk7u1tYrU7+WprBYV1qh7rsB5hDEkKcQsUm6x2iupM9I4J5NpzEokO8tl/VkIIIcRpRWomC3E4OpbD7f4eghJVDbX8b1T2k95LNegw7LMEyW6Bhj2QNAL6XQn6zkZ67VYH760r4autFYQavYnaJ5BcWNfGO6uL2V3bhodOx/np4VyeHddtILm21UJhXRt9Y4P446geDE8Ll0CyOKYKCwu56aabSElJwdfXlx49evDwww9jtVrdxm3evJnzzz8fHx8fEhISXDW09vX+++/Tq1cvfHx86NevH19++eWJehpCiDOVTgepo1TQ2NqmMgy9/UFzqADQgfgEQ0UO2MwnaKJCiFNC5RbY+La6rg+Kg+JfoXyD2tdrsntfE1s7NO6B5AvQ+k1lfWkL//l5D+WNZtL39jZpbrfx3voSCutMeOh1XNI3mnOSQ90CyY0mKyX17ZybGsZN56dIIFkIIcQZQTKThTgchT+rJXDGcFVXrehXqNwM6KDPFNVZvoPTDnW7VCO+7N+5ZSs3mWwsWlvM+uIG4oN9CfBRWVN2h5MVu+rIKW0EINTPm/GZ0UQE7JPpvJfd4aSo3oTBU8/krFjG9I7Cx8ujyzghjtaOHTtwOp28+uqrpKWlsXXrVldThY7mBs3NzVx88cWMHTuWV155hS1btnDjjTcSHBzMLbfcAsCvv/7KtddeyxNPPMGkSZN49913mTJlChs2bKBv374n8ykKIU53kX1UJmF7vaqBHJwE1dugsbjbhreAasDTWKjeq6PlNUiIs0LtLlj/prrxFJoG5Tnq+h4g7SKI7N051m5Rrw+J5+IYMJ3v8xv5cksFoKNHhB86nY7KJjOfbS7HZHVg9PZgclYs0YHugeLKJjNtVjsXZ0YxsX+Mq7m2EEIIcbqTYLIQh1KxWZW38DSousjVuVD4k9qXdhGE9egcqzmhdqdaejtoJhg6axxXNZt5d3Ux2yuaSQn3cwWAa1osfLOtkro2le2ZFR/EeWnheHp0XTjQbLZR1tBOaoQflw2Io3fMGdyQQZx048ePZ/z48a7vU1NTycvL41//+pcrmPzOO+9gtVp544038Pb2JjMzk5ycHJ599llXMPn5559n/Pjx3HPPPQA89thjLF26lJdeeolXXnnlxD8xIcSZQ6+HiF6w61v1fXBiZzD5QDwN6sZvda4Ek4U4GzSWwPo3oK1G9Typ3alWGAIkDoe4QZ1jHTaoUzXVzf1/zyeb6vgpv5ZgXy9XksfOqha+za3C4dQI9/fm0qxYV4IIqH4mRfUmvPQ6pg1O4Py0cPSyelAIIcQZRMpcCHEw9Xtgw1tgN0NgPDSVqHIXAHFDIG5g51hNg/oClSE1eCb4R7h27alt4/Wfd7Ojspm0SH9XIHlLaROL15ZQ12bF18uDS7NiGdUzsksg2alplNSbqGmxMLJnBH8clSaBZHFSNDU1ERra2Zhm5cqVXHDBBXh7dzZ9HDduHHl5eTQ0NLjGjB071u0848aNY+XKlQd8HIvFQnNzs9uXEEJ0KyRJ3czVtM66yS3lqknugRiCoHwj2A8yRhwTl19+OSEhIUydOvVkT0WcjVprYN0bKqAcnqGu5bcvATS1ijD5/M6xTgfU7YSI3jT2+R0LN9TzQ141UQEGIgIMaJrG6t11fLW1EodTIyXcj2mDEtwCyXaHk/zqVoJ8vbh+eDIjMyIkkCyEEOKMI8FkIQ6ktUYth2urVg332htg64eqFmN4BvQY7T6+qQS8jDDw925La7eWNfHGL3soa2gnPTIALw89mqbxy65avs+rxqGpi9HfnZtISrhfl2mYbQ52VrXgZ/Dk9+cmce2QRIJ8u2kqJMRxtmvXLl588UX+8Ic/uLZVVlYSFRXlNq7j+8rKyoOO6djfnSeeeIKgoCDXV0JCwrF6GkKIM01QnGqmZWtXjfgMgSq43HSQusnGMGitgvrdJ26eZ6nbb7+dt95662RPQ5yN2htVILl2p7p2b6txv5ZPv7izQXbH6sLgZMrTr+W1Dc1sKGogOcyPQF8v7A4n32yrYtWeegAGJgYzqX8M3p6dH6fNNge7alpJDjdy83mp9I8PPvHPWQghhDgBJJgsRHcsrbBhoVrmFpYO9nbY+r7KUA6IUU06dPv8+rRWqSWzWddCdD9ALXFbWVDHm78W0tRuJS3SHw+9DrtTXYyuL1JZm+emhjK5fwxGb/eqM5qmUd1ipqjOxICEYGaPTmNoaphkN4ijdv/996PT6Q76tWPHDrdjysrKGD9+PNOmTWPWrFnHfY5/+ctfaGpqcn2VlJQc98cUQpymAuNUENnSrAJDwYlqe2PRgY/x8lVZyTU7DjxGHBOjRo0iICDg0AOFOJasbSoppHKTChxbWmHze+CwQFAC9L6081pe01SN5IBo8hKv4tWN7eyuaSN972pCk9XORxvLyKtqQa+DMb0iOT89Av0+jfZazDYK69rISghm1vk9SAwznqQnLoQQQhx/EkwWYn92K+S8qxpzhKWrbVs/UpnJhkDoO1V1ju/Q3qj2ZU6BpOEAOJwa3+ZWsWhtMZoGyWGqWYfF5uDTnHLXxehFvaMYmhLm1vUZwOZwUlDTht2hccXAOG46L1W6P4tj5u6772b79u0H/UpNTXWNLy8vZ/To0QwfPpx///vfbueKjo6mqqrKbVvH99HR0Qcd07G/OwaDgcDAQLcvIYTolqcBQlNVMBk6S10crG4yqL4GZevBYT++8zuN/fTTT0yePJnY2Fh0Oh2ffPJJlzHz588nOTkZHx8fhg4dypo1a078RIXYl90CG/8LpWtUsz2HDTYvAlsb+EVC3ytBvzeJQ9OgYQ+aTxDrIy7jta0aDSaVBOLpoae21cLitSVUNJkxeOqZMiCOvnFBbg9X22qhstnMyIwIbhieQqifdzeTEkIIsa+5c+cSFRV1wOuLU9HMmTOZMmXKyZ7GKUGCyULsy+mE3E9Ug72QZPDwVjWSm0vBwwD9rlLd4jtY26ClTC2TyxgPOh1Wu5OPN5byaU4Zft6exIX4otPpaDHbeH99KaUN7Xh56Lg0K5Y+sV0DZE3tNnZVqyVyt1yQysWZ0W5L6IQ4WhEREfTq1eugXx01kMvKyhg1ahSDBg1iwYIF6PXu/xeHDRvGTz/9hM1mc21bunQpPXv2JCQkxDVm2bJlbsctXbqUYcOGHednKoQ4a4SlgXPv61BHZnJLhQoqHYgxTI1pKDzu0ztdtbW1kZWVxfz587vdv3jxYu666y4efvhhNmzYQFZWFuPGjaO6uvoEz1SIvRx2lYFc+LO6ltfpYct7YG5UKxj6XQWe+yRoNJXg0Hvxo98EFuT7otepJBC9TkdhXRvvryul2WwnyNeLqwcnkBDamXGsaRqlDSZaLXYm94/lqsEJ+Hp7nPCnLIQ49g61inPu3Lkne4pHZOHChQQHB5/sabhs376dRx55hFdffZWKigomTJhwsqckjpDnoYcIcRYp+B7yvgT/GPD2hz0/Qs12dSGaeTn4hXeOtVtUrcWU86HfVNB70Gax8/66ElbtriM6yNdV27i21cKnOeW0Wuz4eXtw2YA4V0foDk6nRkmDCaemMbZPFBP6Rrs19BDiROsIJCclJfHMM89QU1Pj2teRVXzdddfxyCOPcNNNN3HfffexdetWnn/+ef75z3+6xt5+++2MHDmSefPmMXHiRBYtWsS6deu6ZDkLIcRvFhSnMg0dVhUw8glWwaOmUgjr0f0xXkawmdX7fHjaiZztaWPChAkH/YD37LPPMmvWLG644QYAXnnlFb744gveeOMN7r///iN+PIvFgsXSeQNAmq+KI9KRFJK/VDXO9vRRgeTWKvX73v8aMPh3jm+uwGa38Z3veD4tCycy0JsQo7qZvqmkkR931qABccG+TOwfg69XZ6DY4dTYU9tGgI8nVw+JZ0hySJeVhkKI01dFRYXr74sXL+ahhx4iLy/Ptc3fv/O1RNM0HA4Hnp6nf3jNarW6NVY/XgoKCgC47LLLjuq102az4eUlMZOTQdIdhehQug62fqBKWRhDoWITFK9U+zLGuzXVw2lX9ZRjB8CA6eBpoL7NysIVhfxaUEd8iNEVSC6pN/H+ulJaLXZCjd5cNTihSyDZZLWzs7qFYKM3M4YnM21QvASSxUm3dOlSdu3axbJly4iPjycmJsb11SEoKIhvv/2WPXv2MGjQIO6++24eeughbrnlFteY4cOH8+677/Lvf/+brKwsPvjgAz755BP69u17Mp6WEOJMFBSv3r8tLer7w6mbrNOp1UZlG8DpOP5zPMNYrVbWr1/P2LFjXdv0ej1jx45l5cqVv+mc0nxV/GaaBvnfwI7PwT9SlbHZ/pkqd+PhrTKSfUM6x7fV0G5q4gvO4+O6JOJDfAkxeuN0avyQV83yvYHk3jEBXJ4d5xZIttqd5Fe3EBPkw03npXBOSqgEkoU4w0RHR7u+goKC0Ol0ru937NhBQEAAX331FYMGDcJgMPDLL790WwLhjjvuYNSoUa7vnU4nTzzxBCkpKfj6+ro+Gx1Md2UggoODWbhwIQCFhYXodDo++ugjRo8ejdFoJCsry/VevHz5cm644Qaampq6ZFYnJyfz2GOPcf311xMYGOj6DHffffeRkZGB0WgkNTWVBx980G0l6ty5cxkwYABvv/02ycnJBAUFcc0119DS0uIa88EHH9CvXz98fX0JCwtj7NixtLW1MXfuXCZPngyo64aO10+n08mjjz5KfHw8BoOBAQMG8PXXX7vO1/E8Fy9ezMiRI/Hx8eGdd95x/dwff/xxoqKiCA4O5tFHH8Vut3PPPfcQGhpKfHw8CxYscPsZlpSUcNVVVxEcHExoaCiXXXYZhYWFrv0Oh4O77rqL4OBgwsLCuPfee9E07aD/VmcTCSYLAVCzEza+ozIaAmLUktf8b9S+xOEQ3b9zrOaE2ny1pHbQTPAJpKyxnf/8sptNpY2kRvjhZ1B3JXdUNvNJThlWh5O4YF+mDY4n0Nc9SFzVbKa0oZ3BSaH8aXQPBiXJBak4NcycORNN07r92lf//v35+eefMZvNlJaWct9993U517Rp08jLy8NisbB161YuueSSE/U0hBBnA58gCIwF8/51kw8STAZV6qK57ND1lUUXtbW1OBwOoqKi3LZHRUVRWVnp+n7s2LFMmzaNL7/8kvj4+IMGmqX5qvjNCn9RPU4MQeAbqrKTa/NA5wGZV0DAPn0a2htoaajic9sQvmrPpEdkAH4GTyx2B0s2lbO5tAmAET3CuKh3FB77NL9us9gpqGmlV3QgN5+fSnqUNJcU4khpmobJaj8pX8cyGHj//ffz5JNPsn37dvr373/oA1A3Td966y1eeeUVtm3bxp133snvfvc7fvzxx6OezwMPPMCcOXPIyckhIyODa6+9FrvdzvDhw3nuuecIDAykoqKCiooK5syZ4zrumWeeISsri40bN/Lggw8CEBAQwMKFC8nNzeX555/ntddec1t5Ciq7+JNPPuHzzz/n888/58cff+TJJ58EVGb3tddey4033sj27dtZvnw5V1xxBZqmMWfOHFdgt2M+AM8//zzz5s3jmWeeYfPmzYwbN45LL72U/Px8t8e9//77uf3229m+fTvjxo0D4Pvvv6e8vJyffvqJZ599locffphJkyYREhLC6tWrufXWW/nDH/5AaWkpoDKax40bR0BAAD///DMrVqzA39+f8ePHY7VaAZg3bx4LFy7kjTfe4JdffqG+vp6PP/74qP+dzhSnfx6+EEeruQI2LARzA4RlQFsNbPtYBY0j+0Dy+Z1jNU2VtgiIUoFk/0jyq1r435piKprMpO9t1qFpGuuKGvi1oA6AjEh/LsqMwnOferOaplFUb8JTr2PqoHguyIjAy0Pu7wghhBC/SUQvqNqq/t6RmdxapUpZeB2gia23vwo41+RBaMqJmedZ5rvvvjvssQaDAYPBcOiBQuyrPAc2LQK9lwoaF/4MFRvVvt6T3VYXapYmGqqKWOoYxM8+Q0mPCMRDr6Op3caSTeXUt1nx1OsYlxlNWqS/28M0mKxUN1sY1iOMKwfFEyirCIX4TdptDvo89M1JeezcR8dh9D42YbBHH32Uiy666LDHWywWHn/8cb777jtX75jU1FR++eUXXn31VUaOHHlU85kzZw4TJ04E4JFHHiEzM5Ndu3bRq1cvt+zq/V144YXcfffdbtv++te/uv6enJzMnDlzWLRoEffee69ru9PpZOHChQQEqJtqv//971m2bBl///vfqaiowG63c8UVV5CUpG7w9+vXz3VsR/3mfefzzDPPcN9993HNNdcA8NRTT/HDDz/w3HPPufVuuOOOO7jiiivc5hsaGsoLL7yAXq+nZ8+e/OMf/8BkMvF///d/gLpZ/eSTT/LLL79wzTXXsHjxYpxOJ6+//rorkW/BggUEBwezfPlyLr74Yp577jn+8pe/uB7rlVde4ZtvTs7/21ORBJPF2a29EdYvhIZi9SHU1gZb3geHRS2Z7XmJWgbboakEvHxh4PUQmsLG4gbeX1dKU7uNtAh/9HodTk1jeV4NW8pUVsPAxGDOSwt3yzbuqLMWbPTiqsEJZCUEn9CnLYQQQpxxguIBvboZbAhQ2Ynt9dBUDOEZ3R+j06laquUbVDNdvdzUPVzh4eF4eHhQVVXltr2qqqrbD6tCHBd1BbDxbbCbIbSH+l0uWqH2pV+sru/3clraqCnO5wdHf9aFXEhqaAA6nY7yxnY+31xBu82Bn8GDyf1jiQrsvAGlaRpVzRbarHbG9Y1mYr8YaY4thGDw4MFHNH7Xrl2YTKYuAWir1Up2dvZRz2ff7OiOsoTV1dX06tXrQIcA3T+PxYsX88ILL1BQUEBrayt2u53AwEC3McnJya5AcsdjdjTgzcrKYsyYMfTr149x48Zx8cUXM3XqVFeD9v01NzdTXl7OiBEj3LaPGDGCTZs2HXK+mZmZbo3io6Ki3Eoqenh4EBYW5prfpk2b2LVrl9v8AcxmMwUFBTQ1NVFRUcHQoUNd+zw9PRk8eLCUuthLgsni7GUzw8b/qiym8AzQHKpmsqVZ1VTLvFI18+nQWq06xWdPR4vqy887a/gkpwynU6NHhB86nQ6bw8nXWyvZXdsGwMiMCAbsFyi2OZzsrmkjPsSXa85J7JL1IIQQQojfIChe1UC2tKiyF8GJKpjceJBgMoAxXI1pLoNgqdF7uLy9vRk0aBDLli1z1Yh0Op0sW7aM22677eROTpwdmitg3QJoq4XwnqqsRf63al/SCIgd6Bpqs5io3L2NVc5e5EZPJC5IBUV2VDbzXW41Dk0jIsDApf1j8ffpvP7vWEnopddx1eAEzksLR6+XcnRCHA1fLw9yHx130h77WPHz83P7Xq/Xdwk07ltnuLW1FYAvvviCuLg4t3EHW5Wj0+kOet4O+zai27cO8aHs/zxWrlzJ9OnTeeSRRxg3bhxBQUEsWrSIefPmHfDxOh6z4/E8PDxYunQpv/76K99++y0vvvgiDzzwAKtXryYl5ehWgu0/3wPN5WDza21tZdCgQbzzzjtdzhUREXFU8ztbSDBZnJ2cDpWBXLwSQlNV0Hjbx9BSCZ6+qkmHl2/n+PZG9YG03zTs8cP4enMF32yrxOjtSXSIylwwWe18tqmCymYzHnod47tZHme2OdhT20ZGdADThyYSE+SLEEIIIY4Bv0hVA7m9fm8wOQkqcg5dN9kQoLKXa/IkmLyf1tZWdu3a5fp+z5495OTkEBoaSmJiInfddRczZsxg8ODBnHPOOTz33HO0tbVxww03nMRZi7NCx+rCxkII76V+z7d/pvbFZEPSeZ1Dze1UFGwmx5lGQeLlhPgFomkaq3bXs6awHoAeEX6My4x2KzlndzjZXdtGRICBaYMS6BcfdOKenxBnMJ1Od8xKTZxKIiIi2Lp1q9u2nJwcV1CzT58+GAwGiouLj6ikRUREhKuuMEB+fj4mk+mI5ubt7Y3DcXjNhn/99VeSkpJ44IEHXNuKig5xLdUNnU7HiBEjGDFiBA899BBJSUl8/PHH3HXXXV3GBgYGEhsby4oVK9x+NitWrOCcc8454sc+lIEDB7J48WIiIyO7ZFx3iImJYfXq1VxwwQUA2O121q9fz8CBA7sdf7Y5836DhTgUTYO8L2HXdxCUoJa37voO6vJVk46+V7p3e7a2qWylnhMwp17MJxvK+HFnDeH+BkL9vAFoNFn5JKecpnYbPp56JmfFEhvsHihutdgpbTCRnRjMNUMSCdl7rBBCCCGOAb1eLWnvyEzsqJvcVgM2k3q/745OB54+UL4R0sa4l7c6y61bt47Ro0e7vu/4ADhjxgwWLlzI1VdfTU1NDQ899BCVlZWuzuv7N+UT4piytcOGt6Bqi8pINtXCto/UKsPwnpB+kev3uKmtncqCHPK0JIpSp2HwDcbucPJtbhX51SpLcFBSCCN6hLmVpOtIAEmL9OeaIYkkhh3g9UMIIfa68MILefrpp3nrrbcYNmwY//3vf9m6daurhEVAQABz5szhzjvvxOl0ct5559HU1MSKFSsIDAxkxowZBzzvSy+9xLBhw3A4HNx3331dsm4PJTk5mdbWVpYtW0ZWVhZGoxGjsfvXtfT0dIqLi1m0aBFDhgzhiy++OOLGc6tXr2bZsmVcfPHFREZGsnr1ampqaujdu/cBj7nnnnt4+OGH6dGjBwMGDGDBggXk5OR0mz18tKZPn87TTz/NZZddxqOPPkp8fDxFRUV89NFH3HvvvcTHx3P77bfz5JNPkp6eTq9evXj22WdpbGw85nM5XUkwWZx9in6F3E9VLUWfIChbD2Xr1L5ek/bWXNzLboGGPZA0gub0y1i8upR1RfXEBvu6mm5UNplZsqmcdpuDQB9PpgyI6xIo7mjYMSItnKmD4s/IO7FCCCHESReSCGjqxrG3nyphYapVZSwiDlIz0Biu3u9bKiEw5oRN91Q3atSoQ9YGvO222455WYv58+czf/78w86iEmcRh1012ytZDaFpKrC85X1wWNUNpN6TQaeyi6uaTNTs2UypLpbS1GvAN5Q2i53PNpdT1WxBr4MLe0WSGeuecdxstlHW2E52YjBXD0l0JY8IIcTBjBs3jgcffJB7770Xs9nMjTfeyPXXX8+WLVtcYx577DEiIiJ44okn2L17N8HBwQwcONDVKK478+bN44YbbuD8888nNjaW559/nvXr1x/R3IYPH86tt97K1VdfTV1dHQ8//DBz587tduyll17KnXfeyW233YbFYmHixIk8+OCDBxzfncDAQH766Seee+45mpubSUpKYt68eUyYMOGAx/z5z3+mqamJu+++m+rqavr06cOSJUtIT08/oud6OIxGIz/99BP33XcfV1xxBS0tLcTFxTFmzBhXpvLdd99NRUUFM2bMQK/Xc+ONN3L55ZfT1NR0zOdzOtJpp1n16ObmZoKCgmhqajpgOroQB1S5FVa/Ck67uuCs2wVbPwQ0SBkJicM6xzrtULMDYrKoybyBd3Ma2FbeTHKYH77eqtbS7ppWvtpaid2pERlg4NKsWPwM7oHi6mYzLRY7Y3pFMrF/rDTsEL/J2f7ad7Y/fyHEYarfDT88AQHRKhM5/1vVkCt2oGrGdSCaBtW5MOQm6DH6wONOsLP9te9sf/5iP5qmrttzP1XJH3pvyPmvumHkFwEDpoOnj6pzXNdGQ/FWGj3D2ZXye1p9Y6lpsbBkUzmtFjs+nnom9o8hPsQ9M6+mxUKjycr56RFMyY5zXfMLcSLJa58Q4lQn6ZHi7NFQpLo9W9sgLE1lH+V+CmgQ3R8Szu0cq2lQmw+hPShNvZq319ZSWNNGjwh/VzB4c2kjy/Nq0ICkMCOX9HXv7KxpGqUN7WhoXJ4dx+iekdKwQwghhDieAuPUqiNzswomByepYHJj8cGP0+nAw0vVWE4dJaUuhDgV7VoGO74A/yj1+715sQokewdAv2ng6YPd6SS/soXWyjxsXiEUJl9Dq28se2rb+GprBTaHRrDRi0uzYgkxdmYcd1y3OzWNywbEMqZ3FJ4ekgAihBBCdEeCyeLs0FYH69+E5nK1zNXSAls/AKcNQpIhfVznB0dNg/oC8I8kP3Eqb29ooabFQnpUAB561Un114I61hU1AJAZG8iF+wWKnZpGYW0bRoMnUwfFMzgpxK0OmxBCCCGOA0+DaqxbulZlJ3fUTTbVqpvJ3l07gLsYw6GuANpqwV86eQtxSilZo67dvf1VqbrtS6CpBDwMKpBsCMRid5Bb3oylpgBPbz8KEqfS4JNITnEDP+fXogHxIb5M7BeDj1dnxrHDqbGnto0AH0+ulOt2IYQQ4pAkmCzOfNY22PAm1OapQLLDBlvfB2urWhLXZwro91nC1lSK5unDtugpvLVVo91qJS3SH71Oh8Op8d32KnZUtgBwbmoo5ySHul1w2p1O9tS0ERnow9VDEugdI0uThBBCiBMmrAcU/6r+7uULfpHQVq2ykyMP3PgF32CoqVAlriSYLMSpo3o75LwLTicEx8LuH6Bmu6qNnHk5+EfSarGzpawJR0MJAQZvcuMup8o3neV51WwtawZUAsjonpF47JMAYrU72V3bSkKIkWvOSSAtMuBkPUshhBDitCHBZHFmc9gg53+qyV5YGqCD3E9UZ3dvP+g7VXVw79BajeawsiF8Mm/n++Gh10gJ90On02GxO/hicwUlDe3odTCmVxR9Yt0DxR0XpCnhflx3TpJ0fhZCCCFOtKB40Huqhlwe3io7ua0aGosOHkzW6dVxlZsh5fwTN18hxIE1FsOGt8DcBGHp6pq+ZLXa1/MSCEmm1WInp6QBR3MV4QaN7dETKfLpwxebyiipbwfg/LRwshOD3RJA2ix2iutNZMYGcs05iUQF+nQ3AyGEEELsR4LJ4sylaaom8p4fVc1EDwPkf6O6teu9oO80VVexQ3sjDlMda/0u5L9l8QT4ehAZoC4qW8w2Pt1UTl2rFS8PHRP7xZAU5r5U1mS1U1Rnom9cENeek0hEgOFEPlshhBBCgKqbbAhUJa2MYeoaoGzdoesmA/iGqcxkUz0YQ4//XIUQB9ZWC+sWQlOpWl1Ytwt2faf2JV8AUX1psdjYVNKItaWWGG8zOyMmsMVrAEvWldBgsuHloWN8ZjSpEf5up24wWalutjCsRxhTB8UT4ON14p+fEEIIcZqSrgLizFXwPeR9qZp0GAJUFkNFjtrX+1JVS7GD1YS9sYSV+oG8Wd+HUH+DK5Bc22rhvXWl1LVaMXp7MHVQfJdAcnO7jeJ6E0NTQ7lhRLIEkoUQQoiTxScIAmNVEz6A4ARAB+31KsB8ML4h0N4INXnHe5biIObPn0+fPn0YMmTIyZ6KOFksLbB+oSpTF56hGmdv39s4OyYLEofRYraRU9KIubWROM9m9oSN5GfdIBavV4Fkf4Mn0wYluAWSNU2joqmd+jYr4/pGM31okgSShRBCiCMkwWRxZirbAFs+AC8/lZVUswP2LFf7eoyF8PTOsXYL1tpdrHL04t32c4gN9Xd1dy6pN/H++lJaLXZCjd5cPTjBFWTuUNdqoarZzIW9IuWCVAghhDjZdDoI7wl2k/re00fdWIZDZyfrPVS5i6qtx3eO4qBmz55Nbm4ua9euPdlTESeD3aJqJJdvVGXqLC2q34nTDqE9IH0czRY7OSWNmFpbSdTXURJyLp9Yh/JRTjlmm5PIAAPXDElwS/BwahqFdW04NbhqcAKXZcXi7Skfh4UQQogjJWUuxJmnrgA2/lfVSw5OhKYy2P6Z2hc3COIHd451Omiv3MF6awLveYwkITLE1d15R2UzS3OrcGoQG+zD5P6xbp2fNU2jstlMu9XBpP6xjOsb7dbQQwghhBAnSXACoAfNqYLDwYnQWqnqJkdlHvxY31AVTDY3uZfDEkIcf04HbPkQCn+GkGTVdG/Le2BrB/9o6HMZzRYHm0oaaTWZ6KGvpCwgi3+3DGdNcS0AaZH+XNwnCi+PzkCx3eFkd20bEQEGrhqcQN84+d0WQgghfiu5FSvOLC1VakmcqQ5CU6G9AbZ9AJpDZTb0GNM5VtNoKc9lY2sYn+ovIj46Ch8vDzRNY11hPd9sU4Hk9Eh/Lh8Q1yWQXFRvwunUuHpIIhP6SSBZCCGEOGUExqlGux1lLYKT1J+HUzfZGAqmBqjZefzmJ4ToStMg7yvV4yQgTvU72fqBup73CYJ+U2m26cgpaaTZZKGHvoIaYzrPtYxmTbH6XR+SHMIlfaPdAslmm4P8atUge9b5qRJIFkIIIY6SBJPFmcPcDBvehPrdqtuz3Qxb3t+byRCl6iTr9v6X1zQaSreztdHANz7jiYpNwstDj1PTWJ5Xw4qCOgCyE4OZ0Dcaz30uSB1OjYKaNvwNnvx+WDLnpYe7dYYWQgghxEnmH6XKXHUEk4PiAR2YG1XG8cHo9y7cq9p2PGcohNhf4S+Q+4mqXe4TCNuXQEu5KlXT7yqaHIa9gWQrPfQVNBriebp1PJsq2gEY2zuS4T3cr8ubzTYK69rITgxm1vmpJIQaT9KTE0KI7i1fvhydTkdjY+MJfdzk5GSee+65Y3a+mTNnMmXKlGN2viNRWFiITqcjJyfnpDz+yTJ37lwGDBjg+v5E/htIMFmcGewWyHkHKjapQDIabPtINdsxBELfaeCh6iBraFSVFpBfZ+Nn/wkExWXgoddhczj5YnMFm8vUh8wL0sO5ID3C7YLU5nCyq7qVmCAfbjwvhayE4JPwZIUQQghxUHo9RPTsDCZ7GiAgRv39cLKTfUOgcjNYWo/fHIUQnSo2waZFoPcCv0jY9R3U5YPOA/peSZMukE17A8mpHtWYvEJ4om0SOVVWdMC4PlFkxrpnHNe0WKhqMjO6ZyQzh6cQ4ud9cp6bEOK0o9PpDvo1d+7c33TeUaNGcccddxzTuZ6uTrcA8MKFCwkODj7Z0zhlSM1kcfpzOmHrR1C0AkJSVNB4x+fQVKL+3ncqGFQXZ6emUVJcRE1dAxvCJuMZm4VOp8NktfPZpgoqm8146HWM6xNFelSA28OYbQ4K69rIiArguqGJxAT5noxnK4QQQojDEZIEaGrpvE6n6ia3lKu6ydH9Dn6sMQzqC6B2J8QNPCHTFeKsVVcAG95SqwpDe0DpGijfoPb1nkyTdzQ5JQ20mu0keTVgx5u/m6awscaJDrg4M4pe0YGu02maRmlDO05N47LsOMb2jpJydEKII1JRUeH6++LFi3nooYfIy8tzbfP393f9XdM0HA4Hnp4SXhOH5nA40Ol06PWnd27v6T17ITQN8r/dW1stVtVHLPoFqrcBOuhzOfhHAmB3OtlVXEptTTl5oaNpjx2ulpOYrLy3rpTKZjMGTz2XZ8d1CSS3WuwU1rYxICGYm85LkUCyEEIIcaoLjFPL4+1qCbxb3WRNO/ixHl6qeV/19uM7RyHOdi2Vqt9JW60KJNfsgN0/qH09LqTRP9UVSI7zakHvtPGY6UrW1+i7DSR3lKPz8fLgd+cmcXEfCSQLIY5cdHS06ysoKAidTuf6fseOHQQEBPDVV18xaNAgDAYDv/zyS7clBu644w5GjRoFqBIEP/74I88//7wrw7mwsNA1dv369QwePBij0cjw4cPdgtfdKS0t5dprryU0NBQ/Pz8GDx7M6tWrASgoKOCyyy4jKioKf39/hgwZwnfffXfQ8zU2NvKHP/yBqKgofHx86Nu3L59//jnQtZwCwHPPPUdycvIBz/f1119z3nnnERwcTFhYGJMmTaKgoMC1PyUlBYDs7Gx0Op3r5wTw+uuv07t3b3x8fOjVqxcvv/yy27nXrFlDdnY2Pj4+DB48mI0bNx70uQFYLBbmzJlDXFwcfn5+DB06lOXLlwNgNpvJzMzklltucY0vKCggICCAN954g+XLl3PDDTfQ1NTUJTv9YOeFzozmJUuW0KdPHwwGA8XFxSQnJ/P4449z4403EhAQQGJiIv/+97/d5nzfffeRkZGB0WgkNTWVBx98EJvNdsjnCvDWW28RFhaGxWJx2z5lyhR+//vfH9Y5DkaCyeL0VrJGlbMwBO1dkrpFZSgDZIyHUPUCZbE72F5USWtNEaVh51ETNxZ0OiqbzLy3rpSmdhsBPp5cNTiBuGD3QHGDyUpZQzsj0sOZMTyZYKMskRNCCCFOeYFxqmmXuVl9HxSneidYmg9dNxnAJwQqclTvBXFCzZ8/nz59+jBkyJCTPRVxPLU3wroFnf1OmkrU6kKAuME0hg5gU0kjrWY70QYL3vYWHmmfyto6b1XaIjPaLZBstTvJr27ZW44umcHJodLXRIhTkaaBte3kfB3qZvIRuP/++3nyySfZvn07/fv3P+T4559/nmHDhjFr1iwqKiqoqKggISHBtf+BBx5g3rx5rFu3Dk9PT2688cYDnqu1tZWRI0dSVlbGkiVL2LRpE/feey9Op9O1/5JLLmHZsmVs3LiR8ePHM3nyZIqLuy/15XQ6mTBhAitWrOC///0vubm5PPnkk3h4eBzhT6VTW1sbd911F+vWrWPZsmXo9Xouv/xy1xzXrFkDwHfffUdFRQUfffQRAO+88w4PPfQQf//739m+fTuPP/44Dz74IG+++abruU2aNIk+ffqwfv165s6dy5w5cw45n9tuu42VK1eyaNEiNm/ezLRp0xg/fjz5+fn4+Pjwzjvv8Oabb/Lpp5/icDj43e9+x0UXXcSNN97I8OHDee655wgMDHT923U85sHO28FkMvHUU0/x+uuvs23bNiIjVcLjvHnzXMHwP/3pT/zxj390u4kQEBDAwoULyc3N5fnnn+e1117jn//852H9/KdNm4bD4WDJkiWubdXV1XzxxRcH/b91uE5KHv7ll1/O8uXLGTNmDB988MHJmII4E1TvgE3/A3QQEK2Wre78Su1LOBdisgAwWe1sK6nFo76A2rBBFMVdgqbzYHdNK19trcTu1IgMMHBpVix+BvdfiepmMy0WO+P6RjOpf4xbZ2ghhBBCnMK8fNRN5dJ16jrBw1utYmouVdcMvsEHP94YCo2FUJsPMYf+kCiOndmzZzN79myam5sJCgo69AHi9GNrV6UtqrZCeAa0N8C2D0FzQHgGDTHnsam0kTaznUgfO37mGua2T2NNo58rkNwzunMloclqp6jORGZsINeck0hUoM/Je25CiIOzmeDx2JPz2P9XrlYzHwOPPvooF1100WGPDwoKwtvbG6PRSHR0dJf9f//73xk5ciSgAtUTJ07EbDbj49P19ezdd9+lpqaGtWvXEhoaCkBaWpprf1ZWFllZWa7vH3vsMT7++GOWLFnCbbfd1uV83333HWvWrGH79u1kZGQAkJqaetjPrTtXXnml2/dvvPEGERER5Obm0rdvXyIiIgAICwtz+3k8/PDDzJs3jyuuuAJQGcy5ubm8+uqrzJgxg3fffRen08l//vMffHx8yMzMpLS0lD/+8Y8HnEtxcTELFiyguLiY2Fj1f2/OnDl8/fXXLFiwgMcff5wBAwbwt7/9jZtvvplrrrmGoqIiV2a2t7e3W4b6kZwXwGaz8fLLL7v9mwBccskl/OlPfwJUFvI///lPfvjhB3r27AnAX//6V9fY5ORk5syZw6JFi7j33nsP+fP39fXluuuuY8GCBUybNg2A//73vyQmJrplgf9WJyWYfPvtt3PjjTe67iwIccSaymDDmyqjITxDLY3b9pFakhrRG1LUi3BTu42tpXX4Nu6iLaQP+bGX49Ab2FLaxA951WhAUpiRS/rG4O3ZGSjuqLWmoXF5dhyje0ailyVyQgghxOklLA2KV3V+H5y4N5hc7LrpfECeBnDa1bJ7CSYLcew47KrZXslqVdrCboUt76mG2oFxNCSNY1NpM21WO+G+ENhewSOmK1jVFIROB+Mzo8nYpyRdm8VOSYOJc1PDmDY4ngAfr5P45IQQZ4vBgwcf0/Ptm90cE6OaBldXV5OYmNhlbE5ODtnZ2a5A8v5aW1uZO3cuX3zxBRUVFdjtdtrb2w+YmZyTk0N8fLwrkHws5Ofn89BDD7F69Wpqa2tdGcnFxcX07du322Pa2tooKCjgpptuYtasWa7tdrvddXO5IxN83yD7sGHDDjqXLVu24HA4ujw/i8VCWFiY6/u7776bTz75hJdeeomvvvrKbd/RnNfb27vb7PV9t3UEqqurq13bFi9ezAsvvEBBQQGtra3Y7XYCAwO7nOdAZs2axZAhQygrKyMuLo6FCxcyc+bMY7Jq56QEk0eNGuVWQ0SII9LeoGqrNZWowLHNBFvfd12A0msi6HTUt1nZXNJAQOtu7MFJ5MZegcXDj5UFtawtbACgT0wgF/aKdKul5tQ09tS24WfwZOqgeAYnhcgSOSGEEOJ0FBgHOg9w2FQd5OBEKP5VZSZ3NOY7GEMwlG+EPpep4LIQ4uhoGmxfAgXfQ1CiKj2zdZEqP+MbSkOPS9lU1kab1UGor54gUxGPtV7Kry1h6HQwITParbdJRyB5WGoY15yTiI/Xb1+SLYQ4QbyMKkP4ZD32MeLn557hrNfr0fYro3G49W0BvLw6b4R1xB86ArD78/U9eA+nOXPmsHTpUp555hnS0tLw9fVl6tSpWK3W33S+3/LcJk+eTFJSEq+99hqxsbE4nU769u17wDmACoIDvPbaawwdOtRt39GU3GhtbcXDw4P169d3Oc++zRSrq6vZuXMnHh4e5OfnM378+GNyXl9f325jSvv+m4P6d+/4N1+5ciXTp0/nkUceYdy4cQQFBbFo0SLmzZt3eE8aVY86KyuLt956i4svvpht27bxxRdfHPbxB3PEweSffvqJp59+mvXr11NRUcHHH3/cpcj4/Pnzefrpp6msrCQrK4sXX3yRc84555hMWJzlbO2w4W2ozoXwnuB0wNYPVe1Dn2DoeyXoPalvs7KppAH/tmL0/pFsir6SFs8wvsutYkdlCwBDU0IZmuJeS83udLK7po2oQB+uHpJA75jDv+sjhBBCiFNMUDz4BKpAlTGsM7hsbVU3p43dZ/S4+IVBYwnUFUBUnxMzZyHOZAXLYPtn4Beplppv/RBaq8DLSGPaFDZVWGizOgjx9SDYVMTfWybyS2vUwQPJPcK4ZogEkoU4beh0x6zUxKkkIiKCrVu3um3LyclxCxh6e3vjcDiO+rH69+/P66+/Tn19fbfZyStWrGDmzJlcfvnlgAp67tvsr7vzlZaWsnPnzm6zkyMiIqisrETTNFf8JCcn54Dnq6urIy8vj9dee43zzz8fgF9++cVtjLe36kW1788jKiqK2NhYdu/ezfTp07s9d+/evXn77bfdSoCsWrWq27EdsrOzcTgcVFdXu+bTnRtvvJF+/fq5MqPHjh1L7969XfPd/9/ucM/7W/z6668kJSXxwAMPuLYVFRUd8XluvvlmnnvuOcrKyhg7dqxbne6jccQFYNva2sjKymL+/Pnd7l+8eDF33XUXDz/8MBs2bCArK4tx48a5pWoL8Zs4HbD5/c4lcXpP1aSjpVx1a+93FXgZqTdZ2VzaiMFUiY+vkdzoy6j2iuXTnDJ2VLag08HY3pGcmxrmFki22p3sqm4lKczITeelSCBZCCGEON35BEFATGcTPg8vCNxbp7HxMC7IPX3AYVGlLoQQR6dkLWz5ALz91c2d/G+gYTfovWhKu4yNNewNJHsS1F7K480X83NrLHodTOjbfSB5eI9wCSQLIU4JF154IevWreOtt94iPz+fhx9+uEtwOTk5mdWrV1NYWOhW+uFIXXvttURHRzNlyhRWrFjB7t27+fDDD1m5ciUA6enpfPTRR+Tk5LBp0yauu+66gz7WyJEjueCCC7jyyitZunQpe/bs4auvvuLrr78GVHWBmpoa/vGPf1BQUMD8+fP56quvDni+kJAQwsLC+Pe//82uXbv4/vvvueuuu9zGREZG4uvry9dff01VVRVNTao58iOPPMITTzzBCy+8wM6dO9myZQsLFizg2WefBeC6665Dp9Mxa9YscnNz+fLLL3nmmWcO+vPKyMhg+vTpXH/99Xz00Ufs2bOHNWvW8MQTT7gydefPn8/KlSt58803mT59OlOmTGH69OmuTOrk5GRaW1tZtmwZtbW1mEymwzrvb5Wenk5xcTGLFi2ioKCAF154gY8//viIz3PddddRWlrKa6+9dkwa73U44mDyhAkT+Nvf/ua6w7G/Z599llmzZnHDDTfQp08fXnnlFYxGI2+88cZvmqDFYqG5udntS5yFNA12fKGyGYISwMsXdv8AtXkqwyjzSjCG0mCysrmkEZ2plhBvB3mRE9jtmcYH60spaWjHy0PHpVmxZMa6N3MxWe0U1LSSGRvETeelkhB67Ja/CCGEEOIk0ekgohfY2zu3BSepPxu7rxvYhSEIyjaoUhlCiN+megfkvANOp7qhU7QCKjcDOppTL2FDgy8mq4NQoxcBlkqeahzNz20JewPJMaRHdh9IvnpIggSShRCnhHHjxvHggw9y7733MmTIEFpaWrj++uvdxsyZMwcPDw/69OlDRETEAWsYH4q3tzfffvstkZGRXHLJJfTr148nn3zSVWrh2WefJSQkhOHDhzN58mTGjRvHwIEDD3rODz/8kCFDhnDttdfSp08f7r33Xlcmbu/evXn55ZeZP38+WVlZrFmzhjlz5hzwXHq9nkWLFrF+/Xr69u3LnXfeydNPP+02xtPTkxdeeIFXX32V2NhYLrvsMkBl0r7++ussWLCAfv36MXLkSBYuXEhKSgqgykd89tlnbNmyhezsbB544AGeeuqpQ/7MFixYwPXXX8/dd99Nz549mTJlCmvXriUxMZEdO3Zwzz338PLLL7syd19++WVqa2t58MEHARg+fDi33norV199NREREfzjH/845HmPxqWXXsqdd97JbbfdxoABA/j1119dczkSQUFBXHnllfj7+3epKnE0dNr+hU+O5GCdzq3MhdVqxWg08sEHH7hNcsaMGTQ2NvLpp5+6ti1fvpyXXnqJDz744KCPMXfuXB555JEu25uamo6o8LQ4zRX+ouokeweAf6SqX5j/jdrXazJEZdJgsrKppBFHezPxnvXsDL+IVYbz+HRTBa0WO0ZvDy7LiiVyv+7Oze02ypvaGZoSyrTBCdK0Q5ySOjran62vfWf78xdCHIWStfDrixDRU9VnbSyGTe+Clx8Mu+3QdZNtJmiugJH3QsSxa0xzOM72176z/fmfMRpLYNXL6vcoPAOqtkDelwC0Jo1hjTkJs81BiNELH0sdz9UN4UdTsiuQnBbZWXdSBZLbGd4jTALJ4owlr31CiGNpzJgxZGZm8sILLxyzcx5xZvLB1NbW4nA4iIqKctseFRVFZWWl6/uxY8cybdo0vvzyS+Lj412p+N35y1/+QlNTk+urpKTkWE5ZnA4qt6qOz3ovFUiuK4D8b9W+5PMhKpPGvYFkq7mNBI9aioPPZbl+KO9vKKPVYifE6MXVgxO6BJJrWy1UNZu5sFck1w1NkkCyEEIIcaYJile1GS2qqQuBsapUlq0NTHWHPt7LqDKbpdSFEEeurQ7WLYCmUghPh4ZC2KmWTZuih7DGnOgKJHvZmnmudpArkHxJv+4DySPSJJAshBBCHEpDQwMff/wxy5cvZ/bs2cf03EfcgO9Y+O677w57rMFgwGCQ7tlnrYYi2PCWygoKTVMNOrZ/CmgQ1Q8Sh9NospJT2ki72UyavpKKgCy+0I/is5wqHJpGbJAPk7Ni3S44NU2josmMxe5gUv9YxvWNxkN/iMwkIYQQQpx+/KNUfdb2BtWMT++pGvE1Fqkvv/BDn8M7AMrWQ6+JoJcAlhCHxdIK6xeosnThPaGtBnI/Bs2JObQXq5yZmO1OQoxeeNhNvFjdnx/bU12B5B4RnYHkVoud0noTI9LDuWqwBJKFEEKIQ8nOzqahoYGnnnqKnj17HtNzH9Ngcnh4OB4eHlRVVbltr6qqIjo6+lg+lDgbtNXB+jehpULVO7S2qKYdDquqd5gxnkazjU2ljZjaraTpK6gz9uBTr3F8trUOh6bRI8KP8ZnReHp0JuFrmkZRvQkvDz1XD0lkeA/3RnxCCCGEOIPo9arERf7Szm3BSXuDycUQN+jQ5/ALg+ZylVUZ1uO4TVUo8+fPZ/78+cek4704SexWVSO5fCOEpanEkC3vg8OKNSCBXz3PwWzXCDF6gcPKS5W9+cmsAskT+8WQun8gucHEeenhTJNAshBCCHFYCgsLj9u5j2mZC29vbwYNGsSyZctc25xOJ8uWLWPYsGHH8qHEmc7aBhve3JvJkKGa3mz5QAWUjWGQeTlNFiebShppbbeRqq+kxRDNx96T+WRbMw5NIy3Cnwl9Y9wCyQ6nRkFNGwEGT64flsSItHAJJAshhBBnupAkQFMNfQGC9zZFaSzq3HYwXn4qGFa787hNUXSaPXs2ubm5rF279mRPRfwWToe6bt/zM4Qkq21b3gdrK3afMFb6nI/ZriPE6IXT6eDligx+MvfoPpBs3htITpNAshBCCHGqOOLM5NbWVnbt2uX6fs+ePeTk5BAaGkpiYiJ33XUXM2bMYPDgwZxzzjk899xztLW1ccMNNxzTiYszmMMGOf9Ty0nD0lSznO0fQVu1qlvYbxpNNg9yShpoNdtJ9qzF6hHAx4bL+GCH2RVIHr9f6Qqbw0lBTSsJIUauHZrotnROCCGEEGewwDjw9AG7Gbx8ISBG9WKwm9X1hX/UwY/X6VRAuWw9pI9T2c5CiK40TdVEzv9G1Sf39IHN74GpFoeXP6v8LqTN6UWI0QuHpvFKeRq/mFPw0MEl/WNIDXcPJJc1mjg/PYJpg+MxeEogWQghhDgVHPGV8Lp168jOziY7OxuAu+66i+zsbB566CEArr76ap555hkeeughBgwYQE5ODl9//XWXpnxCdEvTIPdT2POjWoLqYYBdS6F+t6px2HcqTZofm0oaaTHbifdqRqeDTwyT+d9ODYdzb2mL/QLJZpuDgupWekYFcPP5qRJIFuIwFBYWctNNN5GSkoKvry89evTg4Ycfxmq1uo3R6XRdvlatWuV2rvfff59evXrh4+NDv379+PLLL0/00xFCnM0C41S9ZHOT+l7voRrzgSp1cTj8wqCxBJqkGbQQB1S0ArZ9Ar4h4BMMeV9CUzFOvTfrAsbQgpEQXy/smo5/lfVwBZIn9o/tEkgubTRxngSShRBCiFPOEWcmjxo1Cu0QywFvu+02brvttt88qe5I7bSzxO4f1EWnfxQYAqBkjaq1BtB7Mk1eEWwqaaTZbCPGYMbH1spHhim8ucvXFUie0DfGLZDc0bAjOzGYa85JJNjofZKenBCnlx07duB0Onn11VdJS0tj69atzJo1i7a2Np555hm3sd999x2ZmZmu78PCwlx///XXX7n22mt54oknmDRpEu+++y5Tpkxhw4YN9O3b94Q9HyHEWczLB0JToXQ9BOzt4xGcBA17VKmL+CGHPod3gAo81+7cWzZDCOGmYjNsWqQSQPyjYPdyqM5FQ09O4CjqdcEE7w0kv1zWg5XmRFcgOSXcz3WaFrON8sZ2yUgWQgghTlE67VCR4VNMc3MzQUFBNDU1ERgYeLKnI46l8o2w5jVAD0Fxql7yto/VvtQLaY7IJqekkeZ2G1E+doItFSzxnsDLxQkHDCQ3mKxUt1gY0SOMKwfFY/Q+pj0nhThhTpXXvqeffpp//etf7N69G1CZySkpKWzcuJEBAwZ0e8zVV19NW1sbn3/+uWvbueeey4ABA3jllVcO63FPlecvhDiN7fwGNrwNUXtvfDWXw8a31CqoEberslqHUlcA4ekw8l5V+uI4O9tf+872539aqSuAVf+C9gYI7QEVGyH/WwC2BZxPsXeqCiSjZ35ZGqva4/HUaUzMiiM5rJtAckYEUwdJIFmcneS1TwhxqpOCb+LUUFcAG/8LDquqr9ZcDts/U/tiB9IcPsAVSA73hRBLGd94jHQFklPDuwaSa1os1LdZGZ8ZzTXnJEogWYhjoKmpidDQ0C7bL730UiIjIznvvPNYsmSJ276VK1cyduxYt23jxo1j5cqVB3wci8VCc3Oz25cQQhyVwDiVMemwqe8DolUg2WGB1urDO4dfGDQUqusUIYTSUgnrF6rfo9AeULcL8pcCsMsv2y2Q/GJZhiuQPEkCyUIIIcRpSYLJ4uRrrYb1b0JbLYSkqnqGWz8Apx1Ce9AcP5Kc0iaa222EGT0IM5ewTHcuz5VluALJl/RzDyTXtlpoNtuYnBXLpVmxeHnIf3UhjtauXbt48cUX+cMf/uDa5u/vz7x583j//ff54osvOO+885gyZYpbQLmysrJL3fyoqCgqKysP+FhPPPEEQUFBrq+EhIRj/4SEEGeXoHjwCQDL3ptTOv0+dZOLDu8chiB1fG3e8ZmjEKeb9kZYt0D1NwnPgJYK2P4poFHqk06+oR/Bvl7YND3Pl/dkTXusCiT3jyWpSyDZzMiMSKYNSpBAshBCCHEKkwibOLksLSqTob4AwtLBboGt74PNBP6RtKRewqbSZprbbYQavQg1F/OTNoCnK7KwOyHlAIHkpnYbk/vHcHGfKPT6478MVYjTyf33399t07x9v3bs2OF2TFlZGePHj2fatGnMmjXLtT08PJy77rqLoUOHMmTIEJ588kl+97vf8fTTTx/VHP/yl7/Q1NTk+iopkYZXQoij5BMEAbHq2qND8N7ax4fbhE+nU9nM5RtV02Ahzma2dtj4NlRtVYFkS7MrIaTWO45txnMJNnqrQHJFb9aZYvDSOZncP4akfZrtNbsCyRFcOSgeb0/5iCqEEEKcymTdvzh57FbY+A6U56gLUIDcj8BUB94BtKZPIafCRNPeQHKIpYxV9gyeqBmyTyA5+oCB5Iv6RKM7AfUMhTjd3H333cycOfOgY1JTU11/Ly8vZ/To0QwfPpx///vfhzz/0KFDWbp0qev76Ohoqqqq3MZUVVURHR19wHMYDAYMBsMhH0sIIQ6bTgcRvaA6t3NbcKL6s6kENOfh1U32C4e63WplVUDUoccLcSZy2GHTYihepZpbOu2w5T2wmWj2DGOj/0gCjQZsmp7nKvqwwRSJl87Jpf2jiQ8PcJ2m2WyjotHMqJ4RXDFQAslCCCHE6UCCyeLkcDph60dQ9Iu6APXwhrwvVGaQhzdtPaewsdpBk8lGqJ83AdZqNlri+FvdedidkBxm5JJ+0XjqOy84OwLJk/YGkiUjWYjuRUREEBERcVhjy8rKGD16NIMGDWLBggXo9Yf+kJeTk0NMTIzr+2HDhrFs2TLuuOMO17alS5cybNiwI567EEIclaB4QNcZOPaPAk8fsJtV3dfA2EOfwydI1UyuzZNgsjg7aRpsXwIF30NQAui9YPMiaG+gXe/PusAx+BuNWDUPnqvow0ZTBN46B5f1iyQ2PMh1GgkkCyGEEKcnCSaLE0/TYNdSyP9aLTf19oOiFWqJHDra0yezsd7bFUg22hvZZgrm4boLsWk6ksOMTOwf4xZIrtsbSJ7YL4aLJZAsxDFRVlbGqFGjSEpK4plnnqGmpsa1ryOr+M0338Tb25vs7GwAPvroI9544w1ef/1119jbb7+dkSNHMm/ePCZOnMiiRYtYt27dYWU5CyHEMRUUr647LK3gE6iylYMSoC5f1U0+nGCyTg8eXmplVcoFx33KZ6P58+czf/58HA7HyZ6K6E7B97Djc/CLAEMA5H4CzWXYdN6sCxyLrzEQq+bBsxWZbDKF461zcEXfEKIiOhv4NrfbqGiSQLIQQghxOjptgslyUXkGKV2rspINQeAbAlXboPBnAMwpY1nfEkzD3kCywdFGfquBB+suPmggubHdxiV9YxiXKYFkIY6VpUuXsmvXLnbt2kV8fLzbPm2fWqGPPfYYRUVFeHp60qtXLxYvXszUqVNd+4cPH867777LX//6V/7v//6P9PR0PvnkE/r27XvCnosQQgDgHwnGUNU0zCdQbQtO2htMLobEw1wxYQyD2nxoqwO/sOM23bPV7NmzmT17Ns3NzQQFBR36AHHilKyFLe+Dl5/6PSj4Dmp34kDPhsAxePqH7w0k92WTKQxvnYNpmf6ER3Zm8e8bSL5yULw0yhZCCCFOMzpNO726h3RcVDY1NREYGHiypyOOVE0erPoXWE0QmqI+uG1eDJoDa8wQ1uqz4F8ueAAAYFFJREFUqDdZCfXzxkuzUtxo4//qJ2LV9CSFGZnULwZPj66B5Al9o5nQN0YCyeKMdba/9p3tz18IcQytfwt2fQeRvdX3rdWw/g21VH/EHaD3OPQ5nA5V5uLcP0LS8OM21bP9te9sf/6nnOodsPqVzuv4ktWw+wcAcgJG0h6UjlXzYF5FPzabQjHo7Fzb25ugmB6uUzS326hoNnNhr0guz46TQLIQ3ZDXPiHEqU7evcWJ01wOG95U2UAhyarR3raPQHNgD01nra6/CiQbvfHUHHsDyZccMJBc32alwSSBZCGEEEIcgZAkQFNlt0At1ffyBacNWioO7xx6D9B5QMXm4zZNIU4pjSXu1/HV212B5B1+Q2gPzsCqefDMPoHk63s6JJAshBBCnIHkHVycGO2NsG6hykQOSwNbu1oiZzfj8I9hre8I6ttthBq90es0ShotPFB/CVbN44CB5Po2qwSShRBCCHFkguLB06Ca7sHeusmJ6u+NRYd/HmOoCqi1Nx7zKQpxSmmrg/ULVEA5PB2aStF2fAZAkU9vGkKysDr1PFPRjy2mUAw6GzeltWKM6yxn1bQ3kDxGAslCCCHEaU/excXxZzPDxv9C9VYIS1cd1Ld9COZGnIYg1gdcSK3JuTeQDGWNFv5aPx6L5kFS6IECyRYm9I3mkn4SSBZCCCHEEQiMA58gsDR3bgtOUn82Fh/+eXxDoL0Bance2/kJcSqxmlRGck0ehGegmepwbP0AneakyjuR8vDhWDQPni5XgWQfnY0/ptTilTDYdYqmdhtVewPJUySQLIQQQpz25J1cHF9Oh8pALl4JoT1UPcK8L6C5DM3DwKbgsVSZPVQgWa+juNnOX+suwqx5khhqZFL/roHkujYLE/rGSCBZCCGEEEfOywdCUsC8bzB5b2Zycxk47Yd3Hr2nymqu3HLs5yjEqaDjOr5sHYSmodnNODa9h4fDQqNnBIURY7Bonjxd3p+t7SqQ/OekYkgern432CeQ3FsCyUIIIcSZQt7NxfGjaZD3pWpyExQPXkbY8yPU7EDT6dkWMoZSi58rkFzYDA/XjMaseZEYamTyfoHkhr2lLcZnxjBBAslCCCGE+K3C0lSN5A7GMPD2U4Hk5vLDP49vCFRuBUvLsZ+jECfbru+g4HsISkDT67DlvIenrYU2j0DyI8djwpt/lPdnW3sIvjord8fvxJ48Ck3nCewXSB4ggWQhhBDiTCHv6OL4KfoVcpeAbyj4BENFDpSsAmBX8PnscYQT6qcCybtbPXm0eoQKJIf4dhtIrm2zMi4zmon9Y/CQQLIQQgghfqugeNDpwbE3oPxb6yb7hkJ7nZS6EGee8o2w7WPwCUIzBGDO+Qhvcw1WnQ95kRNo1Rl5urw/uXsDyffFbcWWOgaHhw8AjSarWyDZUwLJQgghxBlD3tXF8VG1DTYtUktA/SOhfg/s/AaAkoBsdpDkykje1ebD3yqH0q55q0ByVqx7INnUEUiOkkCyEEIIIY5eUBz4BLpnFP+WuskeXmolVuW2Yzs/IU6mxmLIeVfdbPGPpm3Ll/i2FuHAg7yIcTTpg12BZKPOygMx67CmjMHiGaAON1mpbrEwVgLJQgghxBnptHlnnz9/Pn369GHIkCEneyriUBqLYcNbYG2DoARorYbcjwGNGmMaOfq+rkByvsnI4xWDaNe8SQj2YVJ3geQWC+Myo5jUP1YCyUIIIYQ4ej7BEBCzXxO+jrrJ5Z0Zy4fDNwQqN6tGZUKc7tobYcPb0FIJoak05/+Ef8M2NHTkh4+h1iuGp8qzXBnJD0X9ijX5Qtq8wwH3QPJlEkgWQgghzkinzbv77Nmzyc3NZe3atSd7KuJgTPWwfqH6IBbWA6ytsPUDcFhpMsSwxmsoof6GvYFkf54sz1YZycHeTN6vllpHIPnizGgJJAshhBDi2NHpIKIX2PYJAPuGgHcAaA7ViO9wGcOgrQbq8o/9PIU4kexW2PQ/tcIwLI2Wsh0EVqwEYE/IcCoMqTxV1p8d7cEYdVYei1yOPekCmnwTABVIrmmxcFGfKAkkCyGEEGcweYcXx461DTa8CTV5EJaumths/QAszbR7BrHScAHB/r7o9Tp2mgJ4sjwLk+ZNUpAnkwYkuAWSG01WalstXJQZzeQsCSQLIYQQ4hgLUgEwNKf6U6frzE4+olIX3uocVbnHdn5CnEiaBjs+h8IVEJqCqbkO391fAVDhn0mhsR9PlvVnhzkYo87G38OX4kw4lxr/noB7IPnS/VYaCiGEEOLMIu/y4thw2GHTYihdC6FpoPeA7UugtQqb3odffS8kICBAZSS3B/JkeX9MmjfJgTomZid1CSTXtFq4qE80l0ogWQghhBDHQ1AcePurVVQdgn9DEz4AnyDVaNhmPmbTE+KEKvoVdnwB/lGY7Rr6bR/hqdloNMSyI3AET5X1J88cjFFv44nwL9HHZVMWOBBQqwk7Asn79z4RQgghxJlH3unF0dM0FTje/YNqXuPlAwXLoG4XTp0Hq4yjMQSGqWZ75kD+f3v3HR5XfeV//D19NJJm1Htx770JG1MMjo0hGJOE0GMIy4bEJBAIbbML2SeFbFiyIYt/yZIsgU0gECCQQCg2NpiAbXDvlrslq/cymj7394ewQLHBGNsaaebzep55NLr36s45snU8Prr3fH9aNR6fYWdwapSLpww5tpHcEWDu6Fwu1WJ7IiIicqak5IIrHfwfn5v84SJ8HTUQCX72c7kyu9eIaN5/emNMUForpY817IGtz4LFRtjhIbjtRZyRDnyWVLamz+On1ZN6Gsk/y3gFe95oDmbMBpOpZyzdF8bmsVCjLURERBKC/rWXU3fg7e7b4pJzwOHuvjq5agMAG5NmY/IUYjGb2OdP5cEj3VckD00JsWDq8GMayfUdAebq9jgRERE508wWyBrZ+8rkpLTu9zJGFNqOfPZzWZ0QDUH9rtMeZiLSWil9qLMBNv0e/O1E3cW0bX8Dt7+asMnGjsz5/LRuOuX+NJLNIX6W8TKu7FL2ZM3DMFl6rW+iuwlFREQSh7p1cmqqN8G258CaBMlZ0LgHY/8KAHY6p+BPH47FbGK/P5UHqybSZdgYluxj/tSRvRrJbb5Qz8rPaiSLiIhIn0gf1L3gnmF8tO3o1cknMzcZupvQ1RshEjpt4YmcUcGu7kZy8wGMzKE07P2AzLbtGMDejDn8V8ssdvrSSTKF+Y+Ml0nLyGFn7qVEzbaeRvL8cVrfREREJNGoYyefX/MB2PSH7ttA3YXQUYOx62VMwCH7CJozJvc0kn9SNZGuqI3hrk7mTxmFzWrpOU2bL0Rdu5+5o3O08rOIiIj0HU9R91XF4Y/NOv68c5NdWdBR1/3+SKS/i0Zg2/PddxNmDKO++hDZte8AUOmZxv90nc97HXlYiHJ/+nKyPalsy7uckMVFizdIY2eQ+ePy+OIENZJFREQSjbp28vl01sOGJ7tvjUsfAoF2jG3PYYqGqLcWcCRrNhaLuVcjeWRSGxdNGYHVbu85zdFG8oVqJIuIiEhfcxeCwwOB481NroVw4LOfy5bUfbxGXchAsO/N7jVOPEU0treTfuAVzERpTBrC76MLeKllEADfTl/LSE+QbXmX47eldTeSvUEuGqtGsoiISKJS505OXqCju5HctA+yhkMkQHTbc5hCXbSb09iffSEWi4UD/pTu0RZRG6OcLVw8ZShmR3LPaY42ki8YlcMiNZJFRESkr9mckDGo9yJ8Tjc40wAD2ipP7nyOFKjaCJHwaQxS5DSr3gw7XgKHh7awHcful7AbfjptmbzkvIz/bRgJwFc9O/lCykF25XyRDmc+zd4gTR82ki/RQtkiIiIJS907OTnhIGx6Cmo2Q+ZwwERk+4uYuxrxmZLYnT0frE4O+FP4SdUkvFEboxxNXDqxiKgzvec07R9vJE9WI1lERERiJHM4RIO9t33eucmuLOioOfkRGSJ9pbUSNj8NkSBdjiyCO18mNdxM0Oxkpfsy/rN2MlHMnJdcydeT17In6wvUp4z6sJEc4KJxaiSLiIgkugHTwVu6dCljxoxh+vTpsQ4lcUWjsP3PcPhdSB8MFjuR8textB0mjJXdWfOI2N0c/FgjebS9kS9PyCSYUtBzmnZfiJp2P3M+bCTb1EgWERGRWPEUgsnSe+G8zzs32eaCUBc07D598YmcLv422Ph7aK8m6BlE065VZPsOEsXMurSL+UHdbPyGlbHOJu5xv8HhjJkcSp9JszdIszfAxePyuXi8GskiIiKJbsB08ZYsWcLOnTtZt25drENJTIYBe5fB3tchtQDsyYQPr8ZSvw0DE+WZc/A7czjoT+HHPY3keq4e66DTPbznNEcbyReMyuFyNZJFREQk1jxF4HB3j/E66uiVyZ11EPJ99nOZTGD/cNRFNHp64xQ5FeFg9xXJ9TuIZAzjyL5tFLetB6DcM5v7Gi+iOeyk0NbJD9Nepsk9hj1Z82j3R2jqDLBAjWQRERH5kDp58tlUfgA7/ty9SE1SOqGa7VgP/x2AA56zaHcN+odGch03jAzTlD655xTtvhA1bX7mjMxWI1lERET6B2capOb3XoTPkQJJGd3PT3Zusiuz+2vaTnJEhsiZYhiw+xU4vBojrZTDVdWU1K0AoDp5LHd3fJWKYAoeS4CfZPyNSHIuO3IupT1ipbrNx/mjclgwPh+zGskiIiKCmsnyWdTvgs1PASZIzSPUUoFlz2sAVCWPpd49jkOBj422sNXxjaGt1GTP7r5CB2j3f9hIHpXNl6YUqZEsIiIi/YPJBNkju8dTfFzP3OSTHHVhT4GgFxrKT098Iqfq8GrY/SpGcjYVLX5yK/+GlTBtjnz+Lfg1tnVl4DBF+PeslaQ7zezIWUibOY3DTV1MH5TBwokFuiJZREREeqijJ5+u7Qhs/L/uWz/TSgl7mzBt/zNmIjQ6S6lIP4tDgRR+fGQSnVEbo2x1fHtQFRV5X8AwWYAPG8mtfs4fmc3lk9VIFhERkX4mrbj7o/Gx0RQ9c5NP8gpjk6l7dnLVxu4rQkViqWEPbH0WzFZqQ0mkHHiV5GgnfksqP7fcyIqOYkwYfC/7fUba6tmdvYBGZykHGr2MLXDz1enFOG2WWGchIiIi/Yi6evLJupph/RPdDeXMYURCPiJb/oQ16qfdlsX+zAs4HEzt1Ui+q7icgwWXEDE7AOj4WCP5S1OKsFv1V05ERET6GU8R2JMh2PnRtqPNZG8DBLuO/3WfxJXZfUVze9Xpi1HkZHU2wKbfg7+dZlse4T0ryAzVEDHZeDrpap5sHgfATZk7ON+2g/0Z53EkdSIHGjopyUji6hkluJ22GCchIiIi/Y06e3J8wa7u1Z4bdkHmcKLRCIHNf8IRasNvSWFP9nwOhjz86MNG8khbPfcVbmZ/wUKC1hSgu5Fc3ernvBFqJIuIiEg/lpILrgzwf2xusj0ZXFndz092/vHRBf0adp++GEVORrCru5HcfIDOlEE07ltHsW8XACtTLuHHjecCcKnnEFc53qPSPZV9GedzuMVHRoqda8pKyXE7Y5mBiIiI9FPq7smxIuHu2+GOvA8ZQzFMFjq3/hWXr5awyc7u7IvYH87mx1WT6IzaGWFr5P68NRzM/yJeRzbQu5H85alqJIuIiEg/ZrZA1sjeVyYDpB+dm/w5Rl1YnVC9WaMupO9FI7D9BajagN89mEMH9zKsbTUAO5LP4vamy4lgpiyljiXJy2lwDWdXziVUd4axmU18dVoxg7OSY5yEiIiI9Ffq8ElvhgG7Xob9b4GnFMPmpHXXStzte4liojxrLnuiRfyoahIdETvD7U38MGclh/MX0OIaBBxtJPs4Z0SWGskiIiIyMKSXghHp3fztmZt8kovwQfdVzc0HoLPu9MQn8lntXwn7VxBOLWBPdRPDG9/ETJQa51AWt/0T3qiNEc5Wvu9ZRpcjh+15l1Hjt+ELRVk0uYgJRWmxzkBERET6MXX5pLeDq2D3K5CcDU43TfvWk964HoADGeey1zyUn1RNpCNiZ5i9hQezXqcq9wLqUscC0OkPf9hIzuYraiSLiIjIQOEpBosTwv6PbfuwmdzVdOxVyyfidEOgXaMupG9Vb4btfyZqT6W8KUppzes4DD8dtky+7vsOjWEXebYu7s98G4vZws6cS6kxMmnyBpk/Jpezh2XGOgMRERHp59Tpk49Ub4Ktf+q+LTM5i8bKcjKqVgJwxD2Zcsc4flI1idaIg1J7Oz/L/Cv1WWdxOK0M6G4kV7V2MXt4dyPZYdXKzyIiIjJAuAs+agAfZUuClJzu5yc96sIMZhvUbNGoC+kbrZWw+WmMcID93mTSj7yJJ9JM0Ozke5FvsyuQTYo5yL/lriabZsqzv0ClYxhHWn3MHp7FRePyMJlMsc5CRERE+jk1k6Vb037Y9AeIBMFdSGNdFZ6Dr2DGoNE1lF3JZfy0aiL14SRyrV38LP0lWtInsjdzLpjMdAY+aiRfMU2NZBERERlgbEmQMbj3InwAns85Nxm6R1007u2+slk+s6VLlzJmzBimT58e61AGDn9b9+LZ7dUcMecTrVxLQfAQUUz8wnIjb3SNwGaKcE/+RkZED3IofSb7UmdwqNHLlJJ0vjS5CKtF/zUUERGRExsw7xj0pvIM6qiDDU+AtxHSh9DU2kLynj9jM0K023PZnjaHn9VMpDKYQrolwEMZfyHkGcKunEuImq10BsIcaeni7GFZaiSLiIjIwJU5DKLB3ttOZW5yUlp3k0+jLk7KkiVL2LlzJ+vWrYt1KANDJASb/wj126l3lNB4eBcjfJsA+KvjUv5fxzmYMFiSu4OzjK3Upo5ld8YXONDoY3heKldNLybJrvfvIiIi8tkMmGay3lSeIf522Phk9wIxmcNp6ezCtvPPJEW9+KxutmfM5+HaSez1e0gxh/iPzJdxpmawPW8RIYsL74eN5NnDsrhiWrEaySIiIjJweYrAZOluzh2VVgyYwNcCgY6TO5/JDGYL1Gw9rWGK9DAM2PUKHH6PdmcxB6uqGd/xDiZgi30Kt7ddBcA1mftYYFlHa1IJ23MuZU9LhII0J9eWlZDmssc2BxERERlQBkwzWc6AcAA2PdU9yy9zOO2BMJEdf8EdbiRkdrAz6yIeaZzCtq4MHKYwP8xcRo7Lwva8Rfhs6XgDYSpbfB9ekVyM06ZGski8WbhwISUlJTidTvLz87n++uuprq7udczWrVs555xzcDqdFBcX87Of/eyY8zz33HOMGjUKp9PJ+PHjefXVV/sqBRGRz85dCA5376ax1Qmpud3PP9fVyZndVyZ3NZ+eGEU+rmIN7P4bPnsGO+s6Gdf8JlYjRI2tmKs6vg3APM8Rrk76AL/Vw/bchezpdOJJsnFNWQn5nqQYJyAiIiIDjZrJiSoagW0vQMV7kD4Yb8RCx45lZAUqiGJhd+Y8Hm2ewfudOVhNUf41+++McLaxI3chbc6ijzWSM/mqGskicWvOnDn86U9/ory8nBdeeIH9+/fzla98pWd/e3s78+bNo7S0lA0bNvDQQw/xgx/8gMcee6znmNWrV3P11Vdz0003sWnTJhYtWsSiRYvYvn17LFISEflkSemQmt97ET44tbnJSengb4XGPaccnkgvjXth67OEMLO12cLQhhUkRzvwmt1c4b0bn+FgSnIj30h7HwthducsoDyUiwn48tQihuWkxjoDERERGYDUTE5EhgF73oC9b0BqIT6Tk7rdqyn07gBgX+Z5/KZzFm+1F2DC4I6sdUy3H2Z3zkXUp4zCF4xQ2dLFrKFqJIvEu+9+97ucddZZlJaWMmvWLO69917Wrl1LKNR9C/hTTz1FMBjk8ccfZ+zYsVx11VV85zvf4ec//3nPOR555BEuuugi7rrrLkaPHs0Pf/hDpkyZwqOPPhqrtEREjs9kguwREOrqvf1U5iabLWAAjftOOTyRHp0NsPH/iHS1sMPrIbtuNdnhGsImK98IfZcj0UyGONq5I3s9qeEW9mWezw7LaDr8YS6dmM+UkrRYZyAiIiIDlJrJiahiLex4EZxpBGypVOzdwuDWNQAc9kznd/45/LWl+wqcW7K2Mte+jf0Z51LhmUEgHOFQk5fpgzK4croaySKJpLm5maeeeopZs2Zhs9kAWLNmDeeeey52+0fzFufPn095eTktLS09x8ydO7fXuebPn8+aNWs+8bUCgQDt7e29HiIifeJo49iIfrTNUwSYuhfT87ed/DnNFogETkt4IoR8sPkPRJsOsDeUh6luG0OCuwD4sXET74ZGkmX1cU/eRnKDFVS6p7IteTb1HUHmjsnlvBE5mEymGCchIiIiA5WayYmmbidseRpMFkKuHPYf2M/QhpWYMKhLHsnvoxfxx6ahAFyXUc6X7Gup9ExnX+aFhKIGBxu8TCxKUyNZJIHcc889JCcnk5mZSUVFBX/5y1969tXW1pKbm9vr+KOf19bWfuoxR/cfz4MPPojH4+l5FBcXn650REQ+nbsQ7MkQ7Pxom9XRPf4CPt/VySKnSzQK217AOLKeSlMezXUVjO96H4DnzBfxO/95JJtD3FuwmSHhvTQmD2dLxkUcag0yc2gml4zPx2xWI1lEREQ+PzWTE0lrJWx8EgKdhN1FlFdUMaT2NayEaXUU8ox1Ef/bMAqAy9IOsti5irqUsezKuZgQFvY3dDIyL5VrykpIddpinIyIfF733nsvJpPpUx+7d+/uOf6uu+5i06ZNLFu2DIvFwte+9jUMwzijMd533320tbX1PCorK8/o64mI9EjNg6QM8Hf03p52CnOTRU6X/Sth/5vUm7I4VNfGVO/bmImyyTyOu7uuw0KUO/K3MS5aToc9h81Zl7K7BSYWpfGVqUXYrfrvn4iIiJwaa6wDkD7S1Qwbfgft1USyRrK7qomSqr/hNHx02dJ5Mekr/LJ2PAYmLnRX8S3XClqSStmet4iAKYn9DZ0Mykrm2rNKSU+2n/j1RKTfuvPOO7nhhhs+9ZghQ4b0PM/KyiIrK4sRI0YwevRoiouLWbt2LTNnziQvL4+6urpeX3v087y8vJ6Pxzvm6P7jcTgcOByOk0lLROT0MFsgawQceKv39rQSqFzT3Uw2jO75yiJ9qWYLbH+BtoiTnU0RpnSsxBH1UWvO5dquOzAwc0vuTmZY9hIx7GzPuZStHSkMy0nmqhnFJDv0Xz8RERE5dXpHkQiC3u4rkhvKiWaOoLy2jZyK13FHWgmak3g15Sv8tHYaEcyclVLHd1NX4LNlsj1vEV3WNA40eMnzOLmurJRctzPW2YjIKcrOziY7O/tzfW002j1DNBDonv05c+ZMvv/97xMKhXrmKC9fvpyRI0eSnp7ec8yKFSu4/fbbe86zfPlyZs6ceQpZiIicQRmDYH+0d9PYUwQmMwTawd8KSemxjFASTdsR2Pw0XX4fW1rTGNH2Fp5wEz5TEl/x3UcXTr6aeYALXXuxBbvYkfNFPvAVkut2cPWMEjJT9AtaEREROT10n1O8i4Rgy7NwZB1G+lD2NfpJPvwWOeFqIiYrqzyLeKBuNgHDwgRXM3enrwKLjR25C2l1FHK4uYt0l41ry0ooznDFOhsR6UPvv/8+jz76KJs3b+bw4cOsXLmSq6++mqFDh/Y0gq+55hrsdjs33XQTO3bs4Nlnn+WRRx7hjjvu6DnPbbfdxuuvv87DDz/M7t27+cEPfsD69eu59dZbY5WaiMincxeBxQFh/0fbLDZILeh+rlEX0pf8bbDx94RajrClM53s9s0UBg8RxczNge9yxMhhjruar7jLSQ3UcTh9JmuYQLLdwpXTi/UeXkRERE4rNZPjmWHAzr/Agbcw0ko50BYhWvE+pcG9GMA6z3zuqp+HN2pjuLON+7LexWV0UZ49n/qUURxp8eGwmrlqRgnDclJjnY2I9DGXy8Wf//xnLrzwQkaOHMlNN93EhAkTWLVqVc8ICo/Hw7Jlyzh48CBTp07lzjvv5P777+ef//mfe84za9Ysnn76aR577DEmTpzI888/z0svvcS4ceNilZqIyKfzFILT3X0V8sellXR/1CJ80lciIdjyDJGarWz3Z2NuPcQo3yYAfhK5jnej45jgauam7F2kByqoSR3Pe87zCBkmvjSliNH57hgnICIiIvFGYy7i2YG3oPxVSMml0mulvWILk30bANjlns13mr5Ea8RBsb2T7+euJTNcz57MuVR4ZlDb1n0lzhXTihlX6IllFiISI+PHj2flypUnPG7ChAn8/e9//9RjrrjiCq644orTFZqIyJllS4L0QVC9GVJyP9qeVgoVqzU3WfqGYcCuV4ge/Dt7g9m0tjZxTtffMQEvGufx29BFlNg7uS1vG9n+Q7QklbLWs4BGn4lFk/KZMTgj1hmIiIhIHNKVyfGqagNsfQ5sLqqCLqor9jGhs7vZU5E8nm+0fo36UBI5Nh//mr+OwtAhKj3T2Z85h0ZvEF8ozKLJhUwr1TxAERERSUBZwyEa6r3NUwgmCwQ7wdccm7gkcVSsxdj9NyoDyRxu8VPmfRurEWIbw7g7cBMZVj93F2wlL1SJ3+phfcYXOeB1MGdkDheOzsWkX3aIiIjIGaBmcjxq2g+bnoJIiDoyOVh5hMntK7EQpdFZys3eW6gMppBmCfD9go0MCe2lLmUsO3MuockfpbUryCXj8zlneJbehIqIiEhichd2L7gX+VhD2Wzt3g6amyxnVuNe2PosDV1hdrXZmO77O65IOw2ks9j/PaxmuLtgK0VGDWYjyrbMi9jszWTG4AwWTirAYtZ7eBERETkzBkwzeenSpYwZM4bp06fHOpT+raMW1v8OuppotBeyu7KeSa3LcRh+OmxZfCvwHcr96SSbQ/xLwWZGh3fTklTK9rxFtISsNHQEmDsmjy+MyVMjWURERBKXpwgcbgh09N6uuclypnkbYePvaW2uZ3O7m9G+DWQEqwlg42uBu2klhdvydjDMWo8r3MKejPP4u28IYwvcXDGtGIfVEusMREREJI4NmGbykiVL2LlzJ+vWrYt1KP2Xvw02PAktB7sbxFUtjGtdQUq0nYAlmbuit/KBLx+HKcLd+VsYb+zGa8tge94imoxUqlp9nDs8my9OyMesqxlEREQkkSWlQ2rucRbhK+3+eHRussjpFPLBpt/TVbuHzV1Z5Pn2UerbCcBtwSXsMkr5p5w9TE6qI81fTYV7KssjUynNTuHqshJSnbYYJyAiIiLxbsA0k+UEQn7Y9Aeo3Up7ymC2VrUzrOXvZIbrCJts/Nj0DV73jsBClDvytzHFso+I2c7O3IXUW/I53NTFWUMyuXxKITaL/lqIiIhIgjOZIHsUhLp6b3fnd4+7CHVBV2NsYpP4FI3CthcIHPqALb5MrF31jPOuAeCX4ct5PTqDRemHmOOuIsN3iLrkESyznk96ajLXzCghJ9UZ4wREREQkEahrGA+iEdj2PBxejTe5hK01XeS3bqAoeAADE4/ZruP/OqdhwuDWvJ2U2Q9gi/opz57PEecIDjR6mVySxlenFeO06bY4EREREQA8xd0fjehH28xWcBd1P9fcZDmd9q8ktGc5u7pS6ezyMcP7NmaiLI9O5b/CX+bs1Fq+mnGAdH8lHY583kqah2FP5crpxQzKSo519CIiIpIg1Ewe6AwDyl+Dfcvxu/LZWhckuWU3I/xbAXjRsZCftX8BgJtyyjk36RCuUDP7Ms7nQMo0DjR2MqbAzTUzSkl2WGOZiYiIiEj/4ikCezIEvb23a26ynG41W4hse4GD7SaqvBbO6lqFPepjr1HEbcEljE5q4xs5u0kN1RM2O1idOo86Mlk0uZBxhZ5YRy8iIiIJRM3kge7watj5F4J2D1sawWipYGJX9+1wq+1nc0fblQBcnbmfeamHcAeqqPRMZ2/6+Rxo6mJodgrXlpXicWm+moiIiEgvqXnds5P9mpssZ1DbEaKbnqKqqZU93mSmB94nNdRIq5HMjcHvkW6P8N387aRE27BHu9jkuYCd0VIuGpfHrKGZsY5eREREEoyayQNZ7XbY8gxhzGxtddDVUseMru7b4cpto7mu/RYALk0/zGXpB0j3VVCXMpYd2Rezt9lPYVoS155VSnaqI8aJiIiIiPRDZgtkjYRgR+/tqXlgtkHYD9762MQm8cHfjrHx/2ioOsj2rkxGR3aT499PBDPfDN1Oh9nDPQVbSaOT1EA95akzeS8yjnOGZzN/bB4mkxbNFhERkb6lZvJA1XIYNv2esL+D7Z1umlpaOKvrLaxGkFprIZd33kUUC3Pc1VydsY8M32FakkrZlnsZe1uiZKU4uKashMK0pFhnIiIiItJ/ZQzqXp/i41cgmy0fzVPWqAv5vCIh2PIMrQc3sdWfTX60hiGd6wF4ILSYjcYo7irYRo61kzR/JUdSxvK6MYspg7oXzbZq0WwRERGJAb0DGYi8TbDhSaJtVewMZlPV3MnMrrdJinTQYfawyHsfXYaTspR6/il7N+mBI3htmWzPW0R5h4Nkh5WrZ5QwJDsl1pmIiIiI9G/uIrA6IRzovb1nbrIW4ZPPaf9KOsrfYrs3HWfEy/j2VZiAp8MX8FTkQr6dt4OhjnbSfRU0OUt42XwBwwoyuXJaiRbNFhERkZhRM3mgCXph45NEG8opD+dR0eRjRmA17lADAZODq/z3UWtkMN7VzJLcnbhD9UTMdnbkXsYufyYWs4mvTi9mdL471pmIiIiI9H+eQnCmQqCt9/aeucmVYET7Pq44tnTpUsaMGcP06dNjHcqZ03yArq0vsbfNQlfExLTOlViNEO9HR/FA+AZuyN7H1JQmPIFqfFYPr9vmkZGVzzVa60RERERiTM3kgSQSgs1/JHpkPQeieRxoCjAhtJls/6EP56p9lx3REoY727gjfzvuSDO2qJ/d2RexwyglGIny5SlFTClJj3UmIiIiIgODLQnSB0PgH+cm54LFAZEAdNbFJrY4tWTJEnbu3Mm6detiHcqZEfIR3vwsNbW1VIfdzPD9naRwO1VGJt8K3sYX0qqZl1aFK9gMhsHbjgsIegZx1YwS8jzOWEcvIiIiCU7N5IEiGoWdL2EceJuKaDZ7mkIMDe+jxLsNgH+Pfp2V4QkU2zu5u2Ar7mg7rlAz+zLOZ4t1Ih3+MJdOyGemVnwWEREROTlZw48dc2Eyg6eo+7lGXcjJKH+dpv0b2BvOYVJ4C+mBKroMOzcH72RoSoBrs/ZjD3tJCrewwTWLiuRxXDGtiGE5GlEnIiIisadm8kBxYCXsfpWaaBq7mg3yI9WM7FgDwG+jC/m/4AXkWH3cW7gFj8mLO1BFpWc6m5Jn0+QNMm9MHheMytWKzyIiIiIny13YveheNNx7e8+oCy3CJ59R3U7at73C/i4XxZEjFHm3A/C90C2EHOksyd2F1QjiDlRT7pzMOsdMFk4qZLLuLBQREZF+Qs3kgeDIetj2PPVBG9uaLaRFW5jQ/jYmDN5gJj8KXkmaJcC/FG4m09JFuq+CutRxrPfMp6o9xPmjcrh4fB5msxrJIiIiIifNUwQON/jbe29P/7CZ3HYEopG+j0sGFn87wc1/orqhlXA4wuiO1QD8MryIDZYJfC9/G3ZTmAxfBVWOYbzpmMOFYws4d3h2jAMXERER+Yiayf1d417Y/BQtnT62tCbhiHiZ0r4CixFiCyO41f9Nks1h7i3cQq6tiwzfYVqSSlmf8UUOtBnMGpbFZZMKsFr0Ry0iIiLyuSSld89IDvxDMzk5B6xOiAShszY2scnAYBgYu16m/sBWDoUzmep7DzNRVkQm85voQu4p2IrbEiTdV0mLLZdX7XOZNryYi8fn64IQERER6VfUYezP2mtgwxO0N9ezsT0NIxJkeudKHBEvR8jlev9dmEwm7i7YSqm9kzT/Eby2TDZmLWJnm52pg9K5YmoxDqsl1pmIiIiIDFwmE2SPglDXsdvTSrqfa26yfJrqjbRse4P9ATejIztJDrfQaLj5l/BNfK9gB/l2HynBeoJmB69ZL2DQoOF8eWoRNl0QIiIiIv2M3p30V75W2PAE3rr9bPRmEQxHmN71d5JDTbSTwlWBf8FLEnfkb2dEUjspwXoiZjtbsy9lY4eb8YUerppRQpJdjWQRERGRU+Yp7v5oRHtv72kma26yfIKuZro2/omqli4cUV/PAtrfD93Ewux6RiS14wy1YYt08ZbtHFwlE7lqRgkuuzXGgYuIiIgcS83k/ijkh01/oOvIZjZ5s/EGIkwKrifdX0kQG9cH7qbKyGJJ3k4mJjeTFGrBFvWzM2s+q7sKGZGXyjVlJbidtlhnIiIiIhIfPEVgT4agt/f2o4vwtVVpbrIcKxolvO0F6ivKORJJZ6L3PUzA85FzaUoaxBx3DdaIn+RgPR9Yp9OaO4urZ5SQkWyPdeQiIiIix6Vmcn8TjcDWP+E/8B5bvZm0BmGMsYd87y6imPh28Fa2GMO4KaecmakN2MNeXKFm9macx9uB0ZRkuLiurJTMFEesMxERERGJH6l53bOT/3FusisLbC6IhqCjOjaxSf9VsYamHSvZH8xgUngLSZEOjhhZ/CJ6JTfnlmMmTJq/kt2W0ezJupCrygZRlO6KddQiIiIin2jANJOXLl3KmDFjmD59eqxDOXMMA8pfJVC+nB2dqTQELAw1VzOo7X0Afhy6hjei07kqcz8XemqwRAO4A1VUeKax3JhBjieJ688aRJ7HGeNEREREROKM2QJZIyHQ0Xu75ibLJ+mopX3Dcxxpj5BhtJHfVQ7AXaFvcH3uYdzmIBm+wxyxFLE27SIumz6UkXmpMQ5aRERE5NMNmGbykiVL2LlzJ+vWrYt1KGfO4dWEtr1IebuVar+DEmsrI5rfwgT8PjyX/41czBfTKliYXoHJCJPuq6A2ZSxvWOaQkpTENWUllGTqSgYRERGRMyK9tHtmsmH03q65yfKPImGCm5+lruogTVE3oztXA/C/4QV43G4mJLfgDtTSZnLztms+cyaPYlppeoyDFhERETmxAdNMjnt1OwhvepqDzUEO+1PIc/gZ3bQcixHhrchEfhBezBx3Dddk7cdElAzfYVqSSnnTeRHYk7lqRjEjcnUlg4iIiMgZ4ykGix3Cgd7be81NDvd9XNLvGAfepn7n3zkQzmJycD3OaBf7ogU8bb6EqzMPYIt4IdzFu7bZjJ8wmQtH5WIymWIdtoiIiMgJqZncH7RWEFn/JFV1jZT708h0RhnbtAx71MfOaAm3hr7D1OQmbsrZgwmDNP8RvLZM3kq5mHaLm69MLWJCUVqssxARERGJb55CcLqPnZuclNG9OJ8Rgfaq2MQm/UfLIZrXP88Rr5UiGsj2HyRkWPhe+BZuztuHwxTG469iq3kMqaPO59KJBZjNaiSLiIjIwKBmcqx1NRNd/wR1Rw6wzZ+Fx2lmbMtKXOFWao10bgzezeAkH7fm7cRiMkgJ1hMx21mduoAjRg4LJxUyY3BGrLMQERERiX+2JEgfdGwz2WT66OpkzU1ObCE/XRuepb6uBp/ZxfCOtQD8d/hyxmcYlDq8uP1VVBlZHCm4iIVTinFYLTEOWkREROSzUzM5loJdGBuepOngVrb6c3DZbYzqWIMnUI3XcHJj8G5SnRbuLNiOzWyQFGrBFvWz3j2XHQxmwbh8zh+RrVviRERERPpK5nCIBI/drrnJAkT2LKd+z/sciuQyybcWuxFgc3QIq2zncFHaERzhDsKRCJtS53DBtLHkpGrhbBERERlY1EyOlUgYtj5Ly941bPFlYbXZGebfSo53D2HDzJLQd2i3ZXF3wVac5gj2sBdXqJntqeeyNjqOC0dlM39cnhrJIiIiIn3JUwQm87GzkY9emdxeDZFQ38clsddQTuOGl6j0OxlmqiA9UIXfsPFv4Zv55/w9WIiQ4q9hs2U8+WPPYUqJFtwTERGRgUfN5FgwDNj1Mu07lrHd6yFidlAaPkRJ+wYAHgjfwA7zSP6lcDOpljCWaAB3oJp9KVNZYZrO7BHZLJxUiEWz1URERET6lqcIHG4IdPTe7kwDRyoYUc1NTkSBTto+eJq6piZMFhuD29cB8NPw1czNbSfDGsTjr+SwkUfLoAVcPLFQF4WIiIjIgKRmciwcfIfOLS+yq8NBJ0kUmhoZ2rwKgP8JX8IrnMO/FG4hwxrEZIRJ91VQ5RrNq6bzmDYkh69MLcJm0R+diIiISJ9LSoeUXPC39d5uMmnURaIyDII7XqbhwBaqyWF852qshHk3MpbDrnHMSGnEGWrFHzazLX0uC6aPxu20xTpqERERkc9FHcm+VrMF34Y/sr85QmMklXxrFyOblmMmyquRGfwicgX3FGwlz+4DI0qG7zCNzhL+apnL6NJ8rpxegtOmRTpEREREYsJkguyREOo6dp8W4UtIRs1m6jf9jcqQm1HGPjyhetoNF//BYr6WcwBzNESSv55N9imMnjybEbmpsQ5ZRERE5HNTM7kvNR/E/8GTHKproiKSTrYzwuimN7BFA2yKDuN7oVu4PX8ng52dYBik+4/Qac3gZet8ioqKubashBSHNdZZiIiIiCS2o1cgG9Hjb++oOf4ifRJ/fC00rf0j9W1eXFaD4vZNAPwg9DW+mleH0xQmzV/JfooJj7iYC8bkxjhgERERkVOjZnJf6Wwg9MHjVFUeYl8ol0yXhVFNb+IMt1MZzeafgndyY+4BJiS3AJASrCdksvOa/Qu484dyXVkpaS57jJMQERERETyFYE+GoLf3dmcaOD3dTea2IzEJTfpQNErXpj/TVLmbRnMuo9vfxfLh3YZmTxHDnO24Qs20he3szZ3PJdOG47DqDkMREREZ2NRM7guBTsLrn6T6wHZ2h/NIc9kY0fIO7mAdbYaLG0J3Mz+rgdnuOgCSQi1Yo37esp9HJGc815aVkuN2xjgJEUlECxcupKSkBKfTSX5+Ptdffz3V1dU9+w8dOoTJZDrmsXbt2l7nee655xg1ahROp5Px48fz6quv9nUqIiKnT0pe9+zkQPux+zQ3OWFEK96nbtsyKsOZjAlvxx1upsHw8DvLV1iUWYElGsAeaGKL6yxmTJ9FYVpSrEMWEREROWVqJp9pkRDRzX+kbvdqdgVzSE1yMqRzA1m+AwQNC7eEvssIT5QvplUCYA97cQWbWWM7i/qsMq4pK6U4wxXjJEQkUc2ZM4c//elPlJeX88ILL7B//36+8pWvHHPcm2++SU1NTc9j6tSpPftWr17N1VdfzU033cSmTZtYtGgRixYtYvv27X2ZiojI6WOxQtYICHQcu09zkxNDZz11a5+hoTNMps1HQWf3v2n3h7/OtXmVWIji8VWy2zSEpLELKBuSGeOARURERE4PDeA9k6JRjB0vUb91Gbv86TicLgr9eyjs2ALAfaGbwZXFdVk7MZnAEg3gDlSxyTaVvRnnc+2MUoblpMQ4CRFJZN/97nd7npeWlnLvvfeyaNEiQqEQNttHK9FnZmaSl5d33HM88sgjXHTRRdx1110A/PCHP2T58uU8+uij/PrXvz6zCYiInCnpg8CIgGF0L8p3VM/c5FoI+8Gqu8viTiRM27o/0lxzgA5rAWWtr2LG4Jnw+ZRmpZBrqyUlUE9jxEV1ySVcM3kwFrPpxOcVERERGQB0ZfKZdGAljRteZI/XhcmeSm6khsEt7wLwSPhL7HKM55u5uzCbwBwNk+6rYK9tNBvS5vOVGYMZV+iJcQIiIh9pbm7mqaeeYtasWb0aydA9DiMnJ4fZs2fz17/+tde+NWvWMHfu3F7b5s+fz5o1az7xtQKBAO3t7b0eIiL9iqcILA6IBHpvd7i7R2BgaG5ynAruX0XDzneoIpfRgU2kRLvXQHnNcRHnptZijfgwBdrZ7j6Xc8tmkJ6sdU9EREQkfqiZfKZUbaD5/T9yoA38tjQyTe0Mb1yBGYM/R2bzgnk+d+Zvw2Y2wIiS7jvMEWsJq1IXcMnUoUwtzYh1BiIiANxzzz0kJyeTmZlJRUUFf/nLX3r2paSk8PDDD/Pcc8/xt7/9jdmzZ7No0aJeDeXa2lpyc3uvXp+bm0ttbe0nvuaDDz6Ix+PpeRQXF5/+xEREToW7sLtx7Nfc5ITSWknt2j9R77NQaGmhoKucqGHi36Nf57rcw5iI4vYdYZd1JHmTLmJcoTvWEYuIiIicVmomnwlN+2ld/QQVDW00W7LIsAYZ1fgGNiPI+9FRPGRczz2FW3FZum+NTPdV0GzJ5M2kBZw3YSTnDM+KdQYiEsfuvffe4y6a9/HH7t27e46/66672LRpE8uWLcNisfC1r30NwzAAyMrK4o477qCsrIzp06fz05/+lOuuu46HHnrolGK87777aGtr63lUVlae0vlERE47uwvSSz9hET7NTY5L4SCNa56itaGakCOdwS2rAfht5GLKcqOkWMK4/TXURDy0DF7IvPHFmEwabyEiIiLxRTOTT7eOOjpW/5aqqkqqTMVkOWBkwzKckU72R/P5bvjb3Fm8kwxrEAB3oAYfTpY55jFx/Hjmj8vTm04ROaPuvPNObrjhhk89ZsiQIT3Ps7KyyMrKYsSIEYwePZri4mLWrl3LzJkzj/u1ZWVlLF++vOfzvLw86urqeh1TV1f3iTOWARwOBw6H4zNkIyISQ1kjoGr9sds9H16Z3FkHIV/fxiRnTNeuN2jau5Zacz4TOt/HZXSxO1rMzuSzuNJVgT3sJRz0UZ55EfPPmkyS3RLrkEVEREROOzWTTyd/O11r/5eaAzs4RBHpLivDm94kNdRIk5HKP4fu5BuFByi0dwHgCjZhRMIsd1xEyejpXDapQItziMgZl52dTXZ29uf62mg0CnTPNP4kmzdvJj8/v+fzmTNnsmLFCm6//faebcuXL//EZrSIyIDhKQSTBaJhMH/sbbUjBVyZ0NUEbRWA3t8NdEbjXmo/eIG6YBKDrLXkBQ4SNCw8ZFrM4qxKTEaUZN8RNtsnMmLGPAZlJcc6ZBEREZEzQs3k0yUcwL/+99Tsfp99RgFpyUkMbltDhr+CgGHj5uCdLMprYkRS962QjnA7jlArK6znkzL8HK6YVozDqqsXRKT/eP/991m3bh2zZ88mPT2d/fv382//9m8MHTq0pxH85JNPYrfbmTx5MgB//vOfefzxx/ntb3/bc57bbruN8847j4cffphLLrmEZ555hvXr1/PYY4/FJC8RkdPGUwyOVAh0fLjo3seklXQ3k1srPhp7IQNTsIuad39PW0szNmcOJY0rAPjvyJe4qKADm9nA7TvCkWg24dGLmD0i9wQnFBERERm4NDP5dIhGCW55npotb7IvlI072UWBdwf5nTsA+G7om0zONpiW0giANeIjJVDHWutUgkO/wNVlpSQ71NcXkf7F5XLx5z//mQsvvJCRI0dy0003MWHCBFatWtVrBMUPf/hDpk6dSllZGX/5y1949tlnufHGG3v2z5o1i6effprHHnuMiRMn8vzzz/PSSy8xbty4WKQlInL6JKVDSh74247dp7nJ8cEwaNv8F1oPbqbRVsCQtjU4CbAxOgxv2iiKHF04wu34AiEO5c9n3oxx2Cz6L5aIiIjEL3UwT5VhECl/g5p1f+FAwENSipusQCWDWtcA8GDoapxpucz1HALAHA2R5qtks3kMtcWXcMNZQ0hPtscwARGR4xs/fjwrV6781GMWL17M4sWLT3iuK664giuuuOJ0hSYi0j+YTJA9EhrLj913dG6ytwHCnzwaSPq3UM026ja8Qp3hYXD0ELmhI3QZDn5juZrr02oxGWGSumrY6JrB5JlzyUl1xjpkERERkTNKvzY/RUblB1SvfpoKrxWLK520SBNDG1diAp4Oz2GPawpfyTgEgMmIkuE7xF7zIPYULuKqmSPI8+gNp4iIiMiAlVbc/dGI9t5ud0Hyh/PpvQ19G5OcHv42qt75Pe3eTlIcNkra1gHwcPRKFuY1YzKBx1fJIfJJmvglppRmxDhgERERkTNPzeRT0VBOzTuPU93qI+TKIdXUxfCGZdgI805kPC/aF3JT7l5MJsAwSPcd4gi5bMy6jMvPGqOFOUREREQGOk8R2FwQ9B67L+1jVyfLwGIYNHzwPJ1Vu2h3FDKo+T3shFkVmUB6Zj5p1iBJwWbagybqS7/IF6aMwGTSQosiIiIS/9RM/rzaq6l9+zHq6mppdxSSYo0yomEZSdEudkWL+U/LjXwrfzcWkwGAx3+EFiOFNWmXMn/mZMYUuGOcgIiIiIicspQ8cGVAoP3YfT3N5Ma+jUlOmf/Q+zRufZ16UxalgXKyI7W0Gsn81bmQqanNmKMhrL4G9qaWMXPW+aQ6bbEOWURERKRPqJn8efhaaVj1PzRU7KHeXkKq08LQhjdJDTdTZ6Rxr/FtlhTsw2nuvt0xJVCPP2Li78nzmTljBtNK00/wAiIiIiIyIFiskDkcAh3H7js6NznYAf7jNJulXzI6G6h85w+0+yOk26MM6twIwMPGtXwxpwEMg9SuCg6ZS8mb8SVG5OkiEREREUkcA6aZvHTpUsaMGcP06dNjG0jIT8u7j9O4byPV1iLcThulze+SGazCazi4LXwbXy+sxG0JAeAMtWIKdfKu83xGT5vDeSNydAuciIiISDzJGARGBAyj93ZbEqTkdj9v2tfnYfUHr7zyCiNHjmT48OH89re/jXU4JxaNUPXe03Q1HCTgyqe4+V0sRHklchajcpNxmqO4go20hOy0D7+Mc8YNinXEIiIiIn1qwDSTlyxZws6dO1m3bl3sgohGaF/3R+p3vk0leaQmu8jv2Ep+VzkRw8T3wt9iYUE7OTY/ALaIF2eggTW2MnImLeCicXmYzWoki4iIiMQVTzFYHBAJHLvv6KiLBGwmh8Nh7rjjDlauXMmmTZt46KGHaGpqinVYn6pt9yradr9NkzWPws5tZEWbqDPS2JA6hyHOTizRACZfEwczz+W8s2fjsFpiHbKIiIhInxowzeSYMwy8216hZsPLVEYySU51k9l1gEHt3c3tH4avZ3KejcHOTgAs0SCpXVVsNE/AOm4Ri6YUYbXo2y0iIiISd9yF4HAff5RF+mBwZYI7v+/jirEPPviAsWPHUlhYSEpKCgsWLGDZsmWxDusTRVqrqF79DG1BK1nWLoZ2bQHgv03XMjejsXu8hfcwB+0jGHr2IgrTkmIcsYiIiEjfU3fzMwrsf4/q1X+kNpiEMzUDT7COIc3vAPC/4QWkZBUz3tUCgMkIk9Z1iJ2mYXSOuoIryobitOmqBREREZG4ZHdBeunxF+HLGAKDz4NB5/R9XKfonXfe4dJLL6WgoACTycRLL710zDFLly5l0KBBOJ1OysrK+OCDD3r2VVdXU1hY2PN5YWEhVVVVfRH6yYuEOLzqSfwt1RjJ2RQ3vQfAM5E5zMgzYTZBSqCO+kgK4bFfZsawghgHLCIiIhIbaiZ/BqGa7VS89VsavBHMqbkkR9oZ0vAmNsIsi0zloKeMs9313QcbUTK6DrHfKKBq6BV8ZeZIUhzW2CYgIiIiImdW1vDjj7kYwLxeLxMnTmTp0qXH3f/ss89yxx138MADD7Bx40YmTpzI/Pnzqa+v7+NIT13Dltfx7n+fVmcheW2bSDfaOBTNpS59Gtm2ANaIj5Cvjer8uVx41nQsGl0nIiIiCUrN5BOItlRwePmvaW1rJZRShJMgg+uX4zJ8bIkO4VXXIi5O//AKC8MgzV9JVSSNfcVX8KXZk8hMccQ2ARERERE58zxFYDJDNBzrSE6bBQsW8KMf/YjLL7/8uPt//vOfc/PNN3PjjTcyZswYfv3rX+NyuXj88ccBKCgo6HUlclVVFQUFn3xFbyAQoL29vdejLwTq91H3/vO0GUlkRZsYGthJxDDxpO2rzPC0ghHF1VlJhWss48+5jDSXvU/iEhEREemP1Ez+FEZXM4eW/T866g7hTS7FYYXShpWkRVs4YmTxK9tirsiuwPThhQmpgVpaQ1Z25C7k4nPLKNAcNREREZHE4C7qnpsc6Ih1JH0iGAyyYcMG5s6d27PNbDYzd+5c1qxZA8CMGTPYvn07VVVVdHZ28tprrzF//vxPPOeDDz6Ix+PpeRQXF5/xPIxgFwdXPkGgswmbK43SltUA/J+xgLNzu38xkOKvoZ40nJOuZGxRxhmPSURERKQ/UzP5kwS7qHjz13RWbqPFNQiHzUph47vkhKpoN5L4kekbXJNXxdE73FzBZoIBP1vS53P+eRcyNDsltvGLiIiISN9xZUBKzvEX4YtDjY2NRCIRcnNze23Pzc2ltrYWAKvVysMPP8ycOXOYNGkSd955J5mZmZ94zvvuu4+2traeR2Vl5RnNAaDyg5cIHNlCZ1IxWU3rceNlZ7QEU/ZIki1h7KFOAv4uGksXcN60CZhMGm8hIiIiiU3DfI8nEqbqnSdp37uaRnsxSU4nOS0bKfbvIWRYeMD4BlcUNmEzGwDYwx2YfU1sSJnDpHO+yLhCT4wTEBEREZE+ZTJB9iho3BPrSPqVhQsXsnDhws90rMPhwOHouxFx7RVbadn0Mu1mD2mhGoaG9xIwrLyctIhzXZ2YjAgO7xH2pk5jxnlfJMmuBbVFREREdGXyPzIM6j54npZtr9NoySXJlUxaxx6Gdm4A4MHo9cwtDOGyRACwRvwkdVWzJWkaJbOuoGzIJ19tISIiIiJxLK0EMIFhxDqSMy4rKwuLxUJdXV2v7XV1deTl5cUoqs8u6mvn8NtPEvR7cTiTGN7WPd7iCS5lVrYfgOSuKmoteeTMvIrSrNRYhisiIiLSb6iZ/A+adrxJw7rnaTLcOFPSSPHXMLz17wA8FrmUMQUeMqxBAMzRECnew+y0jsE9/RouGFOgW99EREREEpW7EGwuCHbGOpIzzm63M3XqVFasWNGzLRqNsmLFCmbOnBnDyD4Dw2D/358lWr8bf0oJ2Y3v4yLA+ugIsnILsZoM7KE2ugIhvMMWMmPsiFhHLCIiItJvaMzFx7Qf2ED1qidpD5mxeXJwhloZ2rgCK1FeiZyFI2c4hfbuRVVMRhRP1yH2mUqJTr6OBZMHYzarkSwiIiKSsFLzISm9exE+x8C/krWzs5N9+/b1fH7w4EE2b95MRkYGJSUl3HHHHSxevJhp06YxY8YMfvGLX+D1ernxxhtjGPWJNexZi3fnMjps2aR4DzM4ehiv4WCN+yKmOXyYo2FsndVUZp7L2efOw2bR9TciIiIiR6mZ/KGuuv0cevN/8HV1gmcI9qiP0vo3ceFnXXQEFZmzmexq6z7YMPB0HaIymkXbuOv4ctkYvckUERERSXQWK2QNh4PvAAWxjuaUrV+/njlz5vR8fscddwCwePFinnjiCa688koaGhq4//77qa2tZdKkSbz++uvHLMp3spYuXcrSpUuJRCKndJ7jCXQ0cuTvfyAUDuNMsjCmeTWY4P/Mi5ia5gPA5a2gxl5C6TlXk+12nvYYRERERAYyNZOBQFsd+157lFBrDSHPUGymKPk1b5FhtHIwmss77oXMSm3rOT7VV0V92Ent8Ku47JypOG1ajENEREREgIzBcODt7rnJA3z82fnnn49xgvnPt956K7feeutpfd0lS5awZMkS2tvb8XhO48LW0Sj7Vv4emg8Scg+huG4FDlOYd6ITGVKQgckUxhFopjNsxpjyZSYNKz59ry0iIiISJxL+ctqIv5Py15YSadhDl3swFouZrPr3KIxW02yk8IzrGmalf9RIdgUa6AyEqSi+nAVzzsXttMUwehERERHpV9xFYLFDJBDrSOQfVG5ZSXD/O3iTCnC27qPE6H6/fyBjNm5bGHMkgNlbR2P+ucyaea7WQhERERE5joRuJhvhILtef4xIxQa8yaVYbXZSGzczNLSHgGHlf2yLOS/rowVUnKFWQl2tHMidz5wLLyYrxRHD6EVERESk3/EUgsMN/vZYRyIf09FYSf3aZwgYFqyEmeRbC8CfbIsYmRoEw8DVWUGdazijz7uK1CR7jCMWERER6Z8St5lsGOx+6w+E9r1Fp6sQi8OFo2Uv4/wbAFhqvpZz8kI9dyfawl5MnbUcSD+HGfO+SlFGcgyDFxEREZF+yZ4M6SUQUDO5v4iGQ+x980lMHdVEk/MpaXoXi8ngDaOM0bnd7+md/gbajCRcU77KsKKcGEcsIiIi0n8lbDN539qX8W17mS5bBtYkN9bOaiZ2rALgdyxkSoETi6l7RpwlGsTRWcmBlCmMuvBrDMs9jbPbRERERCS+ZI2ASDDWUciH9r3/NzjyAb7kEmxNuyiggRojnY7sKdjNUawRH4avmbaSLzBjelmswxURERHp1xKymXx427u0vf80AZyYU7Ix+1sY2/wmFpPBy9HZFOQX4jBHATAZEVwdBznsGEHBeV9nwiBdqSAiIiIin8Jd2L34XjQc60gSXmPlHto3/Zmg2YUR6mJ6aB0AryVdSmFSGAwDe0cFDaljmDznyzisWlhbRERE5NMkXDO55sAO6lb9L5FwCFLzMYW8DG1YjssUYG10DORPwG398I2/YZDSeZAqcwHJM2+ibFRpbIMXERERkf7PU9w9NznQEetIBqSlS5cyZswYpk+ffkrnCQV8HHjrCUy+ZqKuLEa2dN+F+DLnMTKre+0Tp6+GdrOHrJnXUpCVdqqhi4iIiMS9hGomN9ZWcnj5/8PiayTsKcVkhMmvfZss2tgXLeRIznlk2UPdBxsGKV0VNETdGFNv4LzJY7Sis4iIiIicmCsDUnK0CN/ntGTJEnbu3Mm6detO6Tw733kBa91WAqml2Bu2kW1q5aCRhyV3FGYTWMNeIv4OAsMuYfL4CacpehEREZH4llDN5IrNK3C0HSCQNhSAlNo1lFJNg+FhXcYXu291+1CSv5b2oBnv2Ku5YGYZZrMaySIiIiLyGZhMkD0KQt5YR5KwKvZsJrDjbwTtaQS8bUyLbCZsmFmTOp90exSMKLaOCpozJjNtzmV6ry8iIiLyGSVUM9mIRjBMVkwmC5a6LYyL7sFn2Hkj9UsMSo32HOcINBPweWkatogL58zDbk2ob5OIiIiInCpPcfdHw4htHAmqZvObWEPthKweJrevBOBly4UMTrcD4Ow8Qrsth5JzryctxRXLUEVEREQGlITskgYaD1IWXk/UMPFC0pcZmm7t2WcLdWB4G6gvmsd5X/gySXYtwiEiIiIiJ8lTBDYXBHV1ciwYkSBRbKQ2biDN5GWXUYondxAA1mAH4VAA09hFjBw2LLaBioiIiAwwCddMbvVHOd+/AoAXbJcwNDulZ58l4sPScYS67FmUXfw1PMn2WIUpIiIiIgNZaj4kpUNAc5NjpdUfYpKxi4Bhozx9DklWMEXDWDsrac87i2nnXKw1UUREREROUkI1k1vrK5kVfh+AN0yzKcjN69lnjoSwtx+iwTORCQtuJseT8kmnERERERH5dBYrZA2HQEesI0lIXd4OZoW7F/B73f4FclNtANg7K+lIKmLEBdeT5LDFMkQRERGRASlhmslVB3Yx+eBvcZpCvM84kvJHfbTQhhHF0XGApqQhDJ53C0W5WbENVkREREQGvozBEA2f+Dg5rSLhMLlH3sBlCrDZGE5GTiEAFn8L4YhB8pQrKS4sinGUIiIiIgNTwjSTG567nQxTB3uMInx5ZdgsRxvJBkntB2mz5ZAz5xaGDyqJbaAiIiIiEh/cRWB1QDgQ60gSygdP/ztj2U+n4aQu+2ysZjBFQti8NfhKzmXijPNjHaKIiIjIgJUwzeTSrz/BGut0apOG4bB9lLbTW4nXlETKzK8zfszYGEYoItJ/BQIBJk2ahMlkYvPmzb32bd26lXPOOQen00lxcTE/+9nPjvn65557jlGjRuF0Ohk/fjyvvvpqH0UuIhJDnkJwpGrUxUlaunQpY8aMYfr06Sf9tUY0SlLtegDesZyFO6l7lIWj4zAdqUMZe8F1WK1aYFtERETk80qYZnJ6dj72KVeTYon2bLN11RMMRTBPupYp02bFMDoRkf7t7rvvpqCg4Jjt7e3tzJs3j9LSUjZs2MBDDz3ED37wAx577LGeY1avXs3VV1/NTTfdxKZNm1i0aBGLFi1i+/btfZmCiEjfsydDeikYkVhHMqAsWbKEnTt3sm7dupP+WpPZzMTv/Y1X0q8j29l9J6K1q5GgyU7mzGvJytI4OxEREZFTkTDN5H9k8beCv5XQqEXMOHeBVnIWEfkEr732GsuWLeM///M/j9n31FNPEQwGefzxxxk7dixXXXUV3/nOd/j5z3/ec8wjjzzCRRddxF133cXo0aP54Q9/yJQpU3j00Uf7Mg0RkdjIGgEWe6yjSCgms5msnEJMZhOmcACzr4HIsC8wZmJZrEMTERERGfASsplsDnqxeGvwDbqQ6fOvwmJJyG+DiMgJ1dXVcfPNN/P73/8el8t1zP41a9Zw7rnnYrd/1CiZP38+5eXltLS09Bwzd+7cXl83f/581qxZ84mvGwgEaG9v7/UQERmQ3IXgcMc6igRlYO84jC9jNBMuuEoXj4iIiIicBgnXRTVHQ9g6DtNVcBZTLv4nHDZbrEMSEemXDMPghhtu4JZbbmHatGnHPaa2tpbc3Nxe245+Xltb+6nHHN1/PA8++CAej6fnUVxcfCqpiIjEjqcYnGomx4Ij2ErImkLRuV8jJSU11uGIiIiIxIWEayZbon58mWMZf8m3SE5OjnU4IiJ97t5778VkMn3qY/fu3fz3f/83HR0d3HfffX0e43333UdbW1vPo7Kyss9jEBE5LVwZkJIT6ygSUtiShG3MFxk0YkKsQxERERGJG9ZYB9CXTCYzneljGXHxt0lLz4x1OCIiMXHnnXdyww03fOoxQ4YMYeXKlaxZswaHw9Fr37Rp07j22mt58sknycvLo66urtf+o5/n5eX1fDzeMUf3H4/D4TjmdUVEBiSTCbJHQdgf60gSi8WGP38qU867PNaRiIiIiMSVhGomD552EZHJF5KVVxLrUEREYiY7O5vs7OwTHvfLX/6SH/3oRz2fV1dXM3/+fJ599lnKyroXMZo5cybf//73CYVC2D4cG7R8+XJGjhxJenp6zzErVqzg9ttv7znX8uXLmTlz5mnMSkSkHxs+DyKhWEeRUIbO/ip2pwuHIynWoYiIiIjElYRqJqdn58c6BBGRAaOkpPcv3lJSUgAYOnQoRUVFAFxzzTX8+7//OzfddBP33HMP27dv55FHHuG//uu/er7utttu47zzzuPhhx/mkksu4ZlnnmH9+vU89thjfZeMiEgsJaXFOoKEk11QGusQREREROJSws1MFhGR08fj8bBs2TIOHjzI1KlTufPOO7n//vv553/+555jZs2axdNPP81jjz3GxIkTef7553nppZcYN25cDCMXEZH+aunSpYwZM4bp06fHOhQRERER+QcmwzCMWAdxMtrb2/F4PLS1teF2a2VsEUkMiV77Ej1/EUlMiV77Ej1/EUlMqn0i0t/pymQREREREREREREROSE1k0VERERERERERETkhGLSTH7llVcYOXIkw4cP57e//W0sQhARERERERERERGRk2Dt6xcMh8PccccdvPXWW3g8HqZOncrll19OZmZmX4ciIiIiIiIiIiIiIp9Rn1+Z/MEHHzB27FgKCwtJSUlhwYIFLFu2rK/DEBEREREREREREZGTcNLN5HfeeYdLL72UgoICTCYTL7300jHHLF26lEGDBuF0OikrK+ODDz7o2VddXU1hYWHP54WFhVRVVX2+6EVERERERERERESkT5x0M9nr9TJx4kSWLl163P3PPvssd9xxBw888AAbN25k4sSJzJ8/n/r6+lMOVkRERERERERERERi46SbyQsWLOBHP/oRl19++XH3//znP+fmm2/mxhtvZMyYMfz617/G5XLx+OOPA1BQUNDrSuSqqioKCgo+8fUCgQDt7e29HiIiIiIiIiIiIiLSt07rzORgMMiGDRuYO3fuRy9gNjN37lzWrFkDwIwZM9i+fTtVVVV0dnby2muvMX/+/E8854MPPojH4+l5FBcXn86QRUREREREREREROQzOK3N5MbGRiKRCLm5ub225+bmUltbC4DVauXhhx9mzpw5TJo0iTvvvJPMzMxPPOd9991HW1tbz6OysvJ0hiwiIiIiIv3I0qVLGTNmDNOnT491KCIiIiLyD6yxeNGFCxeycOHCz3Ssw+HA4XCc4YhERERERKQ/WLJkCUuWLKG9vR2PxxPrcERERETkY07rlclZWVlYLBbq6up6ba+rqyMvL+90vpSIiIiIiIiIiIiI9KHTemWy3W5n6tSprFixgkWLFgEQjUZZsWIFt95662l5DcMwALQQn4gklKM172gNTDSq/SKSiFT7VftFJPEkeu0Xkf7vpJvJnZ2d7Nu3r+fzgwcPsnnzZjIyMigpKeGOO+5g8eLFTJs2jRkzZvCLX/wCr9fLjTfeeFoC7ujoANBCfCKSkDo6OhLyll/VfhFJZKr9qv0ikngStfaLSP9nMk7y111vv/02c+bMOWb74sWLeeKJJwB49NFHeeihh6itrWXSpEn88pe/pKys7LQEHI1Gqa6uJjU1FZPJdFJf297eTnFxMZWVlbjd7tMST3+kPOOL8owvnzdPwzDo6OigoKAAs/m0TigaED5v7dffq/iTKLkqz/ii2v/5qPZ/OuUZX5Rn/FHtF5F4ddJXJp9//vknvN3i1ltvPW1jLf6R2WymqKjolM7hdrvj/h8uUJ7xRnnGl8+TZyJfmXCqtV9/r+JPouSqPOOLav/JUe3/bJRnfFGe8Ue1X0TijX7NJSIiIiIiIiIiIiInpGayiIiIiIiIiIiIiJxQQjWTHQ4HDzzwAA6HI9ahnFHKM74oz/iSKHn2F4ny/U6UPCFxclWe8SVR8uwvEuX7rTzji/KMP4mUq4gklpNegE9EREREREREREREEk9CXZksIiIiIiIiIiIiIp+PmskiIiIiIiIiIiIickJqJouIiIiIiIiIiIjICamZLCIiIiIiIiIiIiInFHfN5HfeeYdLL72UgoICTCYTL730Uq/9hmFw//33k5+fT1JSEnPnzmXv3r2xCfYUPPjgg0yfPp3U1FRycnJYtGgR5eXlvY7x+/0sWbKEzMxMUlJS+PKXv0xdXV2MIv58fvWrXzFhwgTcbjdut5uZM2fy2muv9eyPhxyP56c//Skmk4nbb7+9Z1s85PqDH/wAk8nU6zFq1Kie/fGQ41FVVVVcd911ZGZmkpSUxPjx41m/fn3P/nipRf2Fav9H4uHnKBFrf7zWfVDtV+0/c1T7PxIPP0eq/d3iJU/VftV+EYlfcddM9nq9TJw4kaVLlx53/89+9jN++ctf8utf/5r333+f5ORk5s+fj9/v7+NIT82qVatYsmQJa9euZfny5YRCIebNm4fX6+055rvf/S4vv/wyzz33HKtWraK6upovfelLMYz65BUVFfHTn/6UDRs2sH79ei644AIuu+wyduzYAcRHjv9o3bp1/M///A8TJkzotT1ech07diw1NTU9j3fffbdnX7zk2NLSwtlnn43NZuO1115j586dPPzww6Snp/ccEy+1qL9Q7VftH2g5fly8131Q7T8qXmpRf6Har9o/0HL8ONX++MhTtV9EEpIRxwDjxRdf7Pk8Go0aeXl5xkMPPdSzrbW11XA4HMYf//jHGER4+tTX1xuAsWrVKsMwuvOy2WzGc88913PMrl27DMBYs2ZNrMI8LdLT043f/va3cZljR0eHMXz4cGP58uXGeeedZ9x2222GYcTPn+cDDzxgTJw48bj74iVHwzCMe+65x5g9e/Yn7o/nWtQfqPbHx8/RP4rX2h/vdd8wVPuPiuda1B+o9sfHz9E/Uu0fuHmq9neL51okIokr7q5M/jQHDx6ktraWuXPn9mzzeDyUlZWxZs2aGEZ26tra2gDIyMgAYMOGDYRCoV65jho1ipKSkgGbayQS4ZlnnsHr9TJz5sy4zHHJkiVccsklvXKC+Prz3Lt3LwUFBQwZMoRrr72WiooKIL5y/Otf/8q0adO44ooryMnJYfLkyfzmN7/p2R/Ptag/iufvt2p/t4GcYyLUfVDth/iuRf1RPH+/Vfu7DeQcVfvjJ0/VfhFJRAnVTK6trQUgNze31/bc3NyefQNRNBrl9ttv5+yzz2bcuHFAd652u520tLRexw7EXLdt20ZKSgoOh4NbbrmFF198kTFjxsRVjgDPPPMMGzdu5MEHHzxmX7zkWlZWxhNPPMHrr7/Or371Kw4ePMg555xDR0dH3OQIcODAAX71q18xfPhw3njjDb75zW/yne98hyeffBKI31rUX8Xr91u1P63X8QMxx0So+6Dar9ofG/H6/VbtT+t1/EDMUbVftf/o5wMtVxGRo6yxDkBO3ZIlS9i+fXuvGVTxZOTIkWzevJm2tjaef/55Fi9ezKpVq2Id1mlVWVnJbbfdxvLly3E6nbEO54xZsGBBz/MJEyZQVlZGaWkpf/rTn0hKSophZKdXNBpl2rRp/OQnPwFg8uTJbN++nV//+tcsXrw4xtFJvFDtH9gSpe6Dar9qv5xOqv0Dm2q/ar+ISDxIqCuT8/LyAI5ZJbaurq5n30Bz66238sorr/DWW29RVFTUsz0vL49gMEhra2uv4wdirna7nWHDhjF16lQefPBBJk6cyCOPPBJXOW7YsIH6+nqmTJmC1WrFarWyatUqfvnLX2K1WsnNzY2bXD8uLS2NESNGsG/fvrj688zPz2fMmDG9to0ePbrn1r54rEX9WTx+v1X7B36OiVr3QbU/nmpRfxaP32/V/oGfo2q/av9RAzFXEZGjEqqZPHjwYPLy8lixYkXPtvb2dt5//31mzpwZw8hOnmEY3Hrrrbz44ousXLmSwYMH99o/depUbDZbr1zLy8upqKgYcLn+o2g0SiAQiKscL7zwQrZt28bmzZt7HtOmTePaa6/teR4vuX5cZ2cn+/fvJz8/P67+PM8++2zKy8t7bduzZw+lpaVAfNWigSCevt+q/fFT+xO17oNqfzzUooEgnr7fqv2q/QMtz+NR7R/4tUhEpEeMFwA87To6OoxNmzYZmzZtMgDj5z//ubFp0ybj8OHDhmEYxk9/+lMjLS3N+Mtf/mJs3brVuOyyy4zBgwcbPp8vxpGfnG9+85uGx+Mx3n77baOmpqbn0dXV1XPMLbfcYpSUlBgrV6401q9fb8ycOdOYOXNmDKM+effee6+xatUq4+DBg8bWrVuNe++91zCZTMayZcsMw4iPHD/Jx1d2Noz4yPXOO+803n77bePgwYPGe++9Z8ydO9fIysoy6uvrDcOIjxwNwzA++OADw2q1Gj/+8Y+NvXv3Gk899ZThcrmMP/zhDz3HxEst6i9U+1X7B1qOxxOPdd8wVPtV+88c1X7V/oGW4/Go9g/sPFX7RSQRxV0z+a233jKAYx6LFy82DMMwotGo8W//9m9Gbm6u4XA4jAsvvNAoLy+PbdCfw/FyBIzf/e53Pcf4fD7jW9/6lpGenm64XC7j8ssvN2pqamIX9Ofw9a9/3SgtLTXsdruRnZ1tXHjhhT1vKA0jPnL8JP/4xjIecr3yyiuN/Px8w263G4WFhcaVV15p7Nu3r2d/POR41Msvv2yMGzfOcDgcxqhRo4zHHnus1/54qUX9hWr/73qOiYefo0St/fFY9w1Dtf/j4qUW9Req/b/rOSYefo5U+7vFS56q/R+Jl1okInKUyTAM48xe+ywiIiIiIiIiIiIiA11CzUwWERERERERERERkc9HzWQREREREREREREROSE1k0VERERERERERETkhNRMFhEREREREREREZETUjNZRERERERERERERE5IzWQREREREREREREROSE1k0VERERERERERETkhNRMFvkHN9xwA4sWLYp1GCIi0odU+0VEEovqvoiIyOdjjXUAIn3JZDJ96v4HHniARx55BMMw+igiERE501T7RUQSi+q+iIjImWMy9C+oJJDa2tqe588++yz3338/5eXlPdtSUlJISUmJRWgiInKGqPaLiCQW1X0REZEzR2MuJKHk5eX1PDweDyaTqde2lJSUY255O//88/n2t7/N7bffTnp6Orm5ufzmN7/B6/Vy4403kpqayrBhw3jttdd6vdb27dtZsGABKSkp5Obmcv3119PY2NjHGYuIiGq/iEhiUd0XERE5c9RMFvkMnnzySbKysvjggw/49re/zTe/+U2uuOIKZs2axcaNG5k3bx7XX389XV1dALS2tnLBBRcwefJk1q9fz+uvv05dXR1f/epXY5yJiIh8Vqr9IiKJRXVfRETkxNRMFvkMJk6cyL/+678yfPhw7rvvPpxOJ1lZWdx8880MHz6c+++/n6amJrZu3QrAo48+yuTJk/nJT37CqFGjmDx5Mo8//jhvvfUWe/bsiXE2IiLyWaj2i4gkFtV9ERGRE9MCfCKfwYQJE3qeWywWMjMzGT9+fM+23NxcAOrr6wHYsmULb7311nFnse3fv58RI0ac4YhFRORUqfaLiCQW1X0REZETUzNZ5DOw2Wy9PjeZTL22HV0xOhqNAtDZ2cmll17Kf/zHfxxzrvz8/DMYqYiInC6q/SIiiUV1X0RE5MTUTBY5A6ZMmcILL7zAoEGDsFr1YyYikghU+0VEEovqvoiIJCLNTBY5A5YsWUJzczNXX30169atY//+/bzxxhvceOONRCKRWIcnIiJngGq/iEhiUd0XEZFEpGayyBlQUFDAe++9RyQSYd68eYwfP57bb7+dtLQ0zGb92ImIxCPVfhGRxKK6LyIiichkGIYR6yBEREREREREREREpH/Tr0tFRERERERERERE5ITUTBYRERERERERERGRE1IzWUREREREREREREROSM1kERERERERERERETkhNZNFRERERERERERE5ITUTBYRERERERERERGRE1IzWUREREREREREREROSM1kERERERERERERETkhNZNFRERERERERERE5ITUTBYRERERERERERGRE1IzWUREREREREREREROSM1kERERERERERERETmh/w8p6xbHuHIR/wAAAABJRU5ErkJggg==", "text/plain": [ "
    " ] @@ -3572,7 +3588,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 8, "id": "b47930f9-380d-4da8-ada9-fd7617e2d55c", "metadata": { "tags": [] @@ -3580,7 +3596,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNQAAAGsCAYAAAAVAfqCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABceklEQVR4nO3dfVxUdd7/8TeIA2QOiC4zcoXEVutNad4VTjeuJeto2OrGdq1F6W4kawtt6P603MslwzYL7++StUzsEVyp16Nc0xYlTClFVIrN0Kh2bbG1geu6FGa1BJTz+6M4l1NoHUNg5PV8PM4j53w/55zP94zyic+cOSfAMAxDAAAAAAAAAL6TwLZOAAAAAAAAAPAnNNQAAAAAAAAAC2ioAQAAAAAAABbQUAMAAAAAAAAsoKEGAAAAAAAAWEBDDQAAAAAAALCAhhoAAAAAAABgQVBbJ9CWGhsbdfToUXXt2lUBAQFtnQ4A+D3DMPSvf/1LUVFRCgzkMxvqDAC0LOqML+oMALQsK3WmQzfUjh49qujo6LZOAwAuOUeOHNEVV1zR1mm0OeoMAFwc1JkvUWcA4OL4LnWmQzfUunbtKunLE2W329s4GwDwf16vV9HR0ebP146OOgMALYs644s6AwAty0qd6dANtabLou12OwUIAFoQXzv5EnUGAC4O6syXqDMAcHF8lzrDjQcAAAAAAAAAC2ioAQAAAAAAABbQUAMAAAAAAAAsoKEGAAAAAAAAWEBDDQAAAAAAALCAhhoAAAAAAABgAQ01AAAAAAAAwAIaagAAAAAAAIAFNNQAAAAAAAAAC2ioAQAAAAAAABbQUAMAAAAAAAAsoKEGAAAAoMMoKirSnXfeqaioKAUEBGjjxo3mWENDgx599FH1799fXbp0UVRUlCZOnKijR4/67OPYsWNKSkqS3W5XeHi4kpOTdeLECZ+Y9957T7feeqtCQkIUHR2trKysb+SyYcMG9enTRyEhIerfv79ef/31izJnAEDLo6EGAAAAoMM4efKkrr/+eq1YseIbY59//rneeecd/eEPf9A777yjV155RRUVFfrpT3/qE5eUlKTy8nIVFBRo8+bNKioqUkpKijnu9Xo1atQoxcTEqLS0VPPmzdPs2bO1atUqM2b37t265557lJycrHfffVfjx4/X+PHj9f7771+8yQMAWkyAYRhGWyfRVrxer8LCwlRbWyu73d7W6QCA3+Pnqi/OBwC0rJb+uRoQEKBXX31V48ePP2fMvn37dOONN+of//iHevXqpUOHDqlfv37at2+fhg4dKknKz8/XHXfcoU8//VRRUVFauXKl/uM//kMej0c2m02S9Nhjj2njxo364IMPJEm/+MUvdPLkSW3evNk81rBhwzRw4EBlZ2d/p/ypMwDQsqz8XOUKNQAAAAA4h9raWgUEBCg8PFySVFxcrPDwcLOZJknx8fEKDAxUSUmJGTN8+HCzmSZJbrdbFRUVOn78uBkTHx/vcyy3263i4uJz5lJXVyev1+uzAADaBg01AAAAAGjGqVOn9Oijj+qee+4xr1TweDyKjIz0iQsKClJERIQ8Ho8Z43A4fGKaXn9bTNN4c+bOnauwsDBziY6O/n4TBABcsKC2TgBA8658bMs5xz55OqEVMwEAXCzn+lnPz3mg7TU0NOjf//3fZRiGVq5c2dbpSJJmzpypadOmma+9Xi9NNbRr1DlcymioAQAAAMBZmppp//jHP7R9+3af++g4nU5VV1f7xJ8+fVrHjh2T0+k0Y6qqqnximl5/W0zTeHOCg4MVHBx84RMDALQYvvIJAAAAAF9paqZ99NFHeuONN9S9e3efcZfLpZqaGpWWlprrtm/frsbGRsXFxZkxRUVFamhoMGMKCgrUu3dvdevWzYwpLCz02XdBQYFcLtfFmhoAoAXRUAMAAADQYZw4cUJlZWUqKyuTJB0+fFhlZWWqrKxUQ0ODfv7zn2v//v3Kzc3VmTNn5PF45PF4VF9fL0nq27evRo8ercmTJ2vv3r3atWuX0tLSNGHCBEVFRUmS7r33XtlsNiUnJ6u8vFzr1q3TkiVLfL6u+cgjjyg/P18LFizQBx98oNmzZ2v//v1KS0tr9XMCALCOhhoAAACADmP//v0aNGiQBg0aJEmaNm2aBg0apIyMDP3zn//Upk2b9Omnn2rgwIHq2bOnuezevdvcR25urvr06aORI0fqjjvu0C233KJVq1aZ42FhYdq2bZsOHz6sIUOG6He/+50yMjKUkpJixtx0003Ky8vTqlWrdP311+u//uu/tHHjRl133XWtdzIAABeMe6gBAAAA6DBGjBghwzDOOX6+sSYRERHKy8s7b8yAAQP01ltvnTfm7rvv1t133/2txwMAtD9coQYAAAAAAABYYLmhVlRUpDvvvFNRUVEKCAjQxo0bfcYNw1BGRoZ69uyp0NBQxcfH66OPPvKJOXbsmJKSkmS32xUeHq7k5GSdOHHCJ+a9997TrbfeqpCQEEVHRysrK+sbuWzYsEF9+vRRSEiI+vfvr9dff93qdAAAAAAAAABLLDfUTp48qeuvv14rVqxodjwrK0tLly5Vdna2SkpK1KVLF7ndbp06dcqMSUpKUnl5uQoKCrR582YVFRX53E/A6/Vq1KhRiomJUWlpqebNm6fZs2f73Jdg9+7duueee5ScnKx3331X48eP1/jx4/X+++9bnRIAAAAAAADwnVm+h9qYMWM0ZsyYZscMw9DixYs1a9YsjRs3TpL04osvyuFwaOPGjZowYYIOHTqk/Px87du3T0OHDpUkLVu2THfccYfmz5+vqKgo5ebmqr6+Xi+88IJsNpuuvfZalZWVaeHChWbjbcmSJRo9erSmT58uSZozZ44KCgq0fPlyZWdnX9DJAAAAAAAAAL5Ni95D7fDhw/J4PIqPjzfXhYWFKS4uTsXFxZKk4uJihYeHm800SYqPj1dgYKBKSkrMmOHDh8tms5kxbrdbFRUVOn78uBlz9nGaYpqO05y6ujp5vV6fBQAAAAAAALCiRRtqHo9HkuRwOHzWOxwOc8zj8SgyMtJnPCgoSBERET4xze3j7GOcK6ZpvDlz585VWFiYuURHR1udIgAAAAAAADq4DvWUz5kzZ6q2ttZcjhw50tYpAQAAAAAAwM+0aEPN6XRKkqqqqnzWV1VVmWNOp1PV1dU+46dPn9axY8d8Yprbx9nHOFdM03hzgoODZbfbfRYAAAAAAADAihZtqMXGxsrpdKqwsNBc5/V6VVJSIpfLJUlyuVyqqalRaWmpGbN9+3Y1NjYqLi7OjCkqKlJDQ4MZU1BQoN69e6tbt25mzNnHaYppOg4AAAAAAABwMVhuqJ04cUJlZWUqKyuT9OWDCMrKylRZWamAgAClp6frySef1KZNm3TgwAFNnDhRUVFRGj9+vCSpb9++Gj16tCZPnqy9e/dq165dSktL04QJExQVFSVJuvfee2Wz2ZScnKzy8nKtW7dOS5Ys0bRp08w8HnnkEeXn52vBggX64IMPNHv2bO3fv19paWnf/6wAAAAAAAAA5xBkdYP9+/frtttuM183NbkmTZqknJwczZgxQydPnlRKSopqamp0yy23KD8/XyEhIeY2ubm5SktL08iRIxUYGKjExEQtXbrUHA8LC9O2bduUmpqqIUOGqEePHsrIyFBKSooZc9NNNykvL0+zZs3S73//e11zzTXauHGjrrvuugs6EQAAAAAAAMB3YbmhNmLECBmGcc7xgIAAZWZmKjMz85wxERERysvLO+9xBgwYoLfeeuu8MXfffbfuvvvu8ycMAAAAAAAAtKAO9ZRPAAAAAAAA4PuioQYAAAAAAABYQEMNAAAAAAAAsICGGgDA7/zzn//Ufffdp+7duys0NFT9+/fX/v37zXHDMJSRkaGePXsqNDRU8fHx+uijj3z2cezYMSUlJclutys8PFzJyck6ceKET8x7772nW2+9VSEhIYqOjlZWVlarzA8AAABA+0ZDDQDgV44fP66bb75ZnTt31l/+8hcdPHhQCxYsULdu3cyYrKwsLV26VNnZ2SopKVGXLl3kdrt16tQpMyYpKUnl5eUqKCjQ5s2bVVRU5PM0aa/Xq1GjRikmJkalpaWaN2+eZs+erVWrVrXqfAEAAAC0P5af8gkAQFt65plnFB0drTVr1pjrYmNjzT8bhqHFixdr1qxZGjdunCTpxRdflMPh0MaNGzVhwgQdOnRI+fn52rdvn4YOHSpJWrZsme644w7Nnz9fUVFRys3NVX19vV544QXZbDZde+21Kisr08KFC30abwAAAAA6Hq5QAwD4lU2bNmno0KG6++67FRkZqUGDBum5554zxw8fPiyPx6P4+HhzXVhYmOLi4lRcXCxJKi4uVnh4uNlMk6T4+HgFBgaqpKTEjBk+fLhsNpsZ43a7VVFRoePHjzebW11dnbxer88CAAAA4NJDQw0A4Ff+/ve/a+XKlbrmmmu0detWPfTQQ/rtb3+rtWvXSpI8Ho8kyeFw+GzncDjMMY/Ho8jISJ/xoKAgRURE+MQ0t4+zj/F1c+fOVVhYmLlER0d/z9kCAAAAaI9oqAEA/EpjY6MGDx6sp556SoMGDVJKSoomT56s7Ozstk5NM2fOVG1trbkcOXKkrVMCAAAAcBHQUAMA+JWePXuqX79+Puv69u2ryspKSZLT6ZQkVVVV+cRUVVWZY06nU9XV1T7jp0+f1rFjx3ximtvH2cf4uuDgYNntdp8FAAAAwKWHhhoAwK/cfPPNqqio8Fn34YcfKiYmRtKXDyhwOp0qLCw0x71er0pKSuRyuSRJLpdLNTU1Ki0tNWO2b9+uxsZGxcXFmTFFRUVqaGgwYwoKCtS7d2+fJ4oCAAAA6HhoqAEA/MrUqVO1Z88ePfXUU/r444+Vl5enVatWKTU1VZIUEBCg9PR0Pfnkk9q0aZMOHDigiRMnKioqSuPHj5f05RVto0eP1uTJk7V3717t2rVLaWlpmjBhgqKioiRJ9957r2w2m5KTk1VeXq5169ZpyZIlmjZtWltNHQAAAEA7EdTWCQAAYMUNN9ygV199VTNnzlRmZqZiY2O1ePFiJSUlmTEzZszQyZMnlZKSopqaGt1yyy3Kz89XSEiIGZObm6u0tDSNHDlSgYGBSkxM1NKlS83xsLAwbdu2TampqRoyZIh69OihjIwMpaSktOp8AQAAALQ/NNQAAH5n7NixGjt27DnHAwIClJmZqczMzHPGREREKC8v77zHGTBggN56660LzhMAAADApYmvfAIAAAAAAAAW0FADAAAAAAAALKChBgAAAAAAAFhAQw0AAAAAAACwgIYaAAAAAAAAYAENNQAAAAAAAMACGmoAAAAAAACABTTUAAAAAAAAAAtoqAEAAAAAAAAW0FADAAAAAAAALKChBgAAAAAAAFhAQw0AAAAAAACwgIYaAAAAAAAAYAENNQAAAAAAAMACGmoAAAAAAACABTTUAAAAAAAAAAtoqAEAAAAAAAAW0FADAAAAAAAALKChBgAAAAAAAFhAQw0AAAAAAACwgIYaAAAAAAAAYAENNQAAAAAAAMACGmoAAAAAAACABTTUAAAAAAAAAAtoqAEAAAAAAAAW0FADAAAA0GEUFRXpzjvvVFRUlAICArRx40afccMwlJGRoZ49eyo0NFTx8fH66KOPfGKOHTumpKQk2e12hYeHKzk5WSdOnPCJee+993TrrbcqJCRE0dHRysrK+kYuGzZsUJ8+fRQSEqL+/fvr9ddfb/H5AgAuDhpqAAAAADqMkydP6vrrr9eKFSuaHc/KytLSpUuVnZ2tkpISdenSRW63W6dOnTJjkpKSVF5eroKCAm3evFlFRUVKSUkxx71er0aNGqWYmBiVlpZq3rx5mj17tlatWmXG7N69W/fcc4+Sk5P17rvvavz48Ro/frzef//9izd5AECLCWrrBAAAAACgtYwZM0ZjxoxpdswwDC1evFizZs3SuHHjJEkvvviiHA6HNm7cqAkTJujQoUPKz8/Xvn37NHToUEnSsmXLdMcdd2j+/PmKiopSbm6u6uvr9cILL8hms+naa69VWVmZFi5caDbelixZotGjR2v69OmSpDlz5qigoEDLly9XdnZ2s/nV1dWprq7OfO31elvsvAAArOEKNQAAAACQdPjwYXk8HsXHx5vrwsLCFBcXp+LiYklScXGxwsPDzWaaJMXHxyswMFAlJSVmzPDhw2Wz2cwYt9utiooKHT9+3Iw5+zhNMU3Hac7cuXMVFhZmLtHR0d9/0gCAC0JDDQAAAAAkeTweSZLD4fBZ73A4zDGPx6PIyEif8aCgIEVERPjENLePs49xrpim8ebMnDlTtbW15nLkyBGrUwQAtBC+8gkAAAAAfiA4OFjBwcFtnQYAQFyhBgAAAACSJKfTKUmqqqryWV9VVWWOOZ1OVVdX+4yfPn1ax44d84lpbh9nH+NcMU3jAID2jYYaAAAAAEiKjY2V0+lUYWGhuc7r9aqkpEQul0uS5HK5VFNTo9LSUjNm+/btamxsVFxcnBlTVFSkhoYGM6agoEC9e/dWt27dzJizj9MU03QcAED7RkMNAAAAQIdx4sQJlZWVqaysTNKXDyIoKytTZWWlAgIClJ6erieffFKbNm3SgQMHNHHiREVFRWn8+PGSpL59+2r06NGaPHmy9u7dq127diktLU0TJkxQVFSUJOnee++VzWZTcnKyysvLtW7dOi1ZskTTpk0z83jkkUeUn5+vBQsW6IMPPtDs2bO1f/9+paWltfYpAQBcAO6hBgAAAKDD2L9/v2677TbzdVOTa9KkScrJydGMGTN08uRJpaSkqKamRrfccovy8/MVEhJibpObm6u0tDSNHDlSgYGBSkxM1NKlS83xsLAwbdu2TampqRoyZIh69OihjIwMpaSkmDE33XST8vLyNGvWLP3+97/XNddco40bN+q6665rhbMAAPi+aKgBAAAA6DBGjBghwzDOOR4QEKDMzExlZmaeMyYiIkJ5eXnnPc6AAQP01ltvnTfm7rvv1t13333+hAEA7RJf+QQAAAAAAAAsoKEGAAAAAAAAWEBDDQAAAAAAALCAhhoAAAAAAABgAQ01AAAAAAAAwAIaagAAAAAAAIAFNNQAAAAAAAAAC2ioAQAAAAAAABbQUAMAAAAAAAAsoKEGAAAAAAAAWNDiDbUzZ87oD3/4g2JjYxUaGqqrrrpKc+bMkWEYZoxhGMrIyFDPnj0VGhqq+Ph4ffTRRz77OXbsmJKSkmS32xUeHq7k5GSdOHHCJ+a9997TrbfeqpCQEEVHRysrK6ulpwMAaGdmz56tgIAAn6VPnz7m+KlTp5Samqru3bvr8ssvV2Jioqqqqnz2UVlZqYSEBF122WWKjIzU9OnTdfr0aZ+YHTt2aPDgwQoODtbVV1+tnJyc1pgeAAAAAD/Q4g21Z555RitXrtTy5ct16NAhPfPMM8rKytKyZcvMmKysLC1dulTZ2dkqKSlRly5d5Ha7derUKTMmKSlJ5eXlKigo0ObNm1VUVKSUlBRz3Ov1atSoUYqJiVFpaanmzZun2bNna9WqVS09JQBAO3Pttdfqs88+M5e3337bHJs6dapee+01bdiwQTt37tTRo0d11113meNnzpxRQkKC6uvrtXv3bq1du1Y5OTnKyMgwYw4fPqyEhATddtttKisrU3p6uh588EFt3bq1VecJAAAAoH0Kaukd7t69W+PGjVNCQoIk6corr9R//ud/au/evZK+vDpt8eLFmjVrlsaNGydJevHFF+VwOLRx40ZNmDBBhw4dUn5+vvbt26ehQ4dKkpYtW6Y77rhD8+fPV1RUlHJzc1VfX68XXnhBNptN1157rcrKyrRw4UKfxhsA4NITFBQkp9P5jfW1tbVavXq18vLydPvtt0uS1qxZo759+2rPnj0aNmyYtm3bpoMHD+qNN96Qw+HQwIEDNWfOHD366KOaPXu2bDabsrOzFRsbqwULFkiS+vbtq7fffluLFi2S2+1u1bkCAAAAaH9a/Aq1m266SYWFhfrwww8lSX/961/19ttva8yYMZK+/NTf4/EoPj7e3CYsLExxcXEqLi6WJBUXFys8PNxspklSfHy8AgMDVVJSYsYMHz5cNpvNjHG73aqoqNDx48ebza2urk5er9dnAQD4n48++khRUVH64Q9/qKSkJFVWVkqSSktL1dDQ4FNj+vTpo169evnUmP79+8vhcJgxbrdbXq9X5eXlZszZ+2iKadrHuVBnAAAAgI6hxRtqjz32mCZMmKA+ffqoc+fOGjRokNLT05WUlCRJ8ng8kuTzi0zT66Yxj8ejyMhIn/GgoCBFRET4xDS3j7OP8XVz585VWFiYuURHR3/P2QIAWltcXJxycnKUn5+vlStX6vDhw7r11lv1r3/9Sx6PRzabTeHh4T7bfL3GfFv9OFeM1+vVF198cc7cqDMAAABAx9DiX/lcv369cnNzlZeXZ34NMz09XVFRUZo0aVJLH86SmTNnatq0aeZrr9fLLzsA4GearniWpAEDBiguLk4xMTFav369QkND2zAz6gwAAADQUbR4Q2369OnmVWqS1L9/f/3jH//Q3LlzNWnSJPOeN1VVVerZs6e5XVVVlQYOHChJcjqdqq6u9tnv6dOndezYMXN7p9P5jae2Nb1u7r46khQcHKzg4ODvP0kAQLsRHh6uH/3oR/r444/1k5/8RPX19aqpqfG5Sq2qqsqnfjTd1/Ps8aaxpv82V2Psdvt5m3bUGQAAAKBjaPGvfH7++ecKDPTdbadOndTY2ChJio2NldPpVGFhoTnu9XpVUlIil8slSXK5XKqpqVFpaakZs337djU2NiouLs6MKSoqUkNDgxlTUFCg3r17q1u3bi09LQBAO3XixAn97W9/U8+ePTVkyBB17tzZp8ZUVFSosrLSp8YcOHDA54ObgoIC2e129evXz4w5ex9NMU37AAAAANCxtXhD7c4779Qf//hHbdmyRZ988oleffVVLVy4UD/72c8kSQEBAUpPT9eTTz6pTZs26cCBA5o4caKioqI0fvx4SV8+TW306NGaPHmy9u7dq127diktLU0TJkxQVFSUJOnee++VzWZTcnKyysvLtW7dOi1ZssTnqzYAgEvP//t//087d+7UJ598ot27d+tnP/uZOnXqpHvuuUdhYWFKTk7WtGnT9Oabb6q0tFS/+tWv5HK5NGzYMEnSqFGj1K9fP91///3661//qq1bt2rWrFlKTU01ry6bMmWK/v73v2vGjBn64IMP9Oyzz2r9+vWaOnVqW04dAAAAQDvR4l/5XLZsmf7whz/oN7/5jaqrqxUVFaVf//rXysjIMGNmzJihkydPKiUlRTU1NbrllluUn5+vkJAQMyY3N1dpaWkaOXKkAgMDlZiYqKVLl5rjYWFh2rZtm1JTUzVkyBD16NFDGRkZSklJaekpAQDakU8//VT33HOP/vd//1c/+MEPdMstt2jPnj36wQ9+IElatGiRWTfq6urkdrv17LPPmtt36tRJmzdv1kMPPSSXy6UuXbpo0qRJyszMNGNiY2O1ZcsWTZ06VUuWLNEVV1yh559/Xm63u9XnCwAAAKD9CTAMw2jrJNqK1+tVWFiYamtrZbfb2zodwMeVj20559gnTye0YibAd8fPVV+cD3ybc/2s5+c80Dx+rvrifKC9o87B31j5udriX/kEAAAAAAAALmU01AAAAAAAAAALaKgBAAAAAAAAFtBQAwAAAAAAACygoQYAAAAAAABYQEMNAAAAAAAAsICGGgAAAAAAAGABDTUAAAAAAADAAhpqAAAAAAAAgAU01AAAAAAAAAALaKgBAAAAAAAAFgS1dQIAAADwdeVjW8459snTCa2YCQAAAJrDFWoAAAAAAACABTTUAAAAAAAAAAtoqAEAAAAAAAAW0FADAAAAAAAALKChBgAAAAAAAFhAQw0AAAAAAACwgIYaAAAAAAAAYAENNQAAAAAAAMACGmoAAAAAAACABTTUAAAAAAAAAAtoqAEAAAAAAAAW0FADAAAAAAAALKChBgAAAAAAAFhAQw0AAAAAAACwgIYaAAAAAAAAYAENNQAAAAAAAMACGmoAAAAAAACABTTUAAAAAOArZ86c0R/+8AfFxsYqNDRUV111lebMmSPDMMwYwzCUkZGhnj17KjQ0VPHx8froo4989nPs2DElJSXJbrcrPDxcycnJOnHihE/Me++9p1tvvVUhISGKjo5WVlZWq8wRAPD90VADAAAAgK8888wzWrlypZYvX65Dhw7pmWeeUVZWlpYtW2bGZGVlaenSpcrOzlZJSYm6dOkit9utU6dOmTFJSUkqLy9XQUGBNm/erKKiIqWkpJjjXq9Xo0aNUkxMjEpLSzVv3jzNnj1bq1atatX5AgAuTFBbJwAAAAAA7cXu3bs1btw4JSQkSJKuvPJK/ed//qf27t0r6cur0xYvXqxZs2Zp3LhxkqQXX3xRDodDGzdu1IQJE3To0CHl5+dr3759Gjp0qCRp2bJluuOOOzR//nxFRUUpNzdX9fX1euGFF2Sz2XTttdeqrKxMCxcu9Gm8AQDaJ65QAwAAAICv3HTTTSosLNSHH34oSfrrX/+qt99+W2PGjJEkHT58WB6PR/Hx8eY2YWFhiouLU3FxsSSpuLhY4eHhZjNNkuLj4xUYGKiSkhIzZvjw4bLZbGaM2+1WRUWFjh8/3mxudXV18nq9PgsAoG1whRoAAAAAfOWxxx6T1+tVnz591KlTJ505c0Z//OMflZSUJEnyeDySJIfD4bOdw+EwxzwejyIjI33Gg4KCFBER4RMTGxv7jX00jXXr1u0buc2dO1dPPPFEC8wSAPB9cYUaAAAAAHxl/fr1ys3NVV5ent555x2tXbtW8+fP19q1a9s6Nc2cOVO1tbXmcuTIkbZOCQA6LK5QAwAAAICvTJ8+XY899pgmTJggSerfv7/+8Y9/aO7cuZo0aZKcTqckqaqqSj179jS3q6qq0sCBAyVJTqdT1dXVPvs9ffq0jh07Zm7vdDpVVVXlE9P0uinm64KDgxUcHPz9JwkA+N64Qg0AAAAAvvL5558rMND316ROnTqpsbFRkhQbGyun06nCwkJz3Ov1qqSkRC6XS5LkcrlUU1Oj0tJSM2b79u1qbGxUXFycGVNUVKSGhgYzpqCgQL179272654AgPaFhhoAAAAAfOXOO+/UH//4R23ZskWffPKJXn31VS1cuFA/+9nPJEkBAQFKT0/Xk08+qU2bNunAgQOaOHGioqKiNH78eElS3759NXr0aE2ePFl79+7Vrl27lJaWpgkTJigqKkqSdO+998pmsyk5OVnl5eVat26dlixZomnTprXV1AEAFvCVTwAAAAD4yrJly/SHP/xBv/nNb1RdXa2oqCj9+te/VkZGhhkzY8YMnTx5UikpKaqpqdEtt9yi/Px8hYSEmDG5ublKS0vTyJEjFRgYqMTERC1dutQcDwsL07Zt25SamqohQ4aoR48eysjIUEpKSqvOFwBwYWioAQAAAMBXunbtqsWLF2vx4sXnjAkICFBmZqYyMzPPGRMREaG8vLzzHmvAgAF66623LjRVAEAb4iufAAAAAAAAgAU01AAAAAAAAAALaKgBAAAAAAAAFtBQAwAAAAAAACygoQYAAAAAAABYQEMNAAAAAAAAsICGGgDArz399NMKCAhQenq6ue7UqVNKTU1V9+7ddfnllysxMVFVVVU+21VWViohIUGXXXaZIiMjNX36dJ0+fdonZseOHRo8eLCCg4N19dVXKycnpxVmBAAAAKC9o6EGAPBb+/bt05/+9CcNGDDAZ/3UqVP12muvacOGDdq5c6eOHj2qu+66yxw/c+aMEhISVF9fr927d2vt2rXKyclRRkaGGXP48GElJCTotttuU1lZmdLT0/Xggw9q69atrTY/AAAAAO0TDTUAgF86ceKEkpKS9Nxzz6lbt27m+traWq1evVoLFy7U7bffriFDhmjNmjXavXu39uzZI0natm2bDh48qJdeekkDBw7UmDFjNGfOHK1YsUL19fWSpOzsbMXGxmrBggXq27ev0tLS9POf/1yLFi1qk/kCAAAAaD9oqAEA/FJqaqoSEhIUHx/vs760tFQNDQ0+6/v06aNevXqpuLhYklRcXKz+/fvL4XCYMW63W16vV+Xl5WbM1/ftdrvNfTSnrq5OXq/XZwEAAABw6Qlq6wQAALDq5Zdf1jvvvKN9+/Z9Y8zj8chmsyk8PNxnvcPhkMfjMWPObqY1jTeNnS/G6/Xqiy++UGho6DeOPXfuXD3xxBMXPC8AAAAA/oEr1AAAfuXIkSN65JFHlJubq5CQkLZOx8fMmTNVW1trLkeOHGnrlAAAAABcBDTUAAB+pbS0VNXV1Ro8eLCCgoIUFBSknTt3aunSpQoKCpLD4VB9fb1qamp8tquqqpLT6ZQkOZ3Obzz1s+n1t8XY7fZmr06TpODgYNntdp8FAAAAwKWHhhoAwK+MHDlSBw4cUFlZmbkMHTpUSUlJ5p87d+6swsJCc5uKigpVVlbK5XJJklwulw4cOKDq6mozpqCgQHa7Xf369TNjzt5HU0zTPgAAAAB0XNxDDQDgV7p27arrrrvOZ12XLl3UvXt3c31ycrKmTZumiIgI2e12Pfzww3K5XBo2bJgkadSoUerXr5/uv/9+ZWVlyePxaNasWUpNTVVwcLAkacqUKVq+fLlmzJihBx54QNu3b9f69eu1ZcuW1p0wAAAAgHaHhhoA4JKzaNEiBQYGKjExUXV1dXK73Xr22WfN8U6dOmnz5s166KGH5HK51KVLF02aNEmZmZlmTGxsrLZs2aKpU6dqyZIluuKKK/T888/L7Xa3xZQAAAAAtCM01AAAfm/Hjh0+r0NCQrRixQqtWLHinNvExMTo9ddfP+9+R4wYoXfffbclUgQAAABwCeEeagAAAAAAAIAFNNQAAAAAAAAAC2ioAQAAAAAAABZclIbaP//5T913333q3r27QkND1b9/f+3fv98cNwxDGRkZ6tmzp0JDQxUfH6+PPvrIZx/Hjh1TUlKS7Ha7wsPDlZycrBMnTvjEvPfee7r11lsVEhKi6OhoZWVlXYzpAAAAAAAAAKYWb6gdP35cN998szp37qy//OUvOnjwoBYsWKBu3bqZMVlZWVq6dKmys7NVUlKiLl26yO1269SpU2ZMUlKSysvLVVBQoM2bN6uoqEgpKSnmuNfr1ahRoxQTE6PS0lLNmzdPs2fP1qpVq1p6SgAAAAAAAICpxZ/y+cwzzyg6Olpr1qwx18XGxpp/NgxDixcv1qxZszRu3DhJ0osvviiHw6GNGzdqwoQJOnTokPLz87Vv3z4NHTpUkrRs2TLdcccdmj9/vqKiopSbm6v6+nq98MILstlsuvbaa1VWVqaFCxf6NN4AAAAAAACAltTiV6ht2rRJQ4cO1d13363IyEgNGjRIzz33nDl++PBheTwexcfHm+vCwsIUFxen4uJiSVJxcbHCw8PNZpokxcfHKzAwUCUlJWbM8OHDZbPZzBi3262KigodP3682dzq6urk9Xp9FgAAAAAAAMCKFm+o/f3vf9fKlSt1zTXXaOvWrXrooYf029/+VmvXrpUkeTweSZLD4fDZzuFwmGMej0eRkZE+40FBQYqIiPCJaW4fZx/j6+bOnauwsDBziY6O/p6zBQAAAAAAQEfT4g21xsZGDR48WE899ZQGDRqklJQUTZ48WdnZ2S19KMtmzpyp2tpaczly5EhbpwQAAAAAAAA/0+INtZ49e6pfv34+6/r27avKykpJktPplCRVVVX5xFRVVZljTqdT1dXVPuOnT5/WsWPHfGKa28fZx/i64OBg2e12nwUAAAAAAACwosUbajfffLMqKip81n344YeKiYmR9OUDCpxOpwoLC81xr9erkpISuVwuSZLL5VJNTY1KS0vNmO3bt6uxsVFxcXFmTFFRkRoaGsyYgoIC9e7d2+eJogAAAAAAAEBLavGG2tSpU7Vnzx499dRT+vjjj5WXl6dVq1YpNTVVkhQQEKD09HQ9+eST2rRpkw4cOKCJEycqKipK48ePl/TlFW2jR4/W5MmTtXfvXu3atUtpaWmaMGGCoqKiJEn33nuvbDabkpOTVV5ernXr1mnJkiWaNm1aS08JAAAAAAAAMAW19A5vuOEGvfrqq5o5c6YyMzMVGxurxYsXKykpyYyZMWOGTp48qZSUFNXU1OiWW25Rfn6+QkJCzJjc3FylpaVp5MiRCgwMVGJiopYuXWqOh4WFadu2bUpNTdWQIUPUo0cPZWRkKCUlpaWnBAAAAAAAAJhavKEmSWPHjtXYsWPPOR4QEKDMzExlZmaeMyYiIkJ5eXnnPc6AAQP01ltvXXCeAAAAAAAAgFUt/pVPAAAAAAAA4FJGQw0AAAAAAACwgIYaAAAAAAAAYAENNQAAAAAAAMACGmoAAAAAAACABTTUAAAAAAAAAAtoqAEAAAAAAAAW0FADAAAAAAAALKChBgAAAAAAAFhAQw0AAAAAAACwgIYaAAAAAAAAYAENNQAAAAAAAMACGmoAAAAAAACABTTUAAAAAAAAAAtoqAEAAAAAAAAW0FADAAAAAAAALKChBgAAAAAAAFhAQw0AAAAAAACwgIYaAAAAAAAAYAENNQAAAAA4yz//+U/dd9996t69u0JDQ9W/f3/t37/fHDcMQxkZGerZs6dCQ0MVHx+vjz76yGcfx44dU1JSkux2u8LDw5WcnKwTJ074xLz33nu69dZbFRISoujoaGVlZbXK/AAA3x8NNQAAAAD4yvHjx3XzzTerc+fO+stf/qKDBw9qwYIF6tatmxmTlZWlpUuXKjs7WyUlJerSpYvcbrdOnTplxiQlJam8vFwFBQXavHmzioqKlJKSYo57vV6NGjVKMTExKi0t1bx58zR79mytWrWqVecLALgwQW2dAAAAAAC0F88884yio6O1Zs0ac11sbKz5Z8MwtHjxYs2aNUvjxo2TJL344otyOBzauHGjJkyYoEOHDik/P1/79u3T0KFDJUnLli3THXfcofnz5ysqKkq5ubmqr6/XCy+8IJvNpmuvvVZlZWVauHChT+MNANA+cYUaAAAAAHxl06ZNGjp0qO6++25FRkZq0KBBeu6558zxw4cPy+PxKD4+3lwXFhamuLg4FRcXS5KKi4sVHh5uNtMkKT4+XoGBgSopKTFjhg8fLpvNZsa43W5VVFTo+PHjzeZWV1cnr9frswAA2gYNNQAAAAD4yt///netXLlS11xzjbZu3aqHHnpIv/3tb7V27VpJksfjkSQ5HA6f7RwOhznm8XgUGRnpMx4UFKSIiAifmOb2cfYxvm7u3LkKCwszl+jo6O85WwDAhaKhBgAAAABfaWxs1ODBg/XUU09p0KBBSklJ0eTJk5Wdnd3WqWnmzJmqra01lyNHjrR1SgDQYdFQAwAAAICv9OzZU/369fNZ17dvX1VWVkqSnE6nJKmqqsonpqqqyhxzOp2qrq72GT99+rSOHTvmE9PcPs4+xtcFBwfLbrf7LACAtkFDDQAAAAC+cvPNN6uiosJn3YcffqiYmBhJXz6gwOl0qrCw0Bz3er0qKSmRy+WSJLlcLtXU1Ki0tNSM2b59uxobGxUXF2fGFBUVqaGhwYwpKChQ7969fZ4oCgBon2ioAQAAAMBXpk6dqj179uipp57Sxx9/rLy8PK1atUqpqamSpICAAKWnp+vJJ5/Upk2bdODAAU2cOFFRUVEaP368pC+vaBs9erQmT56svXv3ateuXUpLS9OECRMUFRUlSbr33ntls9mUnJys8vJyrVu3TkuWLNG0adPaauoAAAuC2joBAAAAAGgvbrjhBr366quaOXOmMjMzFRsbq8WLFyspKcmMmTFjhk6ePKmUlBTV1NTolltuUX5+vkJCQsyY3NxcpaWlaeTIkQoMDFRiYqKWLl1qjoeFhWnbtm1KTU3VkCFD1KNHD2VkZCglJaVV5wsAuDA01AAAAADgLGPHjtXYsWPPOR4QEKDMzExlZmaeMyYiIkJ5eXnnPc6AAQP01ltvXXCeAIC2w1c+AQAAAAAAAAtoqAEAAAAAAAAW0FADAPiVlStXasCAAbLb7bLb7XK5XPrLX/5ijp86dUqpqanq3r27Lr/8ciUmJqqqqspnH5WVlUpISNBll12myMhITZ8+XadPn/aJ2bFjhwYPHqzg4GBdffXVysnJaY3pAQAAAPADNNQAAH7liiuu0NNPP63S0lLt379ft99+u8aNG6fy8nJJXz6d7bXXXtOGDRu0c+dOHT16VHfddZe5/ZkzZ5SQkKD6+nrt3r1ba9euVU5OjjIyMsyYw4cPKyEhQbfddpvKysqUnp6uBx98UFu3bm31+QIAAABof3goAQDAr9x5550+r//4xz9q5cqV2rNnj6644gqtXr1aeXl5uv322yVJa9asUd++fbVnzx4NGzZM27Zt08GDB/XGG2/I4XBo4MCBmjNnjh599FHNnj1bNptN2dnZio2N1YIFCyRJffv21dtvv61FixbJ7Xa3+pwBAAAAtC9coQYA8FtnzpzRyy+/rJMnT8rlcqm0tFQNDQ2Kj483Y/r06aNevXqpuLhYklRcXKz+/fvL4XCYMW63W16v17zKrbi42GcfTTFN+ziXuro6eb1enwUAAADApYeGGgDA7xw4cECXX365goODNWXKFL366qvq16+fPB6PbDabwsPDfeIdDoc8Ho8kyePx+DTTmsabxs4X4/V69cUXX5wzr7lz5yosLMxcoqOjv+9UAQAAALRDNNQAAH6nd+/eKisrU0lJiR566CFNmjRJBw8ebOu0NHPmTNXW1prLkSNH2jolAAAAABcB91ADAPgdm82mq6++WpI0ZMgQ7du3T0uWLNEvfvEL1dfXq6amxucqtaqqKjmdTkmS0+nU3r17ffbX9BTQs2O+/mTQqqoq2e12hYaGnjOv4OBgBQcHf+/5AQAAAGjfuEINAOD3GhsbVVdXpyFDhqhz584qLCw0xyoqKlRZWSmXyyVJcrlcOnDggKqrq82YgoIC2e129evXz4w5ex9NMU37AAAAANCxcYUaAMCvzJw5U2PGjFGvXr30r3/9S3l5edqxY4e2bt2qsLAwJScna9q0aYqIiJDdbtfDDz8sl8ulYcOGSZJGjRqlfv366f7771dWVpY8Ho9mzZql1NRU8+qyKVOmaPny5ZoxY4YeeOABbd++XevXr9eWLVvacuoAAAAA2gkaagAAv1JdXa2JEyfqs88+U1hYmAYMGKCtW7fqJz/5iSRp0aJFCgwMVGJiourq6uR2u/Xss8+a23fq1EmbN2/WQw89JJfLpS5dumjSpEnKzMw0Y2JjY7VlyxZNnTpVS5Ys0RVXXKHnn39ebre71ecLAAAAoP2hoQYA8CurV68+73hISIhWrFihFStWnDMmJiZGr7/++nn3M2LECL377rsXlCMAAACASxv3UAMAAAAAAAAsoKEGAAAAAAAAWEBDDQAAAAAAALCAhhoAAAAAAABgAQ01AAAAAAAAwAIaagAAAAAAAIAFNNQAAAAAAAAAC2ioAQAAAAAAABbQUAMAAAAAAAAsoKEGAAAAAAAAWEBDDQAAAAAAALCAhhoAAAAAAABgAQ01AAAAAAAAwAIaagAAAAAAAIAFNNQAAAAAAAAAC2ioAQAAAAAAABbQUAMAAAAAAAAsuOgNtaeffloBAQFKT0831506dUqpqanq3r27Lr/8ciUmJqqqqspnu8rKSiUkJOiyyy5TZGSkpk+frtOnT/vE7NixQ4MHD1ZwcLCuvvpq5eTkXOzpAAAAAAAAoIO7qA21ffv26U9/+pMGDBjgs37q1Kl67bXXtGHDBu3cuVNHjx7VXXfdZY6fOXNGCQkJqq+v1+7du7V27Vrl5OQoIyPDjDl8+LASEhJ02223qaysTOnp6XrwwQe1devWizklAAAAAAAAdHAXraF24sQJJSUl6bnnnlO3bt3M9bW1tVq9erUWLlyo22+/XUOGDNGaNWu0e/du7dmzR5K0bds2HTx4UC+99JIGDhyoMWPGaM6cOVqxYoXq6+slSdnZ2YqNjdWCBQvUt29fpaWl6ec//7kWLVp0saYEAAAAAAAAXLyGWmpqqhISEhQfH++zvrS0VA0NDT7r+/Tpo169eqm4uFiSVFxcrP79+8vhcJgxbrdbXq9X5eXlZszX9+12u819NKeurk5er9dnAQAAAAAAAKwIuhg7ffnll/XOO+9o37593xjzeDyy2WwKDw/3We9wOOTxeMyYs5tpTeNNY+eL8Xq9+uKLLxQaGvqNY8+dO1dPPPHEBc8LAAAAAAAAaPEr1I4cOaJHHnlEubm5CgkJaendfy8zZ85UbW2tuRw5cqStUwIAAAAAAICfafGGWmlpqaqrqzV48GAFBQUpKChIO3fu1NKlSxUUFCSHw6H6+nrV1NT4bFdVVSWn0ylJcjqd33jqZ9Prb4ux2+3NXp0mScHBwbLb7T4LAAAAAAAAYEWLN9RGjhypAwcOqKyszFyGDh2qpKQk88+dO3dWYWGhuU1FRYUqKyvlcrkkSS6XSwcOHFB1dbUZU1BQILvdrn79+pkxZ++jKaZpHwAAAAAAAMDF0OL3UOvatauuu+46n3VdunRR9+7dzfXJycmaNm2aIiIiZLfb9fDDD8vlcmnYsGGSpFGjRqlfv366//77lZWVJY/Ho1mzZik1NVXBwcGSpClTpmj58uWaMWOGHnjgAW3fvl3r16/Xli1bWnpKAAAAAAAAgOmiPJTg2yxatEiBgYFKTExUXV2d3G63nn32WXO8U6dO2rx5sx566CG5XC516dJFkyZNUmZmphkTGxurLVu2aOrUqVqyZImuuOIKPf/883K73W0xJQAAAAAAAHQQrdJQ27Fjh8/rkJAQrVixQitWrDjnNjExMXr99dfPu98RI0bo3XffbYkUAQAAAAAAgO+kxe+hBgAAAAAAAFzKaKgBAAAAAAAAFtBQAwAAAAAAACygoQYAAAAAAABYQEMNAAAAAAAAsICGGgAAAAAAAGABDTUAAAAAAADAAhpqAAAAAAAAgAU01AAAAAAAAAALaKgBAAAAwDk8/fTTCggIUHp6urnu1KlTSk1NVffu3XX55ZcrMTFRVVVVPttVVlYqISFBl112mSIjIzV9+nSdPn3aJ2bHjh0aPHiwgoODdfXVVysnJ6cVZgQAaAk01AAAAACgGfv27dOf/vQnDRgwwGf91KlT9dprr2nDhg3auXOnjh49qrvuusscP3PmjBISElRfX6/du3dr7dq1ysnJUUZGhhlz+PBhJSQk6LbbblNZWZnS09P14IMPauvWra02PwDAhaOhBgAAAABfc+LECSUlJem5555Tt27dzPW1tbVavXq1Fi5cqNtvv11DhgzRmjVrtHv3bu3Zs0eStG3bNh08eFAvvfSSBg4cqDFjxmjOnDlasWKF6uvrJUnZ2dmKjY3VggUL1LdvX6WlpennP/+5Fi1a1CbzBQBYQ0MNAAAAAL4mNTVVCQkJio+P91lfWlqqhoYGn/V9+vRRr169VFxcLEkqLi5W//795XA4zBi32y2v16vy8nIz5uv7drvd5j6aU1dXJ6/X67MAANpGUFsnAAAAAADtycsvv6x33nlH+/bt+8aYx+ORzWZTeHi4z3qHwyGPx2PGnN1MaxpvGjtfjNfr1RdffKHQ0NBvHHvu3Ll64oknLnheAICWwxVqAAAAAPCVI0eO6JFHHlFubq5CQkLaOh0fM2fOVG1trbkcOXKkrVMCgA6LhhoAAAAAfKW0tFTV1dUaPHiwgoKCFBQUpJ07d2rp0qUKCgqSw+FQfX29ampqfLarqqqS0+mUJDmdzm889bPp9bfF2O32Zq9Ok6Tg4GDZ7XafBQDQNmioAQAAAMBXRo4cqQMHDqisrMxchg4dqqSkJPPPnTt3VmFhoblNRUWFKisr5XK5JEkul0sHDhxQdXW1GVNQUCC73a5+/fqZMWfvoymmaR8AgPaNe6gBAAAAwFe6du2q6667zmddly5d1L17d3N9cnKypk2bpoiICNntdj388MNyuVwaNmyYJGnUqFHq16+f7r//fmVlZcnj8WjWrFlKTU1VcHCwJGnKlClavny5ZsyYoQceeEDbt2/X+vXrtWXLltadMADggnCFGgDAr8ydO1c33HCDunbtqsjISI0fP14VFRU+MadOnVJqaqq6d++uyy+/XImJid/4Wk1lZaUSEhJ02WWXKTIyUtOnT9fp06d9Ynbs2KHBgwcrODhYV199tXJyci729AAAfmDRokUaO3asEhMTNXz4cDmdTr3yyivmeKdOnbR582Z16tRJLpdL9913nyZOnKjMzEwzJjY2Vlu2bFFBQYGuv/56LViwQM8//7zcbndbTAkAYBFXqAEA/MrOnTuVmpqqG264QadPn9bvf/97jRo1SgcPHlSXLl0kSVOnTtWWLVu0YcMGhYWFKS0tTXfddZd27dolSTpz5owSEhLkdDq1e/duffbZZ5o4caI6d+6sp556SpJ0+PBhJSQkaMqUKcrNzVVhYaEefPBB9ezZk192AKCD2bFjh8/rkJAQrVixQitWrDjnNjExMXr99dfPu98RI0bo3XffbYkUAQCtjIYaAMCv5Ofn+7zOyclRZGSkSktLNXz4cNXW1mr16tXKy8vT7bffLklas2aN+vbtqz179mjYsGHatm2bDh48qDfeeEMOh0MDBw7UnDlz9Oijj2r27Nmy2WzKzs5WbGysFixYIEnq27ev3n77bS1atOicDbW6ujrV1dWZr71e70U6CwAAAADaEl/5BAD4tdraWklSRESEpC+fztbQ0KD4+Hgzpk+fPurVq5eKi4slScXFxerfv78cDocZ43a75fV6VV5ebsacvY+mmKZ9NGfu3LkKCwszl+jo6JaZJAAAAIB2hYYaAMBvNTY2Kj09XTfffLN5o2iPxyObzabw8HCfWIfDIY/HY8ac3UxrGm8aO1+M1+vVF1980Ww+M2fOVG1trbkcOXLke88RAAAAQPvDVz4BAH4rNTVV77//vt5+++22TkWSFBwcbD69DQAAAMCliyvUAAB+KS0tTZs3b9abb76pK664wlzvdDpVX1+vmpoan/iqqio5nU4z5utP/Wx6/W0xdrtdoaGhLT0dAAAAAH6EhhoAwK8YhqG0tDS9+uqr2r59u2JjY33GhwwZos6dO6uwsNBcV1FRocrKSrlcLkmSy+XSgQMHVF1dbcYUFBTIbrerX79+ZszZ+2iKadoHAAAAgI6Lr3wCbezKx7a0dQqAX0lNTVVeXp7+/Oc/q2vXruY9z8LCwhQaGqqwsDAlJydr2rRpioiIkN1u18MPPyyXy6Vhw4ZJkkaNGqV+/frp/vvvV1ZWljwej2bNmqXU1FTzK5tTpkzR8uXLNWPGDD3wwAPavn271q9fry1b+DcLAAAAdHRcoQYA8CsrV65UbW2tRowYoZ49e5rLunXrzJhFixZp7NixSkxM1PDhw+V0OvXKK6+Y4506ddLmzZvVqVMnuVwu3XfffZo4caIyMzPNmNjYWG3ZskUFBQW6/vrrtWDBAj3//PNyu92tOl8AAAAA7Q9XqAEA/IphGN8aExISohUrVmjFihXnjImJidHrr79+3v2MGDFC7777ruUcAQAAAFzauEINAAAAAAAAsIAr1AAAAPzIue69+cnTCa2cCQAAQMfFFWoAAAAAAACABTTUAAAAAAAAAAtoqAEAAAAAAAAW0FADAAAAAAAALOChBIAf4obUAAAAAAC0Ha5QAwAAAAAAACygoQYAAAAAAABYQEMNAAAAAAAAsICGGgAAAAAAAGABDTUAAAAAAADAAhpqAAAAAAAAgAU01AAAAAAAAAALaKgBAAAAAAAAFtBQAwAAAAAAACygoQYAAAAAAABYQEMNAAAAAAAAsICGGgAAAAAAAGABDTUAAAAAAADAgqC2TgAAAAAAAPivKx/b0tYpAK2OK9QAAAAAAAAAC2ioAQAAAAAAABbQUAMAAAAAAAAsoKEGAAAAAAAAWEBDDQAAAAAAALCAp3wCAABcZDz9DAAA4NLCFWoAAAAAAACABVyhBgAAAAAAWs35rtz+5OmEVswEuHBcoQYAAAAAAABYQEMNAAAAAAAAsKDFG2pz587VDTfcoK5duyoyMlLjx49XRUWFT8ypU6eUmpqq7t276/LLL1diYqKqqqp8YiorK5WQkKDLLrtMkZGRmj59uk6fPu0Ts2PHDg0ePFjBwcG6+uqrlZOT09LTAQAAAAAAAHy0eENt586dSk1N1Z49e1RQUKCGhgaNGjVKJ0+eNGOmTp2q1157TRs2bNDOnTt19OhR3XXXXeb4mTNnlJCQoPr6eu3evVtr165VTk6OMjIyzJjDhw8rISFBt912m8rKypSenq4HH3xQW7dubekpAQAAAAAAAKYWfyhBfn6+z+ucnBxFRkaqtLRUw4cPV21trVavXq28vDzdfvvtkqQ1a9aob9++2rNnj4YNG6Zt27bp4MGDeuONN+RwODRw4EDNmTNHjz76qGbPni2bzabs7GzFxsZqwYIFkqS+ffvq7bff1qJFi+R2u1t6WgAAAAAAAICkVriHWm1trSQpIiJCklRaWqqGhgbFx8ebMX369FGvXr1UXFwsSSouLlb//v3lcDjMGLfbLa/Xq/LycjPm7H00xTTtozl1dXXyer0+CwAAAAAAAGDFRW2oNTY2Kj09XTfffLOuu+46SZLH45HNZlN4eLhPrMPhkMfjMWPObqY1jTeNnS/G6/Xqiy++aDafuXPnKiwszFyio6O/9xwBAAAAAADQsbT4Vz7Plpqaqvfff19vv/32xTzMdzZz5kxNmzbNfO31emmqAQCAS8KVj21pdv0nTye0ciYAAACXvovWUEtLS9PmzZtVVFSkK664wlzvdDpVX1+vmpoan6vUqqqq5HQ6zZi9e/f67K/pKaBnx3z9yaBVVVWy2+0KDQ1tNqfg4GAFBwd/77kBAAAAAACg42rxr3wahqG0tDS9+uqr2r59u2JjY33GhwwZos6dO6uwsNBcV1FRocrKSrlcLkmSy+XSgQMHVF1dbcYUFBTIbrerX79+ZszZ+2iKadoHAAAAAAAAcDG0+BVqqampysvL05///Gd17drVvOdZWFiYQkNDFRYWpuTkZE2bNk0RERGy2+16+OGH5XK5NGzYMEnSqFGj1K9fP91///3KysqSx+PRrFmzlJqaal5hNmXKFC1fvlwzZszQAw88oO3bt2v9+vXasqX5rzsAAAAAAAAALaHFr1BbuXKlamtrNWLECPXs2dNc1q1bZ8YsWrRIY8eOVWJiooYPHy6n06lXXnnFHO/UqZM2b96sTp06yeVy6b777tPEiROVmZlpxsTGxmrLli0qKCjQ9ddfrwULFuj555+X2+1u6SkBAAAAAAAApovylc/mll/+8pdmTEhIiFasWKFjx47p5MmTeuWVV8x7ozWJiYnR66+/rs8//1z//d//rfnz5ysoyPeCuhEjRujdd99VXV2d/va3v/kcAwAAAACsmjt3rm644QZ17dpVkZGRGj9+vCoqKnxiTp06pdTUVHXv3l2XX365EhMTv3F/58rKSiUkJOiyyy5TZGSkpk+frtOnT/vE7NixQ4MHD1ZwcLCuvvpq5eTkXOzpAQBaSIs31AAAAADAX+3cuVOpqanas2ePCgoK1NDQoFGjRunkyZNmzNSpU/Xaa69pw4YN2rlzp44ePaq77rrLHD9z5owSEhJUX1+v3bt3a+3atcrJyVFGRoYZc/jwYSUkJOi2225TWVmZ0tPT9eCDD2rr1q2tOl8AwIW5aE/5BAAAAAB/k5+f7/M6JydHkZGRKi0t1fDhw1VbW6vVq1crLy9Pt99+uyRpzZo16tu3r/bs2aNhw4Zp27ZtOnjwoN544w05HA4NHDhQc+bM0aOPPqrZs2fLZrMpOztbsbGxWrBggSSpb9++evvtt7Vo0SJuYwMAfoAr1AAAAADgHGprayVJERERkqTS0lI1NDQoPj7ejOnTp4969eql4uJiSVJxcbH69+8vh8Nhxrjdbnm9XpWXl5sxZ++jKaZpH82pq6uT1+v1WQAAbYOGGgAAAAA0o7GxUenp6br55pt13XXXSZI8Ho9sNpvCw8N9Yh0OhzwejxlzdjOtabxp7HwxXq9XX3zxRbP5zJ07V2FhYeYSHR39vecIALgwNNQAAH6nqKhId955p6KiohQQEKCNGzf6jBuGoYyMDPXs2VOhoaGKj4/XRx995BNz7NgxJSUlyW63Kzw8XMnJyTpx4oRPzHvvvadbb71VISEhio6OVlZW1sWeGgCgHUlNTdX777+vl19+ua1TkSTNnDlTtbW15nLkyJG2TgkAOiwaagAAv3Py5Eldf/31WrFiRbPjWVlZWrp0qbKzs1VSUqIuXbrI7Xbr1KlTZkxSUpLKy8tVUFCgzZs3q6ioSCkpKea41+vVqFGjFBMTo9LSUs2bN0+zZ8/WqlWrLvr8AABtLy0tTZs3b9abb76pK664wlzvdDpVX1+vmpoan/iqqio5nU4z5utP/Wx6/W0xdrtdoaGhzeYUHBwsu93uswAA2gYNNQCA3xkzZoyefPJJ/exnP/vGmGEYWrx4sWbNmqVx48ZpwIABevHFF3X06FHzSrZDhw4pPz9fzz//vOLi4nTLLbdo2bJlevnll3X06FFJUm5ururr6/XCCy/o2muv1YQJE/Tb3/5WCxcuPGde3NsGAPyfYRhKS0vTq6++qu3btys2NtZnfMiQIercubMKCwvNdRUVFaqsrJTL5ZIkuVwuHThwQNXV1WZMQUGB7Ha7+vXrZ8acvY+mmKZ9AADaNxpqAIBLyuHDh+XxeHxu9BwWFqa4uDifm0WHh4dr6NChZkx8fLwCAwNVUlJixgwfPlw2m82Mcbvdqqio0PHjx5s9Nve2AQD/l5qaqpdeekl5eXnq2rWrPB6PPB6PeV+zsLAwJScna9q0aXrzzTdVWlqqX/3qV3K5XBo2bJgkadSoUerXr5/uv/9+/fWvf9XWrVs1a9YspaamKjg4WJI0ZcoU/f3vf9eMGTP0wQcf6Nlnn9X69es1derUNps7AOC7o6EGALikNN3subkbPZ99I+jIyEif8aCgIEVERFi6ofTXcW8bAPB/K1euVG1trUaMGKGePXuay7p168yYRYsWaezYsUpMTNTw4cPldDr1yiuvmOOdOnXS5s2b1alTJ7lcLt13332aOHGiMjMzzZjY2Fht2bJFBQUFuv7667VgwQI9//zzcrvdrTpfAMCFCWrrBAAAuFQEBwebVx4AAPyTYRjfGhMSEqIVK1ac816ekhQTE6PXX3/9vPsZMWKE3n33Xcs5AgDaHleoAQAuKU03e27uRs9n3wj67PvaSNLp06d17NgxSzeUBgAAANAxcYUaAOCSEhsbK6fTqcLCQg0cOFDSl0/sLCkp0UMPPSTpyxtB19TUqLS0VEOGDJEkbd++XY2NjYqLizNj/uM//kMNDQ3q3LmzpC9vFt27d29169at9ScGXKArH9tyzrFPnk5oxUwAAAAuHVyhBgDwOydOnFBZWZnKysokffkggrKyMlVWViogIEDp6el68skntWnTJh04cEATJ05UVFSUxo8fL0nq27evRo8ercmTJ2vv3r3atWuX0tLSNGHCBEVFRUmS7r33XtlsNiUnJ6u8vFzr1q3TkiVLNG3atDaaNQAAAID2givUAAB+Z//+/brtttvM101NrkmTJiknJ0czZszQyZMnlZKSopqaGt1yyy3Kz89XSEiIuU1ubq7S0tI0cuRIBQYGKjExUUuXLjXHw8LCtG3bNqWmpmrIkCHq0aOHMjIylJKS0noTBQAAANAu0VADAPidESNGnPem0QEBAcrMzPR5mtrXRUREKC8v77zHGTBggN56660LzhMAAADApYmGGtBKzncPGwAAAAAA4D+4hxoAAAAAAABgAQ01AAAAAAAAwAIaagAAAAAAAIAFNNQAAAAAAAAAC2ioAQAAAAAAABbQUAMAAAAAAAAsoKEGAAAAAAAAWEBDDQAAAAAAALAgqK0TANByrnxsS7PrP3k6oZUzAQAAAHApOdfvGkBHxRVqAAAAAAAAgAVcoQYAANAC/PGTe65sBgAAuDBcoQYAAAAAAABYQEMNAAAAAAAAsICGGgAAAAAAAGAB91ADAAAAAADtAvf3hL+goQYAAAAf/DIDAABwfjTUgBbkj094AwAAAAAA1nAPNQAAAAAAAMACGmoAAAAAAACABXzlEwAAAAAASOI2NsB3RUMNAAAA38n5fsnigQUAAKAj4SufAAAAAAAAgAVcoQYAAGABX4UBAAAAV6gBAAAAAAAAFnCFGnABuDoBAAAAAICOi4Ya0AFwE2kAAAAAAFoODTUAAAB8b+f68IYPbgAAwKWIhhoAAAAAAGjX+OAG7Q0NNQAAAAAAOhjuCw18PzTUgPOgyABAx0UNaBkXch652gAAALR3NNSADo5LpwEAAAAAsIaGGgAAANoVq1e18SEQAABobTTU0OHxlR4AAAAAAGAFDTUAAABcsri1AYCOjIsHgIuHhhoAAAD8Gr8wAkDHdb4awIcnuJhoqKHD4H+2reETfQAdAbUBAAAAF4KGGi45/HIEAAC+zYV8cMSHTQDaK34HAlofDTX4JQoGAMAK6ga+qwv5u0KjDUBroZ4B7QcNNQCWcI8CAAAAAP6ADzxwMdFQQ7vGJzD+hYIFoK1RN9CetPTfR+op0DFQywD/QEMNrYYrmwAALYFfNNBR8cEV4J+oW+0PP0/REmio4YK1ZGGgyFzaKFgAzocaAHw/F/Jv6Fw1uCX/PVLn0ZFQyy4NXAQCK2ioAWgzFCzg0sMvFIB/aI1/q3ygBn9GPQPwbWioXYL44Y9LQUt+2g4AAIBLG78D4WLjQwJ8HQ21VsYPeqD10ZwDqD8AgLZDDcKljN81Oi6/b6itWLFC8+bNk8fj0fXXX69ly5bpxhtvbJVjUxiA9qU17utH8et42rLOnA81CAAuHfxOA3Qs3K/y0uDXDbV169Zp2rRpys7OVlxcnBYvXiy3262KigpFRka2dXoALkFt/T+dVm8iTYH9ftq6zrT13zcAwMXX1rUGgH9ry/9f7Oi/awQYhmG0dRIXKi4uTjfccIOWL18uSWpsbFR0dLQefvhhPfbYY9+Ir6urU11dnfm6trZWvXr10pEjR2S32y0f/7rHt1548gDQTr3/hPuCt/V6vYqOjlZNTY3CwsJaMKu2QZ0BgJZHnfFlpda0dJ2RqDUALk0XWmss1RnDT9XV1RmdOnUyXn31VZ/1EydONH760582u83jjz9uSGJhYWFhucjLkSNHWqESXFzUGRYWFpb2u1wKdcYwrNca6gwLCwtL6yzfpc747Vc+/+d//kdnzpyRw+HwWe9wOPTBBx80u83MmTM1bdo083VjY6OOHTum7t27KyAg4KLk2dTd/D6fGrUlf89fYg7tgb/nL/n/HForf8Mw9K9//UtRUVEX7RithTrTevx9Dv6ev+T/c/D3/CXm8F1dSnVGsl5rqDMXhjm0PX/PX/L/Ofh7/lL7qzN+21C7EMHBwQoODvZZFx4e3irHttvtfvuXVvL//CXm0B74e/6S/8+hNfK/VL6CcyGoM9+Pv8/B3/OX/H8O/p6/xBy+C+oMdeZCMYe25+/5S/4/B3/PX2o/dSbwomVwkfXo0UOdOnVSVVWVz/qqqio5nc42ygoAcKmgzgAALjZqDQD4L79tqNlsNg0ZMkSFhYXmusbGRhUWFsrlcrVhZgCASwF1BgBwsVFrAMB/+fVXPqdNm6ZJkyZp6NChuvHGG7V48WKdPHlSv/rVr9o6NVNwcLAef/zxb1ya7S/8PX+JObQH/p6/5P9z8Pf82wp1pnX4+xz8PX/J/+fg7/lLzKEja++15lJ4X5lD2/P3/CX/n4O/5y+1vzkEGIZhtHUS38fy5cs1b948eTweDRw4UEuXLlVcXFxbpwUAuERQZwAAFxu1BgD8j9831AAAAAAAAIDW5Lf3UAMAAAAAAADaAg01AAAAAAAAwAIaagAAAAAAAIAFNNQAAAAAAAAAC2iotbAdO3YoICCg2WXfvn3n3G7EiBHfiJ8yZUorZv5/rrzyym/k8vTTT593m1OnTik1NVXdu3fX5ZdfrsTERFVVVbVSxr4++eQTJScnKzY2VqGhobrqqqv0+OOPq76+/rzbteV7sGLFCl155ZUKCQlRXFyc9u7de974DRs2qE+fPgoJCVH//v31+uuvt0qezZk7d65uuOEGde3aVZGRkRo/frwqKirOu01OTs43znVISEgrZfxNs2fP/kY+ffr0Oe827ek9aO7fbEBAgFJTU5uNb2/nH9ZQZ6gzF8pfaw11pu3rjESt6UguhToj+Xetoc60Pn+vNdSZNjr/BlpUXV2d8dlnn/ksDz74oBEbG2s0Njaec7sf//jHxuTJk322q62tbcXM/09MTIyRmZnpk8uJEyfOu82UKVOM6Ohoo7Cw0Ni/f78xbNgw46abbmqljH395S9/MX75y18aW7duNf72t78Zf/7zn43IyEjjd7/73Xm3a6v34OWXXzZsNpvxwgsvGOXl5cbkyZON8PBwo6qqqtn4Xbt2GZ06dTKysrKMgwcPGrNmzTI6d+5sHDhw4KLn2hy3222sWbPGeP/9942ysjLjjjvuMHr16nXevzNr1qwx7Ha7z7n2eDytmLWvxx9/3Lj22mt98vnv//7vc8a3t/egurraJ/eCggJDkvHmm282G9/ezj+soc5QZy6EP9ca6kzb1xnDoNZ0JJdCnTEM/6411JnW5++1hjrTNuefhtpFVl9fb/zgBz8wMjMzzxv34x//2HjkkUdaJ6lvERMTYyxatOg7x9fU1BidO3c2NmzYYK47dOiQIckoLi6+CBlal5WVZcTGxp43pq3egxtvvNFITU01X585c8aIiooy5s6d22z8v//7vxsJCQk+6+Li4oxf//rXFzXP76q6utqQZOzcufOcMWvWrDHCwsJaL6lv8fjjjxvXX3/9d45v7+/BI488Ylx11VXn/J/e9nb+8f1QZ6gz38WlVGuoM+0Dtabj8Mc6YxiXXq2hzrQuf6s11Jm2wVc+L7JNmzbpf//3f/WrX/3qW2Nzc3PVo0cPXXfddZo5c6Y+//zzVsiweU8//bS6d++uQYMGad68eTp9+vQ5Y0tLS9XQ0KD4+HhzXZ8+fdSrVy8VFxe3Rrrfqra2VhEREd8a19rvQX19vUpLS33OXWBgoOLj48957oqLi33iJcntdrercy3pW8/3iRMnFBMTo+joaI0bN07l5eWtkd45ffTRR4qKitIPf/hDJSUlqbKy8pyx7fk9qK+v10svvaQHHnhAAQEB54xrb+cfF4460/b/7qT2W2ekS6/WUGfaHrWmY/HXOiNdWrWGOtO6/LHWUGda//wHterROqDVq1fL7XbriiuuOG/cvffeq5iYGEVFRem9997To48+qoqKCr3yyiutlOn/+e1vf6vBgwcrIiJCu3fv1syZM/XZZ59p4cKFzcZ7PB7ZbDaFh4f7rHc4HPJ4PK2Q8fl9/PHHWrZsmebPn3/euLZ4D/7nf/5HZ86ckcPh8FnvcDj0wQcfNLuNx+NpNr49nOvGxkalp6fr5ptv1nXXXXfOuN69e+uFF17QgAEDVFtbq/nz5+umm25SeXn5t/5buRji4uKUk5Oj3r1767PPPtMTTzyhW2+9Ve+//766du36jfj2/B5s3LhRNTU1+uUvf3nOmPZ2/vH9UGfa/t9de64z0qVVa6gzbf/3XaLWdDT+WGekS6vWUGdalz/WGupMG53/Nr0+zo88+uijhqTzLocOHfLZ5siRI0ZgYKDxX//1X5aPV1hYaEgyPv744zbLv8nq1auNoKAg49SpU82O5+bmGjab7Rvrb7jhBmPGjBktkv+FzuHTTz81rrrqKiM5Odny8Vr6PWjOP//5T0OSsXv3bp/106dPN2688cZmt+ncubORl5fns27FihVGZGTkRcvzu5oyZYoRExNjHDlyxNJ29fX1xlVXXWXMmjXrImVmzfHjxw273W48//zzzY635/dg1KhRxtixYy1t097Of0dFnaHOXCyXUq2hzrR9nTEMao2/8vc6Yxj+X2uoM/+nPf+cuxRqDXWmdXCF2nf0u9/97rzdUUn64Q9/6PN6zZo16t69u376059aPl5cXJykLz+NuOqqqyxv/3UXkv/ZuZw+fVqffPKJevfu/Y1xp9Op+vp61dTU+HyiU1VVJafT+X3S9mF1DkePHtVtt92mm266SatWrbJ8vJZ+D5rTo0cPderU6RtPDzrfuXM6nZbiW0taWpo2b96soqIiy58IdO7cWYMGDdLHH398kbKzJjw8XD/60Y/OmU97fQ/+8Y9/6I033rD8KWR7O/8dFXWGOnOxXCq1hjrT9nVGotb4M3+vM5L/1xrqzP9prz/nLpVaQ51pJa3WuutgGhsbjdjY2G99Esu5vP3224Yk469//WsLZ2bdSy+9ZAQGBhrHjh1rdrzpBp5nf3L1wQcftOkNPD/99FPjmmuuMSZMmGCcPn36gvbRWu/BjTfeaKSlpZmvz5w5Y/zbv/3beW/g+fVuvcvlarMbSDY2NhqpqalGVFSU8eGHH17QPk6fPm307t3bmDp1agtnd2H+9a9/Gd26dTOWLFnS7Hh7ew+aPP7444bT6TQaGhosbdfezj++G+oMdcYKf6411JkvtYc6YxjUmo7kUqozhuF/tYY607outVpDnWkdNNQukjfeeOOclxx/+umnRu/evY2SkhLDMAzj448/NjIzM439+/cbhw8fNv785z8bP/zhD43hw4e3dtrG7t27jUWLFhllZWXG3/72N+Oll14yfvCDHxgTJ048Z/6G8eVlsb169TK2b99u7N+/33C5XIbL5Wr1/Jvyu/rqq42RI0can376qc9jdM+OaS/vwcsvv2wEBwcbOTk5xsGDB42UlBQjPDzcfOTv/fffbzz22GNm/K5du4ygoCBj/vz5xqFDh4zHH3+8TR9x/NBDDxlhYWHGjh07fM71559/bsZ8fQ5PPPGE+Rjw0tJSY8KECUZISIhRXl7eFlMwfve73xk7duwwDh8+bOzatcuIj483evToYVRXVzebf3t7Dwzjy/9p6dWrl/Hoo49+Y6y9n39cGOoMdcYKf6411Jn2UWcMg1rT0fhrnTEM/6811JnW5++1hjrTNuefhtpFcs899xg33XRTs2OHDx82JBlvvvmmYRiGUVlZaQwfPtyIiIgwgoODjauvvtqYPn26UVtb24oZf6m0tNSIi4szwsLCjJCQEKNv377GU0895XOvga/nbxiG8cUXXxi/+c1vjG7duhmXXXaZ8bOf/cznB35rWrNmzTnvSdCkvb0Hy5YtM3r16mXYbDbjxhtvNPbs2WOO/fjHPzYmTZrkE79+/XrjRz/6kWGz2Yxrr73W2LJlS6vk2Zxznes1a9aYMV+fQ3p6ujlfh8Nh3HHHHcY777zT+sl/5Re/+IXRs2dPw2azGf/2b/9m/OIXv/C510R7fw8MwzC2bt1qSDIqKiq+Mdbezz8uDHWGOmOVv9Ya6kz7qDOGQa3paPy1zhiG/9ca6kzr8/daQ51pm/MfYBiG0TJfHgUAAAAAAAAufYFtnQAAAAAAAADgT2ioAQAAAAAAABbQUAMAAAAAAAAsoKEGAAAAAAAAWEBDDQAAAAAAALCAhhoAAAAAAABgAQ01AAAAAAAAwAIaagAAAAAAAIAFNNQAAAAAAAAAC2ioAQAAAAAAABbQUAMAAAAAAAAs+P/9RganPveskAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNQAAAGsCAYAAAAVAfqCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABc40lEQVR4nO3df1xUdd7//yeIA2QOiC4zcoXEVuuv/JFaOP1wNfk4Gba6se1alG2RrC1U6H602MvIsI0ifxsraz/EbsEn9bqVa+qipKuUIirFZmhUu7bQ2sB1fRVmtQSU8/2jOJeTaI0iMPC4327ndnPO+zXnvN4zyst58Z5z/AzDMAQAAAAAAADgB/Fv7wQAAAAAAAAAX0JDDQAAAAAAAPACDTUAAAAAAADACzTUAAAAAAAAAC/QUAMAAAAAAAC8QEMNAAAAAAAA8AINNQAAAAAAAMALAe2dQHtqamrSkSNH1LNnT/n5+bV3OgDg8wzD0L///W9FRETI35/f2VBnAKB1UWc8UWcAoHV5U2e6dEPtyJEjioyMbO80AKDTqaqq0hVXXNHeabQ76gwAXBrUmW9QZwDg0vghdaZLN9R69uwp6ZsXymq1tnM2AOD73G63IiMjzZ+vXR11BgBaF3XGE3UGAFqXN3WmSzfUmpdFW61WChAAtCK+dvIN6gwAXBrUmW9QZwDg0vghdYYLDwAAAAAAAABeoKEGAAAAAAAAeIGGGgAAAAAAAOAFGmoAAAAAAACAF2ioAQAAAAAAAF6goQYAAAAAAAB4gYYaAAAAAAAA4AUaagAAAAAAAIAXaKgBAAAAAAAAXqChBgAAAKDLKCoq0h133KGIiAj5+flp/fr15lhjY6Mef/xxDRkyRD169FBERISmTZumI0eOeBzj6NGjSkhIkNVqVWhoqBITE3X8+HGPmA8//FC33HKLgoKCFBkZqaysrLNyWbdunQYMGKCgoCANGTJEmzdvviRzBgC0PhpqAAAAALqMEydOaNiwYcrOzj5r7KuvvtL777+vJ598Uu+//77efPNNVVRU6Gc/+5lHXEJCgsrLy1VYWKiNGzeqqKhISUlJ5rjb7daECRMUFRWl0tJSvfDCC5o3b55WrlxpxuzevVt33323EhMT9cEHH2jKlCmaMmWKPvroo0s3eQBAq/EzDMNo7yTai9vtVkhIiOrq6mS1Wts7HQDwefxc9cTrAQCtq7V/rvr5+emtt97SlClTzhmzb98+3XDDDfrnP/+pfv366dChQxo0aJD27dunUaNGSZIKCgp0++2364svvlBERIRWrFih//zP/5TL5ZLFYpEkPfHEE1q/fr0+/vhjSdKvfvUrnThxQhs3bjTPNXr0aA0fPlw5OTkt5lJfX6/6+nrzsdvtVmRkJHUGAFqJN3WGFWoAAAAAcA51dXXy8/NTaGioJKm4uFihoaFmM02SYmNj5e/vr5KSEjNmzJgxZjNNkpxOpyoqKnTs2DEzJjY21uNcTqdTxcXF58wlMzNTISEh5hYZGdla0wQAeImGGgAAAAC04OTJk3r88cd19913mysVXC6XwsPDPeICAgIUFhYml8tlxthsNo+Y5sffF9M83pK0tDTV1dWZW1VV1cVNEABwwQLaOwEAAAAA6GgaGxv1y1/+UoZhaMWKFe2djiQpMDBQgYGB7Z0GAEA01AAAAADAQ3Mz7Z///Ke2b9/ucR0du92umpoaj/hTp07p6NGjstvtZkx1dbVHTPPj74tpHgcAdGw01IAO6sonNp1z7PPn4towEwDApXKun/X8nAfaT3Mz7dNPP9Vf//pX9e7d22Pc4XCotrZWpaWlGjlypCRp+/btampqUkxMjBnzn//5n2psbFT37t0lSYWFherfv7969eplxmzbtk2pqanmsQsLC+VwONpglkDboM6hM+MaagAAAAC6jOPHj6usrExlZWWSpMOHD6usrEyVlZVqbGzUL37xC+3fv195eXk6ffq0XC6XXC6XGhoaJEkDBw7UbbfdpunTp2vv3r3atWuXUlJSNHXqVEVEREiS7rnnHlksFiUmJqq8vFxr1qzR0qVLNWvWLDOPxx57TAUFBVq4cKE+/vhjzZs3T/v371dKSkqbvyYAAO/RUAMAAADQZezfv1/XXXedrrvuOknSrFmzdN111yk9PV3/+te/tGHDBn3xxRcaPny4+vbta267d+82j5GXl6cBAwZo/Pjxuv3223XzzTdr5cqV5nhISIi2bt2qw4cPa+TIkfrd736n9PR0JSUlmTE33nij8vPztXLlSg0bNkz/9V//pfXr1+vaa69tuxcDAHDB+MonAAAAgC5j7NixMgzjnOPnG2sWFham/Pz888YMHTpU77777nlj7rrrLt11113fez4AQMfDCjUAAAAAAADACzTUAAAAAAAAAC943VArKirSHXfcoYiICPn5+Wn9+vUe44ZhKD09XX379lVwcLBiY2P16aefesQcPXpUCQkJslqtCg0NVWJioo4fP+4R8+GHH+qWW25RUFCQIiMjlZWVdVYu69at04ABAxQUFKQhQ4Zo8+bN3k4HAAAAAAAA8IrXDbUTJ05o2LBhys7ObnE8KytLy5YtU05OjkpKStSjRw85nU6dPHnSjElISFB5ebkKCwu1ceNGFRUVeVyg0+12a8KECYqKilJpaaleeOEFzZs3z+NCn7t379bdd9+txMREffDBB5oyZYqmTJmijz76yNspAQAAAAAAAD+Y1zclmDhxoiZOnNjimGEYWrJkiebOnavJkydLkl577TXZbDatX79eU6dO1aFDh1RQUKB9+/Zp1KhRkqTly5fr9ttv14IFCxQREaG8vDw1NDTo1VdflcVi0eDBg1VWVqZFixaZjbelS5fqtttu0+zZsyVJ8+fPV2FhoV588UXl5OS0mF99fb3q6+vNx26329vpAwAAAAAAoItr1WuoHT58WC6XS7Gxsea+kJAQxcTEqLi4WJJUXFys0NBQs5kmSbGxsfL391dJSYkZM2bMGFksFjPG6XSqoqJCx44dM2POPE9zTPN5WpKZmamQkBBzi4yMvPhJAwAAAAAAoEtp1Yaay+WSJNlsNo/9NpvNHHO5XAoPD/cYDwgIUFhYmEdMS8c48xznimkeb0laWprq6urMraqqytspAgAAAAAAoIvz+iufviwwMFCBgYHtnQYAAAAAAAB8WKuuULPb7ZKk6upqj/3V1dXmmN1uV01Njcf4qVOndPToUY+Ylo5x5jnOFdM8DgAAAAAAAFwKrdpQi46Olt1u17Zt28x9brdbJSUlcjgckiSHw6Ha2lqVlpaaMdu3b1dTU5NiYmLMmKKiIjU2NpoxhYWF6t+/v3r16mXGnHme5pjm8wAAAAAAAACXgtcNtePHj6usrExlZWWSvrkRQVlZmSorK+Xn56fU1FQ988wz2rBhgw4cOKBp06YpIiJCU6ZMkSQNHDhQt912m6ZPn669e/dq165dSklJ0dSpUxURESFJuueee2SxWJSYmKjy8nKtWbNGS5cu1axZs8w8HnvsMRUUFGjhwoX6+OOPNW/ePO3fv18pKSkX/6oAAAAAAAAA5+D1NdT279+vcePGmY+bm1z333+/cnNzNWfOHJ04cUJJSUmqra3VzTffrIKCAgUFBZnPycvLU0pKisaPHy9/f3/Fx8dr2bJl5nhISIi2bt2q5ORkjRw5Un369FF6erqSkpLMmBtvvFH5+fmaO3eufv/73+uaa67R+vXrde21117QCwEAAAAAAAD8EF431MaOHSvDMM457ufnp4yMDGVkZJwzJiwsTPn5+ec9z9ChQ/Xuu++eN+auu+7SXXfddf6EAQAAAAAAgFbUqtdQAwAAAAAAADo7GmoAAJ/zr3/9S/fee6969+6t4OBgDRkyRPv37zfHDcNQenq6+vbtq+DgYMXGxurTTz/1OMbRo0eVkJAgq9Wq0NBQJSYm6vjx4x4xH374oW655RYFBQUpMjJSWVlZbTI/AAAAAB0bDTUAgE85duyYbrrpJnXv3l1/+ctfdPDgQS1cuNC8C7QkZWVladmyZcrJyVFJSYl69Oghp9OpkydPmjEJCQkqLy9XYWGhNm7cqKKiIo9rdbrdbk2YMEFRUVEqLS3VCy+8oHnz5mnlypVtOl8AAAAAHY/X11ADAKA9Pf/884qMjNSqVavMfdHR0eafDcPQkiVLNHfuXE2ePFmS9Nprr8lms2n9+vWaOnWqDh06pIKCAu3bt0+jRo2SJC1fvly33367FixYoIiICOXl5amhoUGvvvqqLBaLBg8erLKyMi1atMij8QYAAACg62GFGgDAp2zYsEGjRo3SXXfdpfDwcF133XV66aWXzPHDhw/L5XIpNjbW3BcSEqKYmBgVFxdLkoqLixUaGmo20yQpNjZW/v7+KikpMWPGjBkji8VixjidTlVUVOjYsWMt5lZfXy+32+2xAQAAAOh8aKgBAHzKP/7xD61YsULXXHONtmzZoocffliPPvqoVq9eLUlyuVySJJvN5vE8m81mjrlcLoWHh3uMBwQEKCwszCOmpWOceY7vyszMVEhIiLlFRkZe5GwBAAAAdEQ01AAAPqWpqUkjRozQs88+q+uuu05JSUmaPn26cnJy2js1paWlqa6uztyqqqraOyUAAAAAlwANNQCAT+nbt68GDRrksW/gwIGqrKyUJNntdklSdXW1R0x1dbU5ZrfbVVNT4zF+6tQpHT161COmpWOceY7vCgwMlNVq9dgAAAAAdD401AAAPuWmm25SRUWFx75PPvlEUVFRkr65QYHdbte2bdvMcbfbrZKSEjkcDkmSw+FQbW2tSktLzZjt27erqalJMTExZkxRUZEaGxvNmMLCQvXv39/jjqIAAAAAuh4aagAAnzJz5kzt2bNHzz77rD777DPl5+dr5cqVSk5OliT5+fkpNTVVzzzzjDZs2KADBw5o2rRpioiI0JQpUyR9s6Lttttu0/Tp07V3717t2rVLKSkpmjp1qiIiIiRJ99xzjywWixITE1VeXq41a9Zo6dKlmjVrVntNHQAAAEAHEdDeCQAA4I3rr79eb731ltLS0pSRkaHo6GgtWbJECQkJZsycOXN04sQJJSUlqba2VjfffLMKCgoUFBRkxuTl5SklJUXjx4+Xv7+/4uPjtWzZMnM8JCREW7duVXJyskaOHKk+ffooPT1dSUlJbTpfAAAAAB0PDTUAgM+ZNGmSJk2adM5xPz8/ZWRkKCMj45wxYWFhys/PP+95hg4dqnffffeC8wQAAADQOfGVTwAAAAAAAMALNNQAAAAAAAAAL9BQAwAAAAAAALxAQw0AAAAAAADwAg01AAAAAAAAwAs01AAAAAAAAAAv0FADAAAAAAAAvEBDDQAAAAAAAPACDTUAAAAAAADACzTUAAAAAAAAAC/QUAMAAAAAAAC8QEMNAAAAAAAA8AINNQAAAAAAAMALNNQAAAAAAAAAL9BQAwAAAAAAALxAQw0AAAAAAADwAg01AAAAAAAAwAs01AAAAAAAAAAv0FADAAAAAAAAvEBDDQAAAAAAAPACDTUAAAAAAADACzTUAAAAAAAAAC/QUAMAAAAAAAC8QEMNAAAAAAAA8AINNQAAAAAAAMALNNQAAAAAdBlFRUW64447FBERIT8/P61fv95j3DAMpaenq2/fvgoODlZsbKw+/fRTj5ijR48qISFBVqtVoaGhSkxM1PHjxz1iPvzwQ91yyy0KCgpSZGSksrKyzspl3bp1GjBggIKCgjRkyBBt3ry51ecLALg0aKgBAAAA6DJOnDihYcOGKTs7u8XxrKwsLVu2TDk5OSopKVGPHj3kdDp18uRJMyYhIUHl5eUqLCzUxo0bVVRUpKSkJHPc7XZrwoQJioqKUmlpqV544QXNmzdPK1euNGN2796tu+++W4mJifrggw80ZcoUTZkyRR999NGlmzwAoNUEtHcCAAAAANBWJk6cqIkTJ7Y4ZhiGlixZorlz52ry5MmSpNdee002m03r16/X1KlTdejQIRUUFGjfvn0aNWqUJGn58uW6/fbbtWDBAkVERCgvL08NDQ169dVXZbFYNHjwYJWVlWnRokVm423p0qW67bbbNHv2bEnS/PnzVVhYqBdffFE5OTlt8EoAAC4GK9QAAAAAQNLhw4flcrkUGxtr7gsJCVFMTIyKi4slScXFxQoNDTWbaZIUGxsrf39/lZSUmDFjxoyRxWIxY5xOpyoqKnTs2DEz5szzNMc0n6cl9fX1crvdHhsAoH3QUAMAAAAASS6XS5Jks9k89ttsNnPM5XIpPDzcYzwgIEBhYWEeMS0d48xznCumebwlmZmZCgkJMbfIyEhvpwgAaCU01AAAAADAB6Slpamurs7cqqqq2jslAOiyaKgBAAAAgCS73S5Jqq6u9thfXV1tjtntdtXU1HiMnzp1SkePHvWIaekYZ57jXDHN4y0JDAyU1Wr12AAA7YOGGgAAAABIio6Olt1u17Zt28x9brdbJSUlcjgckiSHw6Ha2lqVlpaaMdu3b1dTU5NiYmLMmKKiIjU2NpoxhYWF6t+/v3r16mXGnHme5pjm8wAAOjYaagAAAAC6jOPHj6usrExlZWWSvrkRQVlZmSorK+Xn56fU1FQ988wz2rBhgw4cOKBp06YpIiJCU6ZMkSQNHDhQt912m6ZPn669e/dq165dSklJ0dSpUxURESFJuueee2SxWJSYmKjy8nKtWbNGS5cu1axZs8w8HnvsMRUUFGjhwoX6+OOPNW/ePO3fv18pKSlt/ZIAAC5AQHsnAAAAAABtZf/+/Ro3bpz5uLnJdf/99ys3N1dz5szRiRMnlJSUpNraWt18880qKChQUFCQ+Zy8vDylpKRo/Pjx8vf3V3x8vJYtW2aOh4SEaOvWrUpOTtbIkSPVp08fpaenKykpyYy58cYblZ+fr7lz5+r3v/+9rrnmGq1fv17XXnttG7wKAICLRUMNAAAAQJcxduxYGYZxznE/Pz9lZGQoIyPjnDFhYWHKz88/73mGDh2qd99997wxd911l+66667zJwwA6JD4yicAAAAAAADgBRpqAAAAAAAAgBdoqAEAAAAAAABeoKEGAAAAAAAAeIGGGgAAAAAAAOAFGmoAAAAAAACAF2ioAQAAAAAAAF6goQYAAAAAAAB4gYYaAAAAAAAA4AUaagAAAAAAAIAXaKgBAAAAAAAAXqChBgDwKfPmzZOfn5/HNmDAAHP85MmTSk5OVu/evXX55ZcrPj5e1dXVHseorKxUXFycLrvsMoWHh2v27Nk6deqUR8yOHTs0YsQIBQYG6uqrr1Zubm5bTA8AAACAD2j1htrp06f15JNPKjo6WsHBwbrqqqs0f/58GYZhxhiGofT0dPXt21fBwcGKjY3Vp59+6nGco0ePKiEhQVarVaGhoUpMTNTx48c9Yj788EPdcsstCgoKUmRkpLKyslp7OgCADmjw4MH68ssvze29994zx2bOnKm3335b69at086dO3XkyBHdeeed5vjp06cVFxenhoYG7d69W6tXr1Zubq7S09PNmMOHDysuLk7jxo1TWVmZUlNT9dBDD2nLli1tOk8AAAAAHVNAax/w+eef14oVK7R69WoNHjxY+/fv1wMPPKCQkBA9+uijkqSsrCwtW7ZMq1evVnR0tJ588kk5nU4dPHhQQUFBkqSEhAR9+eWXKiwsVGNjox544AElJSUpPz9fkuR2uzVhwgTFxsYqJydHBw4c0IMPPqjQ0FAlJSW19rQAAB1IQECA7Hb7Wfvr6ur0yiuvKD8/X7feeqskadWqVRo4cKD27Nmj0aNHa+vWrTp48KDeeecd2Ww2DR8+XPPnz9fjjz+uefPmyWKxKCcnR9HR0Vq4cKEkaeDAgXrvvfe0ePFiOZ3ONp0rAAAAgI6n1Veo7d69W5MnT1ZcXJyuvPJK/eIXv9CECRO0d+9eSd+sTluyZInmzp2ryZMna+jQoXrttdd05MgRrV+/XpJ06NAhFRQU6OWXX1ZMTIxuvvlmLV++XG+88YaOHDkiScrLy1NDQ4NeffVVDR48WFOnTtWjjz6qRYsWtfaUAAAdzKeffqqIiAj9+Mc/VkJCgiorKyVJpaWlamxsVGxsrBk7YMAA9evXT8XFxZKk4uJiDRkyRDabzYxxOp1yu90qLy83Y848RnNM8zHOpb6+Xm6322MDAAAA0Pm0ekPtxhtv1LZt2/TJJ59Ikv72t7/pvffe08SJEyV98zUal8vl8UElJCREMTExHh92QkNDNWrUKDMmNjZW/v7+KikpMWPGjBkji8VixjidTlVUVOjYsWMt5sYHHQDwfTExMcrNzVVBQYFWrFihw4cP65ZbbtG///1vuVwuWSwWhYaGejzHZrPJ5XJJklwul0czrXm8eex8MW63W19//fU5c8vMzFRISIi5RUZGXux0AQAAAHRArf6VzyeeeEJut1sDBgxQt27ddPr0af3hD39QQkKCpP/9sNLSB5UzP8iEh4d7JhoQoLCwMI+Y6Ojos47RPNarV6+zcsvMzNTTTz/dCrMEALSX5l/QSNLQoUMVExOjqKgorV27VsHBwe2YmZSWlqZZs2aZj91uN001AAAAoBNq9RVqa9euVV5envLz8/X+++9r9erVWrBggVavXt3ap/JaWlqa6urqzK2qqqq9UwIAXKTQ0FD95Cc/0WeffSa73a6GhgbV1tZ6xFRXV5vXXLPb7Wfd9bP58ffFWK3W8zbtAgMDZbVaPTYAAAAAnU+rN9Rmz56tJ554QlOnTtWQIUN03333aebMmcrMzJT0vx9WWvqgcuYHmZqaGo/xU6dO6ejRo159IPouPugAQOdz/Phx/f3vf1ffvn01cuRIde/eXdu2bTPHKyoqVFlZKYfDIUlyOBw6cOCAR50pLCyU1WrVoEGDzJgzj9Ec03wMAAAAAF1bqzfUvvrqK/n7ex62W7duampqkiRFR0fLbrd7fFBxu90qKSnx+LBTW1ur0tJSM2b79u1qampSTEyMGVNUVKTGxkYzprCwUP3792/x654AgM7h//7f/6udO3fq888/1+7du/Xzn/9c3bp10913362QkBAlJiZq1qxZ+utf/6rS0lI98MADcjgcGj16tCRpwoQJGjRokO677z797W9/05YtWzR37lwlJycrMDBQkjRjxgz94x//0Jw5c/Txxx/rj3/8o9auXauZM2e259QBAAAAdBCt3lC744479Ic//EGbNm3S559/rrfeekuLFi3Sz3/+c0mSn5+fUlNT9cwzz2jDhg06cOCApk2bpoiICE2ZMkWSNHDgQN12222aPn269u7dq127diklJUVTp05VRESEJOmee+6RxWJRYmKiysvLtWbNGi1dutTj2jUAgM7niy++0N13363+/fvrl7/8pXr37q09e/boRz/6kSRp8eLFmjRpkuLj4zVmzBjZ7Xa9+eab5vO7deumjRs3qlu3bnI4HLr33ns1bdo0ZWRkmDHR0dHatGmTCgsLNWzYMC1cuFAvv/yynE5nm88XAAAAQMfT6jclWL58uZ588kn99re/VU1NjSIiIvSb3/xG6enpZsycOXN04sQJJSUlqba2VjfffLMKCgoUFBRkxuTl5SklJUXjx4+Xv7+/4uPjtWzZMnM8JCREW7duVXJyskaOHKk+ffooPT1dSUlJrT0lAEAH8sYbb5x3PCgoSNnZ2crOzj5nTFRUlDZv3nze44wdO1YffPDBBeUIAAAAoHNr9YZaz549tWTJEi1ZsuScMX5+fsrIyPBYDfBdYWFhys/PP++5hg4dqnffffdCUwUAAAAAAAC81upf+QQAAAAAAAA6MxpqAAAAAAAAgBdoqAEAAAAAAABeoKEGAAAAAAAAeIGGGgAAAAAAAOAFGmoAAAAAAACAFwLaOwEAAAB4uvKJTecc+/y5uDbMBAAAAC1hhRoAAAAAAADgBRpqAAAAAAAAgBdoqAEAAAAAAABeoKEGAAAAAAAAeIGGGgAAAAAAAOAFGmoAAAAAAACAF2ioAQAAAAAAAF6goQYAAAAAAAB4gYYaAAAAAAAA4AUaagAAAAAAAIAXaKgBAAAAAAAAXqChBgAAAAAAAHiBhhoAAAAAAADgBRpqAAAAAAAAgBdoqAEAAAAAAABeoKEGAAAAAAAAeIGGGgAAAAAAAOAFGmoAAAAAAACAF2ioAQAAAAAAAF6goQYAAAAAAAB4gYYaAAAAAAAA4AUaagAAAADwrdOnT+vJJ59UdHS0goODddVVV2n+/PkyDMOMMQxD6enp6tu3r4KDgxUbG6tPP/3U4zhHjx5VQkKCrFarQkNDlZiYqOPHj3vEfPjhh7rlllsUFBSkyMhIZWVltckcAQAXj4YaAAAAAHzr+eef14oVK/Tiiy/q0KFDev7555WVlaXly5ebMVlZWVq2bJlycnJUUlKiHj16yOl06uTJk2ZMQkKCysvLVVhYqI0bN6qoqEhJSUnmuNvt1oQJExQVFaXS0lK98MILmjdvnlauXNmm8wUAXJiA9k4AAAAAADqK3bt3a/LkyYqLi5MkXXnllfp//+//ae/evZK+WZ22ZMkSzZ07V5MnT5Ykvfbaa7LZbFq/fr2mTp2qQ4cOqaCgQPv27dOoUaMkScuXL9ftt9+uBQsWKCIiQnl5eWpoaNCrr74qi8WiwYMHq6ysTIsWLfJovAEAOiZWqAEAAADAt2688UZt27ZNn3zyiSTpb3/7m9577z1NnDhRknT48GG5XC7FxsaazwkJCVFMTIyKi4slScXFxQoNDTWbaZIUGxsrf39/lZSUmDFjxoyRxWIxY5xOpyoqKnTs2LEWc6uvr5fb7fbYAADtgxVqAAAAAPCtJ554Qm63WwMGDFC3bt10+vRp/eEPf1BCQoIkyeVySZJsNpvH82w2mznmcrkUHh7uMR4QEKCwsDCPmOjo6LOO0TzWq1evs3LLzMzU008/3QqzBABcLFaoAQAAAMC31q5dq7y8POXn5+v999/X6tWrtWDBAq1evbq9U1NaWprq6urMraqqqr1TAoAuixVqAAAAAPCt2bNn64knntDUqVMlSUOGDNE///lPZWZm6v7775fdbpckVVdXq2/fvubzqqurNXz4cEmS3W5XTU2Nx3FPnTqlo0ePms+32+2qrq72iGl+3BzzXYGBgQoMDLz4SQIALhor1AAAAADgW1999ZX8/T0/JnXr1k1NTU2SpOjoaNntdm3bts0cd7vdKikpkcPhkCQ5HA7V1taqtLTUjNm+fbuampoUExNjxhQVFamxsdGMKSwsVP/+/Vv8uicAoGOhoQYAAAAA37rjjjv0hz/8QZs2bdLnn3+ut956S4sWLdLPf/5zSZKfn59SU1P1zDPPaMOGDTpw4ICmTZumiIgITZkyRZI0cOBA3XbbbZo+fbr27t2rXbt2KSUlRVOnTlVERIQk6Z577pHFYlFiYqLKy8u1Zs0aLV26VLNmzWqvqQMAvMBXPgEAAADgW8uXL9eTTz6p3/72t6qpqVFERIR+85vfKD093YyZM2eOTpw4oaSkJNXW1urmm29WQUGBgoKCzJi8vDylpKRo/Pjx8vf3V3x8vJYtW2aOh4SEaOvWrUpOTtbIkSPVp08fpaenKykpqU3nCwC4MDTUAAAAAOBbPXv21JIlS7RkyZJzxvj5+SkjI0MZGRnnjAkLC1N+fv55zzV06FC9++67F5oqAKAd8ZVPAAAAAAAAwAs01AAAAAAAAAAv0FADAAAAAAAAvEBDDQAAAAAAAPACDTUAAAAAAADACzTUAAAAAAAAAC/QUAMA+LTnnntOfn5+Sk1NNfedPHlSycnJ6t27ty6//HLFx8erurra43mVlZWKi4vTZZddpvDwcM2ePVunTp3yiNmxY4dGjBihwMBAXX311crNzW2DGQEAAADo6GioAQB81r59+/SnP/1JQ4cO9dg/c+ZMvf3221q3bp127typI0eO6M477zTHT58+rbi4ODU0NGj37t1avXq1cnNzlZ6ebsYcPnxYcXFxGjdunMrKypSamqqHHnpIW7ZsabP5AQAAAOiYaKgBAHzS8ePHlZCQoJdeekm9evUy99fV1emVV17RokWLdOutt2rkyJFatWqVdu/erT179kiStm7dqoMHD+r111/X8OHDNXHiRM2fP1/Z2dlqaGiQJOXk5Cg6OloLFy7UwIEDlZKSol/84hdavHhxu8wXAAAAQMdBQw0A4JOSk5MVFxen2NhYj/2lpaVqbGz02D9gwAD169dPxcXFkqTi4mINGTJENpvNjHE6nXK73SovLzdjvntsp9NpHqMl9fX1crvdHhsAAACAziegvRMAAMBbb7zxht5//33t27fvrDGXyyWLxaLQ0FCP/TabTS6Xy4w5s5nWPN48dr4Yt9utr7/+WsHBwWedOzMzU08//fQFzwsAAACAb2CFGgDAp1RVVemxxx5TXl6egoKC2jsdD2lpaaqrqzO3qqqq9k4JAAAAwCVAQw0A4FNKS0tVU1OjESNGKCAgQAEBAdq5c6eWLVumgIAA2Ww2NTQ0qLa21uN51dXVstvtkiS73X7WXT+bH39fjNVqbXF1miQFBgbKarV6bAAAAAA6HxpqAACfMn78eB04cEBlZWXmNmrUKCUkJJh/7t69u7Zt22Y+p6KiQpWVlXI4HJIkh8OhAwcOqKamxowpLCyU1WrVoEGDzJgzj9Ec03wMAAAAAF0X11ADAPiUnj176tprr/XY16NHD/Xu3dvcn5iYqFmzZiksLExWq1WPPPKIHA6HRo8eLUmaMGGCBg0apPvuu09ZWVlyuVyaO3eukpOTFRgYKEmaMWOGXnzxRc2ZM0cPPvigtm/frrVr12rTpk1tO2EAAAAAHQ4NNQBAp7N48WL5+/srPj5e9fX1cjqd+uMf/2iOd+vWTRs3btTDDz8sh8OhHj166P7771dGRoYZEx0drU2bNmnmzJlaunSprrjiCr388styOp3tMSUAAAAAHQgNNQCAz9uxY4fH46CgIGVnZys7O/ucz4mKitLmzZvPe9yxY8fqgw8+aI0UAQAAAHQiXEMNAAAAAAAA8AINNQAAAAAAAMALNNQAAAAAAAAAL9BQAwAAAAAAALxwSRpq//rXv3Tvvfeqd+/eCg4O1pAhQ7R//35z3DAMpaenq2/fvgoODlZsbKw+/fRTj2McPXpUCQkJslqtCg0NVWJioo4fP+4R8+GHH+qWW25RUFCQIiMjlZWVdSmmAwAAAAAAAJhavaF27Ngx3XTTTerevbv+8pe/6ODBg1q4cKF69eplxmRlZWnZsmXKyclRSUmJevToIafTqZMnT5oxCQkJKi8vV2FhoTZu3KiioiIlJSWZ4263WxMmTFBUVJRKS0v1wgsvaN68eVq5cmVrTwkAAAAAAAAwBbT2AZ9//nlFRkZq1apV5r7o6Gjzz4ZhaMmSJZo7d64mT54sSXrttddks9m0fv16TZ06VYcOHVJBQYH27dunUaNGSZKWL1+u22+/XQsWLFBERITy8vLU0NCgV199VRaLRYMHD1ZZWZkWLVrk0XgDAAAAAAAAWlOrr1DbsGGDRo0apbvuukvh4eG67rrr9NJLL5njhw8flsvlUmxsrLkvJCREMTExKi4uliQVFxcrNDTUbKZJUmxsrPz9/VVSUmLGjBkzRhaLxYxxOp2qqKjQsWPHWsytvr5ebrfbYwMAAAAAAAC80eoNtX/84x9asWKFrrnmGm3ZskUPP/ywHn30Ua1evVqS5HK5JEk2m83jeTabzRxzuVwKDw/3GA8ICFBYWJhHTEvHOPMc35WZmamQkBBzi4yMvMjZAgAAAAAAoKtp9YZaU1OTRowYoWeffVbXXXedkpKSNH36dOXk5LT2qbyWlpamuro6c6uqqmrvlAAAAAAAAOBjWr2h1rdvXw0aNMhj38CBA1VZWSlJstvtkqTq6mqPmOrqanPMbrerpqbGY/zUqVM6evSoR0xLxzjzHN8VGBgoq9XqsQEAAAAAAADeaPWG2k033aSKigqPfZ988omioqIkfXODArvdrm3btpnjbrdbJSUlcjgckiSHw6Ha2lqVlpaaMdu3b1dTU5NiYmLMmKKiIjU2NpoxhYWF6t+/v8cdRQEAAAAAAIDW1OoNtZkzZ2rPnj169tln9dlnnyk/P18rV65UcnKyJMnPz0+pqal65plntGHDBh04cEDTpk1TRESEpkyZIumbFW233Xabpk+frr1792rXrl1KSUnR1KlTFRERIUm65557ZLFYlJiYqPLycq1Zs0ZLly7VrFmzWntKAAAAAAAAgCmgtQ94/fXX66233lJaWpoyMjIUHR2tJUuWKCEhwYyZM2eOTpw4oaSkJNXW1urmm29WQUGBgoKCzJi8vDylpKRo/Pjx8vf3V3x8vJYtW2aOh4SEaOvWrUpOTtbIkSPVp08fpaenKykpqbWnBAAAAAAAAJhavaEmSZMmTdKkSZPOOe7n56eMjAxlZGScMyYsLEz5+fnnPc/QoUP17rvvXnCeAAAAAAAAgLda/SufAAAAAAAAQGdGQw0AAAAAAADwAg01AAAAAAAAwAs01AAAAAAAAAAv0FADAAAAAAAAvEBDDQAAAAAAAPACDTUAAAAAAADACzTUAAAAAAAAAC/QUAMAAAAAAAC8QEMNAAAAAAAA8AINNQAAAAAAAMALNNQAAAAAAAAAL9BQAwAAAAAAALxAQw0AAAAAAADwAg01AAAAAAAAwAs01AAAAAAAAAAv0FADAAAAAAAAvEBDDQAAAAAAAPACDTUAAAAAAADACzTUAAAAAOAM//rXv3Tvvfeqd+/eCg4O1pAhQ7R//35z3DAMpaenq2/fvgoODlZsbKw+/fRTj2McPXpUCQkJslqtCg0NVWJioo4fP+4R8+GHH+qWW25RUFCQIiMjlZWV1SbzAwBcPBpqAAAAAPCtY8eO6aabblL37t31l7/8RQcPHtTChQvVq1cvMyYrK0vLli1TTk6OSkpK1KNHDzmdTp08edKMSUhIUHl5uQoLC7Vx40YVFRUpKSnJHHe73ZowYYKioqJUWlqqF154QfPmzdPKlSvbdL4AgAsT0N4JAAAAAEBH8fzzzysyMlKrVq0y90VHR5t/NgxDS5Ys0dy5czV58mRJ0muvvSabzab169dr6tSpOnTokAoKCrRv3z6NGjVKkrR8+XLdfvvtWrBggSIiIpSXl6eGhga9+uqrslgsGjx4sMrKyrRo0SKPxtuZ6uvrVV9fbz52u92X4iUAAPwArFADAAAAgG9t2LBBo0aN0l133aXw8HBdd911eumll8zxw4cPy+VyKTY21twXEhKimJgYFRcXS5KKi4sVGhpqNtMkKTY2Vv7+/iopKTFjxowZI4vFYsY4nU5VVFTo2LFjLeaWmZmpkJAQc4uMjGzVuQMAfjgaagAAAADwrX/84x9asWKFrrnmGm3ZskUPP/ywHn30Ua1evVqS5HK5JEk2m83jeTabzRxzuVwKDw/3GA8ICFBYWJhHTEvHOPMc35WWlqa6ujpzq6qqusjZAgAuFF/5BAAAAIBvNTU1adSoUXr22WclSdddd50++ugj5eTk6P7772/X3AIDAxUYGNiuOQAAvsEKNQAAAAD4Vt++fTVo0CCPfQMHDlRlZaUkyW63S5Kqq6s9Yqqrq80xu92umpoaj/FTp07p6NGjHjEtHePMcwAAOi4aagAAAADwrZtuukkVFRUe+z755BNFRUVJ+uYGBXa7Xdu2bTPH3W63SkpK5HA4JEkOh0O1tbUqLS01Y7Zv366mpibFxMSYMUVFRWpsbDRjCgsL1b9/f487igIAOiYaagAAAADwrZkzZ2rPnj169tln9dlnnyk/P18rV65UcnKyJMnPz0+pqal65plntGHDBh04cEDTpk1TRESEpkyZIumbFW233Xabpk+frr1792rXrl1KSUnR1KlTFRERIUm65557ZLFYlJiYqPLycq1Zs0ZLly7VrFmz2mvqAAAvcA01AAAAAPjW9ddfr7feektpaWnKyMhQdHS0lixZooSEBDNmzpw5OnHihJKSklRbW6ubb75ZBQUFCgoKMmPy8vKUkpKi8ePHy9/fX/Hx8Vq2bJk5HhISoq1btyo5OVkjR45Unz59lJ6erqSkpDadLwDgwtBQAwAAAIAzTJo0SZMmTTrnuJ+fnzIyMpSRkXHOmLCwMOXn55/3PEOHDtW77757wXkCANoPX/kEAAAAAAAAvEBDDQDgU1asWKGhQ4fKarXKarXK4XDoL3/5izl+8uRJJScnq3fv3rr88ssVHx9/1l3UKisrFRcXp8suu0zh4eGaPXu2Tp065RGzY8cOjRgxQoGBgbr66quVm5vbFtMDAAAA4ANoqAEAfMoVV1yh5557TqWlpdq/f79uvfVWTZ48WeXl5ZK+uZj022+/rXXr1mnnzp06cuSI7rzzTvP5p0+fVlxcnBoaGrR7926tXr1aubm5Sk9PN2MOHz6suLg4jRs3TmVlZUpNTdVDDz2kLVu2tPl8AQAAAHQ8XEMNAOBT7rjjDo/Hf/jDH7RixQrt2bNHV1xxhV555RXl5+fr1ltvlSStWrVKAwcO1J49ezR69Ght3bpVBw8e1DvvvCObzabhw4dr/vz5evzxxzVv3jxZLBbl5OQoOjpaCxculPTN3dree+89LV68WE6ns83nDAAAAKBjYYUaAMBnnT59Wm+88YZOnDghh8Oh0tJSNTY2KjY21owZMGCA+vXrp+LiYklScXGxhgwZIpvNZsY4nU653W5zlVtxcbHHMZpjmo9xLvX19XK73R4bAAAAgM6HhhoAwOccOHBAl19+uQIDAzVjxgy99dZbGjRokFwulywWi0JDQz3ibTabXC6XJMnlcnk005rHm8fOF+N2u/X111+fM6/MzEyFhISYW2Rk5MVOFQAAAEAHREMNAOBz+vfvr7KyMpWUlOjhhx/W/fffr4MHD7Z3WkpLS1NdXZ25VVVVtXdKAAAAAC4BrqEGAPA5FotFV199tSRp5MiR2rdvn5YuXapf/epXamhoUG1trccqterqatntdkmS3W7X3r17PY7XfBfQM2O+e2fQ6upqWa1WBQcHnzOvwMBABQYGXvT8AAAAAHRsrFADAPi8pqYm1dfXa+TIkerevbu2bdtmjlVUVKiyslIOh0OS5HA4dODAAdXU1JgxhYWFslqtGjRokBlz5jGaY5qPAQAAAKBrY4UaAMCnpKWlaeLEierXr5/+/e9/Kz8/Xzt27NCWLVsUEhKixMREzZo1S2FhYbJarXrkkUfkcDg0evRoSdKECRM0aNAg3XfffcrKypLL5dLcuXOVnJxsri6bMWOGXnzxRc2ZM0cPPvigtm/frrVr12rTpk3tOXUAAAAAHQQNNQCAT6mpqdG0adP05ZdfKiQkREOHDtWWLVv0f/7P/5EkLV68WP7+/oqPj1d9fb2cTqf++Mc/ms/v1q2bNm7cqIcfflgOh0M9evTQ/fffr4yMDDMmOjpamzZt0syZM7V06VJdccUVevnll+V0Ott8vgAAAAA6HhpqAACf8sorr5x3PCgoSNnZ2crOzj5nTFRUlDZv3nze44wdO1YffPDBBeUIAAAAoHPjGmoAAAAAAACAF2ioAQAAAAAAAF6goQYAAAAAAAB4gYYaAAAAAAAA4AUaagAAAAAAAIAXaKgBAAAAAAAAXqChBgAAAAAAAHiBhhoAAAAAAADgBRpqAAAAAAAAgBdoqAEAAAAAAABeoKEGAAAAAAAAeIGGGgAAAAAAAOAFGmoAAAAAAACAF2ioAQAAAAAAAF6goQYAAAAAAAB4gYYaAAAAAAAA4AUaagAAAAAAAIAXaKgBAAAAAAAAXqChBgAAAAAAAHjhkjfUnnvuOfn5+Sk1NdXcd/LkSSUnJ6t37966/PLLFR8fr+rqao/nVVZWKi4uTpdddpnCw8M1e/ZsnTp1yiNmx44dGjFihAIDA3X11VcrNzf3Uk8HAAAAAAAAXdwlbajt27dPf/rTnzR06FCP/TNnztTbb7+tdevWaefOnTpy5IjuvPNOc/z06dOKi4tTQ0ODdu/erdWrVys3N1fp6elmzOHDhxUXF6dx48aprKxMqampeuihh7Rly5ZLOSUAAAAAAAB0cZesoXb8+HElJCTopZdeUq9evcz9dXV1euWVV7Ro0SLdeuutGjlypFatWqXdu3drz549kqStW7fq4MGDev311zV8+HBNnDhR8+fPV3Z2thoaGiRJOTk5io6O1sKFCzVw4EClpKToF7/4hRYvXnyppgQAAAAAAABcuoZacnKy4uLiFBsb67G/tLRUjY2NHvsHDBigfv36qbi4WJJUXFysIUOGyGazmTFOp1Nut1vl5eVmzHeP7XQ6zWO0pL6+Xm6322MDAAAAAAAAvBFwKQ76xhtv6P3339e+ffvOGnO5XLJYLAoNDfXYb7PZ5HK5zJgzm2nN481j54txu936+uuvFRwcfNa5MzMz9fTTT1/wvAAAAAAAAIBWX6FWVVWlxx57THl5eQoKCmrtw1+UtLQ01dXVmVtVVVV7pwQAAAAAAAAf0+oNtdLSUtXU1GjEiBEKCAhQQECAdu7cqWXLlikgIEA2m00NDQ2qra31eF51dbXsdrskyW63n3XXz+bH3xdjtVpbXJ0mSYGBgbJarR4bAAAAAAAA4I1Wb6iNHz9eBw4cUFlZmbmNGjVKCQkJ5p+7d++ubdu2mc+pqKhQZWWlHA6HJMnhcOjAgQOqqakxYwoLC2W1WjVo0CAz5sxjNMc0HwMAAAAAAAC4FFr9Gmo9e/bUtdde67GvR48e6t27t7k/MTFRs2bNUlhYmKxWqx555BE5HA6NHj1akjRhwgQNGjRI9913n7KysuRyuTR37lwlJycrMDBQkjRjxgy9+OKLmjNnjh588EFt375da9eu1aZNm1p7SgAAAAAAAIDpktyU4PssXrxY/v7+io+PV319vZxOp/74xz+a4926ddPGjRv18MMPy+FwqEePHrr//vuVkZFhxkRHR2vTpk2aOXOmli5dqiuuuEIvv/yynE5ne0wJAAAAAAAAXUSbNNR27Njh8TgoKEjZ2dnKzs4+53OioqK0efPm8x537Nix+uCDD1ojRQAAAAAAAOAHafVrqAEAAAAAAACdGQ01AAAAAAAAwAs01AAAAAAAAAAv0FADAAAAAAAAvEBDDQAAAAAAAPACDTUAAAAAAADACzTUAAAAAAAAAC/QUAMAAAAAAAC8QEMNAAAAAM7hueeek5+fn1JTU819J0+eVHJysnr37q3LL79c8fHxqq6u9nheZWWl4uLidNlllyk8PFyzZ8/WqVOnPGJ27NihESNGKDAwUFdffbVyc3PbYEYAgNZAQw0AAAAAWrBv3z796U9/0tChQz32z5w5U2+//bbWrVunnTt36siRI7rzzjvN8dOnTysuLk4NDQ3avXu3Vq9erdzcXKWnp5sxhw8fVlxcnMaNG6eysjKlpqbqoYce0pYtW9psfgCAC0dDDQAAAAC+4/jx40pISNBLL72kXr16mfvr6ur0yiuvaNGiRbr11ls1cuRIrVq1Srt379aePXskSVu3btXBgwf1+uuva/jw4Zo4caLmz5+v7OxsNTQ0SJJycnIUHR2thQsXauDAgUpJSdEvfvELLV68uF3mCwDwDg01AAAAAPiO5ORkxcXFKTY21mN/aWmpGhsbPfYPGDBA/fr1U3FxsSSpuLhYQ4YMkc1mM2OcTqfcbrfKy8vNmO8e2+l0msdoSX19vdxut8cGAGgfAe2dAAAAAAB0JG+88Ybef/997du376wxl8sli8Wi0NBQj/02m00ul8uMObOZ1jzePHa+GLfbra+//lrBwcFnnTszM1NPP/30Bc8LANB6WKEGAAAAAN+qqqrSY489pry8PAUFBbV3Oh7S0tJUV1dnblVVVe2dEgB0WTTUAAAAAOBbpaWlqqmp0YgRIxQQEKCAgADt3LlTy5YtU0BAgGw2mxoaGlRbW+vxvOrqatntdkmS3W4/666fzY+/L8Zqtba4Ok2SAgMDZbVaPTYAQPugoQYAAAAA3xo/frwOHDigsrIycxs1apQSEhLMP3fv3l3btm0zn1NRUaHKyko5HA5JksPh0IEDB1RTU2PGFBYWymq1atCgQWbMmcdojmk+BgCgY+MaagAAAADwrZ49e+raa6/12NejRw/17t3b3J+YmKhZs2YpLCxMVqtVjzzyiBwOh0aPHi1JmjBhggYNGqT77rtPWVlZcrlcmjt3rpKTkxUYGChJmjFjhl588UXNmTNHDz74oLZv3661a9dq06ZNbTthAMAFYYUaAMCnZGZm6vrrr1fPnj0VHh6uKVOmqKKiwiPm5MmTSk5OVu/evXX55ZcrPj7+rK/VVFZWKi4uTpdddpnCw8M1e/ZsnTp1yiNmx44dGjFihAIDA3X11VcrNzf3Uk8PAOADFi9erEmTJik+Pl5jxoyR3W7Xm2++aY5369ZNGzduVLdu3eRwOHTvvfdq2rRpysjIMGOio6O1adMmFRYWatiwYVq4cKFefvllOZ3O9pgSAMBLrFADAPiUnTt3Kjk5Wddff71OnTql3//+95owYYIOHjyoHj16SJJmzpypTZs2ad26dQoJCVFKSoruvPNO7dq1S5J0+vRpxcXFyW63a/fu3fryyy81bdo0de/eXc8++6wk6fDhw4qLi9OMGTOUl5enbdu26aGHHlLfvn35sAMAXcyOHTs8HgcFBSk7O1vZ2dnnfE5UVJQ2b9583uOOHTtWH3zwQWukCABoYzTUAAA+paCgwONxbm6uwsPDVVpaqjFjxqiurk6vvPKK8vPzdeutt0qSVq1apYEDB2rPnj0aPXq0tm7dqoMHD+qdd96RzWbT8OHDNX/+fD3++OOaN2+eLBaLcnJyFB0drYULF0qSBg4cqPfee0+LFy+moQYAAAB0cXzlEwDg0+rq6iRJYWFhkr65O1tjY6NiY2PNmAEDBqhfv34qLi6WJBUXF2vIkCGy2WxmjNPplNvtVnl5uRlz5jGaY5qP0ZL6+nq53W6PDQAAAEDnQ0MNAOCzmpqalJqaqptuusm8ULTL5ZLFYlFoaKhHrM1mk8vlMmPObKY1jzePnS/G7Xbr66+/bjGfzMxMhYSEmFtkZORFzxEAAABAx0NDDQDgs5KTk/XRRx/pjTfeaO9UJElpaWmqq6szt6qqqvZOCQAAAMAlwDXUAAA+KSUlRRs3blRRUZGuuOIKc7/dbldDQ4Nqa2s9VqlVV1fLbrebMXv37vU4XvNdQM+M+e6dQaurq2W1WhUcHNxiToGBgQoMDLzouQEAAADo2FihBgDwKYZhKCUlRW+99Za2b9+u6Ohoj/GRI0eqe/fu2rZtm7mvoqJClZWVcjgckiSHw6EDBw6opqbGjCksLJTVatWgQYPMmDOP0RzTfAwAAAAAXRcr1AAAPiU5OVn5+fn685//rJ49e5rXPAsJCVFwcLBCQkKUmJioWbNmKSwsTFarVY888ogcDodGjx4tSZowYYIGDRqk++67T1lZWXK5XJo7d66Sk5PNFWYzZszQiy++qDlz5ujBBx/U9u3btXbtWm3atKnd5g5I0pVPtPx38PPn4to4EwAAgK6LFWoAAJ+yYsUK1dXVaezYserbt6+5rVmzxoxZvHixJk2apPj4eI0ZM0Z2u11vvvmmOd6tWzdt3LhR3bp1k8Ph0L333qtp06YpIyPDjImOjtamTZtUWFioYcOGaeHChXr55ZfldDrbdL4AAAAAOh5WqAEAfIphGN8bExQUpOzsbGVnZ58zJioqSps3bz7vccaOHasPPvjA6xwBAAAAdG6sUAMAAAAAAAC8wAo1oJ2d61o4AAAAAACgY2KFGgAAAAAAAOAFGmoAAAAAAACAF2ioAQAAAAAAAF6goQYAAAAAAAB4gZsSAD7oXDcy+Py5uDbOBAAAAACArocVagAAAAAAAIAXaKgBAAAAAAAAXqChBgAAAAAAAHiBhhoAAAAAAADgBRpqAAAAAAAAgBdoqAEAAAAAAABeoKEGAAAAAAAAeIGGGgAAAAAAAOAFGmoAAAAAAACAF2ioAQAAAAAAAF6goQYAAAAAAAB4IaC9EwAAAAAAAL7ryic2tXcKQJtjhRoAAAAAAADgBRpqAAAAAAAAgBdoqAEAAAAAAABeoKEGAAAAAAAAeIGGGgAAAAAAAOAFGmoAAAAAAACAF2ioAQAAAAAAAF6goQYAAAAAAAB4IaC9EwAAAAAAAF3HlU9sOufY58/FtWEmwIVjhRoAAAAAAADgBRpqAAAAAAAAgBdoqAEAAAAAAABeoKEGAAAAAAAAeKHVG2qZmZm6/vrr1bNnT4WHh2vKlCmqqKjwiDl58qSSk5PVu3dvXX755YqPj1d1dbVHTGVlpeLi4nTZZZcpPDxcs2fP1qlTpzxiduzYoREjRigwMFBXX321cnNzW3s6AAAAF+3KJza1uAEAAMA3tXpDbefOnUpOTtaePXtUWFioxsZGTZgwQSdOnDBjZs6cqbffflvr1q3Tzp07deTIEd15553m+OnTpxUXF6eGhgbt3r1bq1evVm5urtLT082Yw4cPKy4uTuPGjVNZWZlSU1P10EMPacuWLa09JQAAAAAAAMAU0NoHLCgo8Hicm5ur8PBwlZaWasyYMaqrq9Mrr7yi/Px83XrrrZKkVatWaeDAgdqzZ49Gjx6trVu36uDBg3rnnXdks9k0fPhwzZ8/X48//rjmzZsni8WinJwcRUdHa+HChZKkgQMH6r333tPixYvldDpbe1oAAAAAAACApDa4hlpdXZ0kKSwsTJJUWlqqxsZGxcbGmjEDBgxQv379VFxcLEkqLi7WkCFDZLPZzBin0ym3263y8nIz5sxjNMc0H6Ml9fX1crvdHhsAAAAAAADgjVZfoXampqYmpaam6qabbtK1114rSXK5XLJYLAoNDfWItdlscrlcZsyZzbTm8eax88W43W59/fXXCg4OPiufzMxMPf30060yNwAAgI7kXNdk+/y5uDbOBAAAoPO7pCvUkpOT9dFHH+mNN964lKf5wdLS0lRXV2duVVVV7Z0SAAAAAAAAfMwlW6GWkpKijRs3qqioSFdccYW53263q6GhQbW1tR6r1Kqrq2W3282YvXv3ehyv+S6gZ8Z8986g1dXVslqtLa5Ok6TAwEAFBgZe9NwAAAAAAADQdbX6CjXDMJSSkqK33npL27dvV3R0tMf4yJEj1b17d23bts3cV1FRocrKSjkcDkmSw+HQgQMHVFNTY8YUFhbKarVq0KBBZsyZx2iOaT4GAAAAAAAAcCm0+gq15ORk5efn689//rN69uxpXvMsJCREwcHBCgkJUWJiombNmqWwsDBZrVY98sgjcjgcGj16tCRpwoQJGjRokO677z5lZWXJ5XJp7ty5Sk5ONleYzZgxQy+++KLmzJmjBx98UNu3b9fatWu1aVPL1w8BAAAAAAAAWkOrr1BbsWKF6urqNHbsWPXt29fc1qxZY8YsXrxYkyZNUnx8vMaMGSO73a4333zTHO/WrZs2btyobt26yeFw6N5779W0adOUkZFhxkRHR2vTpk0qLCzUsGHDtHDhQr388styOp2tPSUAAAAAAADAdEm+8tnS9utf/9qMCQoKUnZ2to4ePaoTJ07ozTffNK+N1iwqKkqbN2/WV199pf/+7//WggULFBDguaBu7Nix+uCDD1RfX6+///3vHucAAAAAAG9lZmbq+uuvV8+ePRUeHq4pU6aooqLCI+bkyZNKTk5W7969dfnllys+Pv6s6ztXVlYqLi5Ol112mcLDwzV79mydOnXKI2bHjh0aMWKEAgMDdfXVVys3N/dSTw8A0Eou6V0+AQAAAMCX7Ny5U8nJydqzZ48KCwvV2NioCRMm6MSJE2bMzJkz9fbbb2vdunXauXOnjhw5ojvvvNMcP336tOLi4tTQ0KDdu3dr9erVys3NVXp6uhlz+PBhxcXFady4cSorK1NqaqoeeughbdmypU3nCwC4MJfsLp8AAAAA4GsKCgo8Hufm5io8PFylpaUaM2aM6urq9Morryg/P1+33nqrJGnVqlUaOHCg9uzZo9GjR2vr1q06ePCg3nnnHdlsNg0fPlzz58/X448/rnnz5slisSgnJ0fR0dFauHChJGngwIF67733tHjxYi5jAwA+gBVqAAAAAHAOdXV1kqSwsDBJUmlpqRobGxUbG2vGDBgwQP369VNxcbEkqbi4WEOGDJHNZjNjnE6n3G63ysvLzZgzj9Ec03yMltTX18vtdntsAID2QUMNAOBzioqKdMcddygiIkJ+fn5av369x7hhGEpPT1ffvn0VHBys2NhYffrppx4xR48eVUJCgqxWq0JDQ5WYmKjjx497xHz44Ye65ZZbFBQUpMjISGVlZV3qqQEAOpCmpialpqbqpptu0rXXXitJcrlcslgsCg0N9Yi12WxyuVxmzJnNtObx5rHzxbjdbn399dct5pOZmamQkBBzi4yMvOg5AgAuDA01AIDPOXHihIYNG6bs7OwWx7OysrRs2TLl5OSopKREPXr0kNPp1MmTJ82YhIQElZeXq7CwUBs3blRRUZGSkpLMcbfbrQkTJigqKkqlpaV64YUXNG/ePK1cufKSzw8A0DEkJyfro48+0htvvNHeqUiS0tLSVFdXZ25VVVXtnRIAdFlcQw0A4HMmTpyoiRMntjhmGIaWLFmiuXPnavLkyZKk1157TTabTevXr9fUqVN16NAhFRQUaN++fRo1apQkafny5br99tu1YMECRUREKC8vTw0NDXr11VdlsVg0ePBglZWVadGiRR6NNwBA55SSkmL+wuWKK64w99vtdjU0NKi2ttZjlVp1dbXsdrsZs3fvXo/jNd8F9MyY794ZtLq6WlarVcHBwS3mFBgYqMDAwIueGwDg4rFCDQDQqRw+fFgul8vjujQhISGKiYnxuLZNaGio2UyTpNjYWPn7+6ukpMSMGTNmjCwWixnjdDpVUVGhY8eOtXhurm0DAL7PMAylpKTorbfe0vbt2xUdHe0xPnLkSHXv3l3btm0z91VUVKiyslIOh0OS5HA4dODAAdXU1JgxhYWFslqtGjRokBlz5jGaY5qPAQDo2GioAQA6leZr07R0XZozr1sTHh7uMR4QEKCwsDCvrn/zXVzbBgB8X3Jysl5//XXl5+erZ8+ecrlccrlc5nXNQkJClJiYqFmzZumvf/2rSktL9cADD8jhcGj06NGSpAkTJmjQoEG677779Le//U1btmzR3LlzlZycbK4wmzFjhv7xj39ozpw5+vjjj/XHP/5Ra9eu1cyZM9tt7gCAH46GGgAArYRr2wCA71uxYoXq6uo0duxY9e3b19zWrFljxixevFiTJk1SfHy8xowZI7vdrjfffNMc79atmzZu3Khu3brJ4XDo3nvv1bRp05SRkWHGREdHa9OmTSosLNSwYcO0cOFCvfzyy3I6nW06XwDAheEaagCATqX52jTV1dXq27evub+6ulrDhw83Y878Go4knTp1SkePHv3ea9uceY7v4to2AOD7DMP43pigoCBlZ2ef8+Y4khQVFaXNmzef9zhjx47VBx984HWOAID2xwo1AECnEh0dLbvd7nFdGrfbrZKSEo9r29TW1qq0tNSM2b59u5qamhQTE2PGFBUVqbGx0YwpLCxU//791atXrzaaDQAAAICOiIYaAMDnHD9+XGVlZSorK5P0zY0IysrKVFlZKT8/P6WmpuqZZ57Rhg0bdODAAU2bNk0RERGaMmWKJGngwIG67bbbNH36dO3du1e7du1SSkqKpk6dqoiICEnSPffcI4vFosTERJWXl2vNmjVaunSpZs2a1U6zBgAAANBR8JVPAIDP2b9/v8aNG2c+bm5y3X///crNzdWcOXN04sQJJSUlqba2VjfffLMKCgoUFBRkPicvL08pKSkaP368/P39FR8fr2XLlpnjISEh2rp1q5KTkzVy5Ej16dNH6enpSkpKaruJAgAAAOiQaKgBAHzO2LFjz3uNGz8/P2VkZHhc/Pm7wsLClJ+ff97zDB06VO++++4F5wl0BFc+semcY58/F9eGmQAAAHQefOUTAAAAAAAA8AIr1IA2cr4VAgAAAAAAwHewQg0AAAAAAADwAg01AAAAAAAAwAs01AAAAAAAAAAvcA01oBM513XauIsbAAAAAACthxVqAAAAAAAAgBdoqAEAAAAAAABeoKEGAAAAAAAAeIGGGgAAAAAAAOAFbkoAAAAAAADO61w3QAO6KhpqAAAArYAPGgAAAF0HDTUAAIAu6lxNwM+fi2vjTAAAAHwL11ADAAAAAAAAvEBDDQAAAAAAAPACDTUAAAAAAADAC1xDDQAAAAAAdAhc3xO+ghVqAAAAAAAAgBdYoQa0onP9NgUAAF/C6gAAAIDzY4UaAAAAAAAA4AUaagAAAAAAAIAXaKgBAAAAAAAAXqChBgAAAAAAAHiBmxIAXcD5bpbABaYBwDtd+QY01BMAAIBv0FADAAAAAACSuvYvjgBv0FADAADARTvXBzBWrgEAgM6IhhpwAfitDQAAAAAAXRc3JQAAAAAAAAC8QEMNAAAAAAAA8AINNQAAAAAAAMALXEMNOA+ulQYAwMW5kFrKjQwA4NLztc863PwGHQ0NNQAAAHQofGgCAAAdHQ01AACAFvjab+4BAADQdmioAV0cqwAAAAAAAPAODTV0eaxAAADAN/BLIAAA0FHQUAMAAECnRRMOQFfWFRYPnG+O/KzHpURDDQAAAD6tK3xgBIDz4ecg0PZoqAFoEb/RB9AV8AGk66LOAQCAi0FDDV0GH5oAAMD34atDADoyPtMAHQcNNXQ6FBkA6LqoAWgPrHYDgI6Jn8+4lGiowSfxgan98Jt7AO2NGoD2wt89AG2BnzWAb6Chhg6B3xx0DryPAAAAgCf+jwx0TjTU0GYu5Dct/HYGAAD4qgv5f8z5PmDzoRzoXPis0374eYrWQEMNrY7CgO+iYAEA8MN01F9A0ugD0BVweRt4g4YaJNEEQ/ugYAGdD/UE6Jxas9FHjYcvo84BaEZDrRPihzw6g9b+mgwA71FPAACdAfUMrcHbv0d8Nun8aKj5AAoAAOC7WPkBAGgPrflLTz7noDPj2zidn8831LKzs/XCCy/I5XJp2LBhWr58uW644YY2OTcFAOhY2vsaMuicfK3OXEijjXoGAO3L12pNRzwH4Ev43NI5+HRDbc2aNZo1a5ZycnIUExOjJUuWyOl0qqKiQuHh4e2dHoBOqKP+h5CCeWl0pjrTUf/uAkBX15lqDYCOozX/78dnjZb5GYZhtHcSFyomJkbXX3+9XnzxRUlSU1OTIiMj9cgjj+iJJ544K76+vl719fXm47q6OvXr109VVVWyWq1en//ap7ZcePIA0EF99LTzgp/rdrsVGRmp2tpahYSEtGJW7YM6AwCtjzrjyZta09p1RqLWAOicLrTWeFVnDB9VX19vdOvWzXjrrbc89k+bNs342c9+1uJznnrqKUMSGxsbG9sl3qqqqtqgElxa1Bk2Nja2jrt1hjpjGN7XGuoMGxsbW9tsP6TO+OxXPv/nf/5Hp0+fls1m89hvs9n08ccft/ictLQ0zZo1y3zc1NSko0ePqnfv3vLz87skeTZ3Ny/mt0btydfzl5hDR+Dr+Uu+P4e2yt8wDP373/9WRETEJTtHW6HOtB1fn4Ov5y/5/hx8PX+JOfxQnanOSN7XGurMhWEO7c/X85d8fw6+nr/U8eqMzzbULkRgYKACAwM99oWGhrbJua1Wq8/+pZV8P3+JOXQEvp6/5PtzaIv8O8tXcC4Edebi+PocfD1/yffn4Ov5S8zhh6DOUGcuFHNof76ev+T7c/D1/KWOU2f8L1kGl1ifPn3UrVs3VVdXe+yvrq6W3W5vp6wAAJ0FdQYAcKlRawDAd/lsQ81isWjkyJHatm2bua+pqUnbtm2Tw+Fox8wAAJ0BdQYAcKlRawDAd/n0Vz5nzZql+++/X6NGjdINN9ygJUuW6MSJE3rggQfaOzVTYGCgnnrqqbOWZvsKX89fYg4dga/nL/n+HHw9//ZCnWkbvj4HX89f8v05+Hr+EnPoyjp6rekM7ytzaH++nr/k+3Pw9fyljjcHP8MwjPZO4mK8+OKLeuGFF+RyuTR8+HAtW7ZMMTEx7Z0WAKCToM4AAC41ag0A+B6fb6gBAAAAAAAAbclnr6EGAAAAAAAAtAcaagAAAAAAAIAXaKgBAAAAAAAAXqChBgAAAAAAAHiBhlor27Fjh/z8/Frc9u3bd87njR079qz4GTNmtGHm/+vKK688K5fnnnvuvM85efKkkpOT1bt3b11++eWKj49XdXV1G2Xs6fPPP1diYqKio6MVHBysq666Sk899ZQaGhrO+7z2fA+ys7N15ZVXKigoSDExMdq7d+9549etW6cBAwYoKChIQ4YM0ebNm9skz5ZkZmbq+uuvV8+ePRUeHq4pU6aooqLivM/Jzc0967UOCgpqo4zPNm/evLPyGTBgwHmf05Heg5b+zfr5+Sk5ObnF+I72+sM71BnqzIXy1VpDnWn/OiNRa7qSzlBnJN+uNdSZtufrtYY6006vv4FWVV9fb3z55Zce20MPPWRER0cbTU1N53zeT3/6U2P69Okez6urq2vDzP9XVFSUkZGR4ZHL8ePHz/ucGTNmGJGRkca2bduM/fv3G6NHjzZuvPHGNsrY01/+8hfj17/+tbFlyxbj73//u/HnP//ZCA8PN373u9+d93nt9R688cYbhsViMV599VWjvLzcmD59uhEaGmpUV1e3GL9r1y6jW7duRlZWlnHw4EFj7ty5Rvfu3Y0DBw5c8lxb4nQ6jVWrVhkfffSRUVZWZtx+++1Gv379zvt3ZtWqVYbVavV4rV0uVxtm7empp54yBg8e7JHPf//3f58zvqO9BzU1NR65FxYWGpKMv/71ry3Gd7TXH96hzlBnLoQv1xrqTPvXGcOg1nQlnaHOGIZv1xrqTNvz9VpDnWmf15+G2iXW0NBg/OhHPzIyMjLOG/fTn/7UeOyxx9omqe8RFRVlLF68+AfH19bWGt27dzfWrVtn7jt06JAhySguLr4EGXovKyvLiI6OPm9Me70HN9xwg5GcnGw+Pn36tBEREWFkZma2GP/LX/7SiIuL89gXExNj/OY3v7mkef5QNTU1hiRj586d54xZtWqVERIS0nZJfY+nnnrKGDZs2A+O7+jvwWOPPWZcddVV5/xPb0d7/XFxqDPUmR+iM9Ua6kzHQK3pOnyxzhhG56s11Jm25Wu1hjrTPvjK5yW2YcMG/X//3/+nBx544Htj8/Ly1KdPH1177bVKS0vTV1991QYZtuy5555T7969dd111+mFF17QqVOnzhlbWlqqxsZGxcbGmvsGDBigfv36qbi4uC3S/V51dXUKCwv73ri2fg8aGhpUWlrq8dr5+/srNjb2nK9dcXGxR7wkOZ3ODvVaS/re1/v48eOKiopSZGSkJk+erPLy8rZI75w+/fRTRURE6Mc//rESEhJUWVl5ztiO/B40NDTo9ddf14MPPig/P79zxnW01x8XjjrT/v/upI5bZ6TOV2uoM+2PWtO1+GqdkTpXraHOtC1frDXUmbZ//QPa9Gxd0CuvvCKn06krrrjivHH33HOPoqKiFBERoQ8//FCPP/64Kioq9Oabb7ZRpv/r0Ucf1YgRIxQWFqbdu3crLS1NX375pRYtWtRivMvlksViUWhoqMd+m80ml8vVBhmf32effably5drwYIF541rj/fgf/7nf3T69GnZbDaP/TabTR9//HGLz3G5XC3Gd4TXuqmpSampqbrpppt07bXXnjOuf//+evXVVzV06FDV1dVpwYIFuvHGG1VeXv69/1YuhZiYGOXm5qp///768ssv9fTTT+uWW27RRx99pJ49e54V35Hfg/Xr16u2tla//vWvzxnT0V5/XBzqTPv/u+vIdUbqXLWGOtP+f98lak1X44t1RupctYY607Z8sdZQZ9rp9W/X9XE+5PHHHzcknXc7dOiQx3OqqqoMf39/47/+67+8Pt+2bdsMScZnn33Wbvk3e+WVV4yAgADj5MmTLY7n5eUZFovlrP3XX3+9MWfOnFbJ/0Ln8MUXXxhXXXWVkZiY6PX5Wvs9aMm//vUvQ5Kxe/duj/2zZ882brjhhhaf0717dyM/P99jX3Z2thEeHn7J8vyhZsyYYURFRRlVVVVePa+hocG46qqrjLlz516izLxz7Ngxw2q1Gi+//HKL4x35PZgwYYIxadIkr57T0V7/roo6Q525VDpTraHOtH+dMQxqja/y9TpjGL5fa6gz/6sj/5zrDLWGOtM2WKH2A/3ud787b3dUkn784x97PF61apV69+6tn/3sZ16fLyYmRtI3v4246qqrvH7+d11I/mfmcurUKX3++efq37//WeN2u10NDQ2qra31+I1OdXW17Hb7xaTtwds5HDlyROPGjdONN96olStXen2+1n4PWtKnTx9169btrLsHne+1s9vtXsW3lZSUFG3cuFFFRUVe/0age/fuuu666/TZZ59douy8Exoaqp/85CfnzKejvgf//Oc/9c4773j9W8iO9vp3VdQZ6syl0llqDXWm/euMRK3xZb5eZyTfrzXUmf/VUX/OdZZaQ51pI23WuutimpqajOjo6O+9E8u5vPfee4Yk429/+1srZ+a9119/3fD39zeOHj3a4njzBTzP/M3Vxx9/3K4X8Pziiy+Ma665xpg6dapx6tSpCzpGW70HN9xwg5GSkmI+Pn36tPEf//Ef572A53e79Q6Ho90uINnU1GQkJycbERERxieffHJBxzh16pTRv39/Y+bMma2c3YX597//bfTq1ctYunRpi+Md7T1o9tRTTxl2u91obGz06nkd7fXHD0Odoc54w5drDXXmGx2hzhgGtaYr6Ux1xjB8r9ZQZ9pWZ6s11Jm2QUPtEnnnnXfOueT4iy++MPr372+UlJQYhmEYn332mZGRkWHs37/fOHz4sPHnP//Z+PGPf2yMGTOmrdM2du/ebSxevNgoKysz/v73vxuvv/668aMf/ciYNm3aOfM3jG+Wxfbr18/Yvn27sX//fsPhcBgOh6PN82/O7+qrrzbGjx9vfPHFFx630T0zpqO8B2+88YYRGBho5ObmGgcPHjSSkpKM0NBQ85a/9913n/HEE0+Y8bt27TICAgKMBQsWGIcOHTKeeuqpdr3F8cMPP2yEhIQYO3bs8Hitv/rqKzPmu3N4+umnzduAl5aWGlOnTjWCgoKM8vLy9piC8bvf/c7YsWOHcfjwYWPXrl1GbGys0adPH6OmpqbF/Dvae2AY3/ynpV+/fsbjjz9+1lhHf/1xYagz1Blv+HKtoc50jDpjGNSarsZX64xh+H6toc60PV+vNdSZ9nn9aahdInfffbdx4403tjh2+PBhQ5Lx17/+1TAMw6isrDTGjBljhIWFGYGBgcbVV19tzJ4926irq2vDjL9RWlpqxMTEGCEhIUZQUJAxcOBA49lnn/W41sB38zcMw/j666+N3/72t0avXr2Myy67zPj5z3/u8QO/La1ateqc1yRo1tHeg+XLlxv9+vUzLBaLccMNNxh79uwxx376058a999/v0f82rVrjZ/85CeGxWIxBg8ebGzatKlN8mzJuV7rVatWmTHfnUNqaqo5X5vNZtx+++3G+++/3/bJf+tXv/qV0bdvX8NisRj/8R//YfzqV7/yuNZER38PDMMwtmzZYkgyKioqzhrr6K8/Lgx1hjrjLV+tNdSZjlFnDINa09X4ap0xDN+vNdSZtufrtYY60z6vv59hGEbrfHkUAAAAAAAA6Pz82zsBAAAAAAAAwJfQUAMAAAAAAAC8QEMNAAAAAAAA8AINNQAAAAAAAMALNNQAAAAAAAAAL9BQAwAAAAAAALxAQw0AAAAAAADwAg01AAAAAAAAwAs01AAAAAAAAAAv0FADAAAAAAAAvEBDDQAAAAAAAPDC/w/P1gkirAIWgAAAAABJRU5ErkJggg==", "text/plain": [ "
    " ] @@ -3610,7 +3626,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 9, "id": "96beb10b", "metadata": {}, "outputs": [ @@ -3618,7 +3634,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 30/30 [01:11<00:00, 2.40s/it]\n" + "100%|██████████| 30/30 [01:33<00:00, 3.12s/it]\n" ] }, { @@ -3659,273 +3675,273 @@ " \n", " \n", " 0.010000\n", - " 0.058539\n", - " 0.009925\n", - " -0.074353\n", - " 0.009956\n", - " 0.058489\n", - " 0.010172\n", + " 0.057683\n", + " 0.010025\n", + " -0.072917\n", + " 0.010065\n", + " 0.057727\n", + " 0.010021\n", " \n", " \n", " 0.044138\n", - " 0.072453\n", - " 0.043837\n", - " -0.074521\n", - " 0.044306\n", - " 0.072914\n", - " 0.043418\n", + " 0.072589\n", + " 0.044802\n", + " -0.073916\n", + " 0.044631\n", + " 0.07164\n", + " 0.043675\n", " \n", " \n", " 0.078276\n", - " 0.096283\n", - " 0.077296\n", - " -0.074439\n", - " 0.078694\n", - " 0.097877\n", - " 0.078695\n", + " 0.097244\n", + " 0.076851\n", + " -0.074306\n", + " 0.078026\n", + " 0.096593\n", + " 0.077186\n", " \n", " \n", " 0.112414\n", - " 0.125907\n", - " 0.112713\n", - " -0.072822\n", - " 0.114115\n", - " 0.126867\n", - " 0.112448\n", + " 0.126724\n", + " 0.113226\n", + " -0.074599\n", + " 0.111698\n", + " 0.125392\n", + " 0.112352\n", " \n", " \n", " 0.146552\n", - " 0.156651\n", - " 0.14639\n", - " -0.076332\n", - " 0.148009\n", - " 0.158442\n", - " 0.14791\n", + " 0.161062\n", + " 0.148044\n", + " -0.073835\n", + " 0.144127\n", + " 0.158373\n", + " 0.14771\n", " \n", " \n", " 0.180690\n", - " 0.191017\n", - " 0.180696\n", - " -0.076214\n", - " 0.184226\n", - " 0.197253\n", - " 0.187768\n", + " 0.187533\n", + " 0.17914\n", + " -0.073972\n", + " 0.177666\n", + " 0.193318\n", + " 0.182502\n", " \n", " \n", " 0.214828\n", - " 0.232946\n", - " 0.223027\n", - " -0.074821\n", - " 0.216262\n", - " 0.22171\n", - " 0.21416\n", + " 0.221276\n", + " 0.21313\n", + " -0.074785\n", + " 0.215908\n", + " 0.226528\n", + " 0.220385\n", " \n", " \n", " 0.248966\n", - " 0.261551\n", - " 0.256173\n", - " -0.072906\n", - " 0.248545\n", - " 0.255505\n", - " 0.248302\n", + " 0.26148\n", + " 0.254395\n", + " -0.073964\n", + " 0.250069\n", + " 0.258361\n", + " 0.250519\n", " \n", " \n", " 0.283103\n", - " 0.296457\n", - " 0.2894\n", - " -0.07681\n", - " 0.287412\n", - " 0.30796\n", - " 0.301363\n", + " 0.300758\n", + " 0.290956\n", + " -0.076179\n", + " 0.285528\n", + " 0.301212\n", + " 0.295498\n", " \n", " \n", " 0.317241\n", - " 0.328155\n", - " 0.324173\n", - " -0.074666\n", - " 0.316966\n", - " 0.326672\n", - " 0.323172\n", + " 0.338351\n", + " 0.334017\n", + " -0.075378\n", + " 0.319719\n", + " 0.324175\n", + " 0.316853\n", " \n", " \n", " 0.351379\n", - " 0.369096\n", - " 0.365334\n", - " -0.073596\n", - " 0.369628\n", - " 0.365839\n", - " 0.360829\n", + " 0.367954\n", + " 0.363122\n", + " -0.07573\n", + " 0.357393\n", + " 0.361117\n", + " 0.35476\n", " \n", " \n", " 0.385517\n", - " 0.406072\n", - " 0.402159\n", - " -0.075444\n", - " 0.393714\n", - " 0.410961\n", - " 0.405051\n", + " 0.41408\n", + " 0.409446\n", + " -0.074094\n", + " 0.401389\n", + " 0.393857\n", + " 0.389276\n", " \n", " \n", " 0.419655\n", - " 0.445071\n", - " 0.444579\n", - " -0.076915\n", - " 0.435115\n", - " 0.453349\n", - " 0.446231\n", + " 0.447629\n", + " 0.443448\n", + " -0.074523\n", + " 0.441588\n", + " 0.44562\n", + " 0.438732\n", " \n", " \n", " 0.453793\n", - " 0.493928\n", - " 0.488103\n", - " -0.076583\n", - " 0.471417\n", - " 0.466752\n", - " 0.462189\n", + " 0.488527\n", + " 0.485423\n", + " -0.07648\n", + " 0.48065\n", + " 0.466499\n", + " 0.461996\n", " \n", " \n", " 0.487931\n", - " 0.510226\n", - " 0.508801\n", - " -0.074214\n", - " 0.502064\n", - " 0.518513\n", - " 0.516626\n", + " 0.511651\n", + " 0.509897\n", + " -0.076504\n", + " 0.516263\n", + " 0.525479\n", + " 0.521939\n", " \n", " \n", " 0.522069\n", - " 0.574613\n", - " 0.569393\n", - " -0.076102\n", - " 0.548605\n", - " 0.553551\n", - " 0.548981\n", + " 0.560449\n", + " 0.554648\n", + " -0.076164\n", + " 0.588835\n", + " 0.553073\n", + " 0.549921\n", " \n", " \n", " 0.556207\n", - " 0.612701\n", - " 0.608581\n", - " -0.076251\n", - " 0.605026\n", - " 0.603139\n", - " 0.59927\n", + " 0.624012\n", + " 0.619469\n", + " -0.074629\n", + " 0.604603\n", + " 0.620234\n", + " 0.615226\n", " \n", " \n", " 0.590345\n", - " 0.664505\n", - " 0.662742\n", - " -0.074098\n", - " 0.686287\n", - " 0.641701\n", - " 0.639544\n", + " 0.668659\n", + " 0.668435\n", + " -0.074184\n", + " 0.666582\n", + " 0.664103\n", + " 0.661735\n", " \n", " \n", " 0.624483\n", - " 0.675591\n", - " 0.667619\n", - " -0.0754\n", - " 0.653221\n", - " 0.669102\n", - " 0.662489\n", + " 0.664763\n", + " 0.661053\n", + " -0.075251\n", + " 0.718272\n", + " 0.653738\n", + " 0.655885\n", " \n", " \n", " 0.658621\n", - " 0.737656\n", - " 0.737084\n", - " -0.075291\n", - " 0.763873\n", - " 0.745471\n", - " 0.74714\n", + " 0.768491\n", + " 0.763042\n", + " -0.074345\n", + " 0.75525\n", + " 0.731598\n", + " 0.731191\n", " \n", " \n", " 0.692759\n", - " 0.795333\n", - " 0.795579\n", - " -0.075112\n", - " 0.745053\n", - " 0.786581\n", - " 0.783052\n", + " 0.74921\n", + " 0.745538\n", + " -0.07654\n", + " 0.744526\n", + " 0.749075\n", + " 0.745074\n", " \n", " \n", " 0.726897\n", - " 0.850242\n", - " 0.850617\n", - " -0.07372\n", - " 0.835327\n", - " 0.882699\n", - " 0.874349\n", + " 0.786251\n", + " 0.781474\n", + " -0.073838\n", + " 0.838928\n", + " 0.851041\n", + " 0.845766\n", " \n", " \n", " 0.761034\n", - " 0.887859\n", - " 0.888673\n", - " -0.075511\n", - " 0.896773\n", - " 0.908\n", - " 0.900128\n", + " 0.887831\n", + " 0.883285\n", + " -0.07649\n", + " 0.830141\n", + " 0.918858\n", + " 0.913967\n", " \n", " \n", " 0.795172\n", - " 0.899191\n", - " 0.894746\n", - " -0.074014\n", - " 1.012242\n", - " 0.949498\n", - " 0.933351\n", + " 0.963299\n", + " 0.953417\n", + " -0.075958\n", + " 0.921483\n", + " 0.925864\n", + " 0.92228\n", " \n", " \n", " 0.829310\n", - " 1.027122\n", - " 1.025607\n", - " -0.076565\n", - " 0.991731\n", - " 1.064521\n", - " 1.076295\n", + " 0.999529\n", + " 0.996758\n", + " -0.074443\n", + " 0.917099\n", + " 0.950924\n", + " 0.952842\n", " \n", " \n", " 0.863448\n", - " 1.130706\n", - " 1.139756\n", - " -0.077258\n", - " 1.069586\n", - " 1.0855\n", - " 1.084064\n", + " 1.114013\n", + " 1.113976\n", + " -0.07707\n", + " 0.990224\n", + " 0.990741\n", + " 0.990639\n", " \n", " \n", " 0.897586\n", - " 1.135596\n", - " 1.130553\n", - " -0.074268\n", - " 1.068525\n", - " 1.096026\n", - " 1.093373\n", + " 1.208895\n", + " 1.193381\n", + " -0.076262\n", + " 1.040736\n", + " 1.194062\n", + " 1.17485\n", " \n", " \n", " 0.931724\n", - " 1.114373\n", - " 1.122446\n", - " -0.073367\n", - " 1.138072\n", - " 1.442353\n", - " 1.452476\n", + " 1.229506\n", + " 1.217887\n", + " -0.074203\n", + " 1.067752\n", + " 1.118409\n", + " 1.115291\n", " \n", " \n", " 0.965862\n", - " 1.343282\n", - " 1.344647\n", - " -0.075523\n", - " 1.229621\n", - " 1.149649\n", - " 1.142721\n", + " 1.210544\n", + " 1.202383\n", + " -0.074611\n", + " 1.320652\n", + " 1.346053\n", + " 1.333525\n", " \n", " \n", " 1.000000\n", - " 1.172116\n", - " 1.173055\n", - " -0.075646\n", - " 1.419511\n", - " 1.269847\n", - " 1.260284\n", + " 1.303965\n", + " 1.306919\n", + " -0.076025\n", + " 1.24546\n", + " 1.263613\n", + " 1.247266\n", " \n", " \n", "\n", @@ -3934,72 +3950,72 @@ "text/plain": [ " Biomass Glucose Product \n", " pseudobatch_c c pseudobatch_c c pseudobatch_c \n", - "0.010000 0.058539 0.009925 -0.074353 0.009956 0.058489 \\\n", - "0.044138 0.072453 0.043837 -0.074521 0.044306 0.072914 \n", - "0.078276 0.096283 0.077296 -0.074439 0.078694 0.097877 \n", - "0.112414 0.125907 0.112713 -0.072822 0.114115 0.126867 \n", - "0.146552 0.156651 0.14639 -0.076332 0.148009 0.158442 \n", - "0.180690 0.191017 0.180696 -0.076214 0.184226 0.197253 \n", - "0.214828 0.232946 0.223027 -0.074821 0.216262 0.22171 \n", - "0.248966 0.261551 0.256173 -0.072906 0.248545 0.255505 \n", - "0.283103 0.296457 0.2894 -0.07681 0.287412 0.30796 \n", - "0.317241 0.328155 0.324173 -0.074666 0.316966 0.326672 \n", - "0.351379 0.369096 0.365334 -0.073596 0.369628 0.365839 \n", - "0.385517 0.406072 0.402159 -0.075444 0.393714 0.410961 \n", - "0.419655 0.445071 0.444579 -0.076915 0.435115 0.453349 \n", - "0.453793 0.493928 0.488103 -0.076583 0.471417 0.466752 \n", - "0.487931 0.510226 0.508801 -0.074214 0.502064 0.518513 \n", - "0.522069 0.574613 0.569393 -0.076102 0.548605 0.553551 \n", - "0.556207 0.612701 0.608581 -0.076251 0.605026 0.603139 \n", - "0.590345 0.664505 0.662742 -0.074098 0.686287 0.641701 \n", - "0.624483 0.675591 0.667619 -0.0754 0.653221 0.669102 \n", - "0.658621 0.737656 0.737084 -0.075291 0.763873 0.745471 \n", - "0.692759 0.795333 0.795579 -0.075112 0.745053 0.786581 \n", - "0.726897 0.850242 0.850617 -0.07372 0.835327 0.882699 \n", - "0.761034 0.887859 0.888673 -0.075511 0.896773 0.908 \n", - "0.795172 0.899191 0.894746 -0.074014 1.012242 0.949498 \n", - "0.829310 1.027122 1.025607 -0.076565 0.991731 1.064521 \n", - "0.863448 1.130706 1.139756 -0.077258 1.069586 1.0855 \n", - "0.897586 1.135596 1.130553 -0.074268 1.068525 1.096026 \n", - "0.931724 1.114373 1.122446 -0.073367 1.138072 1.442353 \n", - "0.965862 1.343282 1.344647 -0.075523 1.229621 1.149649 \n", - "1.000000 1.172116 1.173055 -0.075646 1.419511 1.269847 \n", + "0.010000 0.057683 0.010025 -0.072917 0.010065 0.057727 \\\n", + "0.044138 0.072589 0.044802 -0.073916 0.044631 0.07164 \n", + "0.078276 0.097244 0.076851 -0.074306 0.078026 0.096593 \n", + "0.112414 0.126724 0.113226 -0.074599 0.111698 0.125392 \n", + "0.146552 0.161062 0.148044 -0.073835 0.144127 0.158373 \n", + "0.180690 0.187533 0.17914 -0.073972 0.177666 0.193318 \n", + "0.214828 0.221276 0.21313 -0.074785 0.215908 0.226528 \n", + "0.248966 0.26148 0.254395 -0.073964 0.250069 0.258361 \n", + "0.283103 0.300758 0.290956 -0.076179 0.285528 0.301212 \n", + "0.317241 0.338351 0.334017 -0.075378 0.319719 0.324175 \n", + "0.351379 0.367954 0.363122 -0.07573 0.357393 0.361117 \n", + "0.385517 0.41408 0.409446 -0.074094 0.401389 0.393857 \n", + "0.419655 0.447629 0.443448 -0.074523 0.441588 0.44562 \n", + "0.453793 0.488527 0.485423 -0.07648 0.48065 0.466499 \n", + "0.487931 0.511651 0.509897 -0.076504 0.516263 0.525479 \n", + "0.522069 0.560449 0.554648 -0.076164 0.588835 0.553073 \n", + "0.556207 0.624012 0.619469 -0.074629 0.604603 0.620234 \n", + "0.590345 0.668659 0.668435 -0.074184 0.666582 0.664103 \n", + "0.624483 0.664763 0.661053 -0.075251 0.718272 0.653738 \n", + "0.658621 0.768491 0.763042 -0.074345 0.75525 0.731598 \n", + "0.692759 0.74921 0.745538 -0.07654 0.744526 0.749075 \n", + "0.726897 0.786251 0.781474 -0.073838 0.838928 0.851041 \n", + "0.761034 0.887831 0.883285 -0.07649 0.830141 0.918858 \n", + "0.795172 0.963299 0.953417 -0.075958 0.921483 0.925864 \n", + "0.829310 0.999529 0.996758 -0.074443 0.917099 0.950924 \n", + "0.863448 1.114013 1.113976 -0.07707 0.990224 0.990741 \n", + "0.897586 1.208895 1.193381 -0.076262 1.040736 1.194062 \n", + "0.931724 1.229506 1.217887 -0.074203 1.067752 1.118409 \n", + "0.965862 1.210544 1.202383 -0.074611 1.320652 1.346053 \n", + "1.000000 1.303965 1.306919 -0.076025 1.24546 1.263613 \n", "\n", " \n", " c \n", - "0.010000 0.010172 \n", - "0.044138 0.043418 \n", - "0.078276 0.078695 \n", - "0.112414 0.112448 \n", - "0.146552 0.14791 \n", - "0.180690 0.187768 \n", - "0.214828 0.21416 \n", - "0.248966 0.248302 \n", - "0.283103 0.301363 \n", - "0.317241 0.323172 \n", - "0.351379 0.360829 \n", - "0.385517 0.405051 \n", - "0.419655 0.446231 \n", - "0.453793 0.462189 \n", - "0.487931 0.516626 \n", - "0.522069 0.548981 \n", - "0.556207 0.59927 \n", - "0.590345 0.639544 \n", - "0.624483 0.662489 \n", - "0.658621 0.74714 \n", - "0.692759 0.783052 \n", - "0.726897 0.874349 \n", - "0.761034 0.900128 \n", - "0.795172 0.933351 \n", - "0.829310 1.076295 \n", - "0.863448 1.084064 \n", - "0.897586 1.093373 \n", - "0.931724 1.452476 \n", - "0.965862 1.142721 \n", - "1.000000 1.260284 " + "0.010000 0.010021 \n", + "0.044138 0.043675 \n", + "0.078276 0.077186 \n", + "0.112414 0.112352 \n", + "0.146552 0.14771 \n", + "0.180690 0.182502 \n", + "0.214828 0.220385 \n", + "0.248966 0.250519 \n", + "0.283103 0.295498 \n", + "0.317241 0.316853 \n", + "0.351379 0.35476 \n", + "0.385517 0.389276 \n", + "0.419655 0.438732 \n", + "0.453793 0.461996 \n", + "0.487931 0.521939 \n", + "0.522069 0.549921 \n", + "0.556207 0.615226 \n", + "0.590345 0.661735 \n", + "0.624483 0.655885 \n", + "0.658621 0.731191 \n", + "0.692759 0.745074 \n", + "0.726897 0.845766 \n", + "0.761034 0.913967 \n", + "0.795172 0.92228 \n", + "0.829310 0.952842 \n", + "0.863448 0.990639 \n", + "0.897586 1.17485 \n", + "0.931724 1.115291 \n", + "0.965862 1.333525 \n", + "1.000000 1.247266 " ] }, - "execution_count": 24, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -4043,13 +4059,13 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 10, "id": "f06f8579", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABF4AAAH2CAYAAABJM0jbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC7DUlEQVR4nOzde3zO9f/H8cd1jW3GNscxcpiVcijEdyJK5TBpQgchZyqHnJJSMVPRQQ4Vkwq/kuggEjnkkEiWUDmG5hBzXLY5bXZdn98fV7u4bOPatWu7dnjeb7erfN6f9+dzvT6f6/C59vq8DybDMAxERERERERERMTtzJ4OQERERERERESkoFLiRUREREREREQkhyjxIiIiIiIiIiKSQ5R4ERERERERERHJIUq8iIiIiIiIiIjkECVeRERERERERERyiBIvIiIiIiIiIiI5RIkXEREREREREZEcosSLiIiIiIiIiEgOUeJFRERERERERCSHKPEiIiIiIiIiIpJDlHgRERERERER8bCDBw9iMpnYvn27p0MRN1PiRURERERERMQFc+bMoWTJkp4OQ/I4JV5ERERERERERHKIEi8i2fDrr7/SpEkTihcvbm8WmFHZnDlzMJlMHDx4MEv7d3W7vCKjc+FpOXVOPfla5cXzLM4bO3YsJpPJ5e1Onz6dA1G5Ji/GdD1Z+dxm99jy+/d5VhW24xUp6CxWg00HzrB4+1E2HTiDxWrk6PNZrVbeeustbr75Znx8fKhSpQqvv/66ff0LL7xAjRo18PPzo3r16owePZrLly/b1//+++/cd999+Pv7ExAQQIMGDdiyZYt9/YYNG2jWrBnFihWjcuXKDB48mPPnz2caT2b7W7duHb169SIhIQGTyYTJZGLs2LEAmEwmFi1a5LCfkiVLMmfOHPtyTEwM9evXx9fXl4YNG7Jt2zb7OsMwuPnmm5k4caLDPrZv347JZGL//v1ZOaUF3ieffEKZMmVITk52KG/fvj3dunXL0r727NmDn58f8+bNs5d98cUXFCtWjF27drkUXxGXthLJQw4cOMBbb73FqlWrOHbsGN7e3tx+++08/vjjPPXUUxQrVixHnvfy5cs89thj+Pr6MnnyZPz8/KhUqRL/+9//HMqqVq2ap/8Q/vnnn1m5ciVDhw51azPJjM5P1apV3bZ/T8ipc5UdBfE8i+fkxfd4birsxy/iSfr85V3Ld8QRtWQXcQmX7GXBgb5ERtQivE5wjjznqFGj+PDDD5k8eTJNmzYlLi6OPXv22Nf7+/szZ84cKlasyJ9//km/fv3w9/dn5MiRAHTt2pX69esTHR2Nl5cX27dvp2jRooDtb4fw8HBee+01Zs2axalTpxg0aBCDBg1i9uzZGcaT2f6aNGnClClTGDNmDHv37gWgRIkSTh3juXPneOihh2jZsiVz584lNjaWIUOG2NebTCZ69+7N7NmzGTFihL189uzZ3HPPPdx8881ZO6nZYRhw4ULuPd/V/PzAiRtUjz32GIMHD+bbb7/lscceA+DkyZMsXbqUlStX8tNPP9GmTZvr7uODDz6ga9eu3HbbbUycOJEBAwbQtGlTzGYzzzzzDG+++Sa1atVy7TgMkXzsu+++M4oVK2aULFnSGDx4sDFz5kzj/fffN5544gmjaNGiRr9+/XLsuXfv3m0AxocffnjdMsMwjNTUVOPixYuG1WrN0nO4ul1WvP322wZgxMbGunW/mZ0LT8vOOb3eucqN1yojefU8i/MiIyMNVy7HadudOnXKbbFk9/sgJ2LKSdd+bq93/Nk9Nk99R3hKYTteyb6c+j0i2fP9n8eMai98Z1S95lHtv8f3fx5z+3MmJiYaPj4+Wfpt8/bbbxsNGjSwL/v7+xtz5szJsG6fPn2Mp556yqHsp59+Msxms3Hx4sUMt7ne/mbPnm0EBgamKweMb775xqEsMDDQmD17tmEYhvHBBx8YZcqUcXjO6OhoAzC2bdtmGIZhHD161PDy8jI2b95sGIZhpKSkGGXLls00lhxz7pxh2NIvuf84d87pMPv372+0adPGvvzOO+8Y1atXN6xWq3HhwgVj3759130kJiY67K9t27ZGs2bNjAceeMBo1apVtq5pavEi+VZsbCxPPPEEVatWZc2aNQQHX8m4Dxw4kP3797N06dIce/6TJ08CONyVyagMwMvLCy8vryw/h6vb5QWZnQtPOX/+PMWLF8+xc+qp1yonznPauRIp6HLzc+uJ7whPfpbz8/UrP9L3dtZkdr7ccR4L0mthsRpELdlFRp2KDMAERC3ZRctaFfAyZ73LbGZ2795NcnIyDzzwQKZ1FixYwLvvvsuBAwc4d+4cqampBAQE2NcPHz6cvn378umnn9KiRQsee+wxQkNDAVu3oT/++IPPPvvsyvEYBlarldjYWGrWrJnu+a63v+wc5x133IGvr6+9rHHjxg51KlasSNu2bZk1axZhYWEsWbKE5ORke4sOcdSvXz/+97//cfToUSpVqsScOXPo2bMnJpOJYsWKZbmV0KxZs6hRowZms5mdO3e61DU8jcZ4kXzrrbfe4ty5c3z88ccOSZc0N998s0NzvW3bttGmTRsCAgIoUaIEDzzwAL/88ku67Y4ePUrv3r0pX748Pj4+1K5dm1mzZjnU6dmzJ/feey9ga9ZmMpmoVq1aurLmzZsDmfd1P3r0KH369KFixYr4+PgQEhJC//79SUlJueF2N4oxbTyC/fv307NnT0qWLElgYCC9evXiwn9NBceOHcvzzz8PQEhIiL1v6o365N/oXGZ0ftLOxbW++uorTCYTP/74Y7p1H3zwASaTiR07dgBw6NAhBgwYwK233kqxYsUoU6YMjz32WLp40459165ddOnShVKlStG0adNMz6kz+73Rucpov86855x5nTJzo/OclefP6Fxdz2+//cajjz5KUFAQvr6+3HbbbYwbNy7T+ll5nZOSkhg6dCjVqlXDx8eHoKAgWrZsydatW68bU9qx7Nmzh8cff5yAgADKlCnDkCFDuHTpSvNoZ/fv7HdBtWrVMo3lWhs2bLB3RwwNDeWDDz7I8Fic/b4COH369HWPF9zzHk87J9f7zkpz9uzZLL+fr5aV99cff/yByWTi22+/ddjeZDJx5513OtRt06YNjRo1si9f/bl19vvQ1WO79jsiq5/9G537G32WnXk/O/sd68xnKLvHu27dOho2bOjwWXF2PKS0en/99RdPPvkkgYGBlCtXjtGjR2MYBkeOHOHhhx8mICCAChUq8M4772R4vnPzfGXlu+R6r7UzcefmOXL2dXfl90hWj/Xa83Wjz0xOXkPzi5jYeIfuRdcygLiES8TExrv1eW80TMCmTZvo2rUrDz74IN999x3btm3j5ZdfdrgWjR07lp07d9K2bVvWrFlDrVq1+OabbwBbF5+nn36a7du32x+///47+/btyzSZcr39ZcZkMmEYjmmrq8ehcVbfvn2ZP38+Fy9eZPbs2XTq1Ak/P78s7ydb/Pzg3DnPPLJwrPXr16du3bp88skn/Pbbb+zcuZOePXsC8NNPP1GiRInrPq5OxoEtSXf+/HnOnz9PXFxctk6hWrxIvrVkyRKqV69OkyZNblh3586dNGvWjICAAEaOHEnRokX54IMPaN68OT/++KP9h/iJEye46667MJlMDBo0iHLlyvH999/Tp08fEhMTGTp0KABPP/00lSpVYvz48QwePJj//e9/xMbGcunSJYey8uXLZxrTsWPHCAsL4+zZszz11FPcdtttHD16lK+++ooLFy7g7e2d4XbOxpjm8ccfJyQkhAkTJrB161Y++ugjgoKCePPNN+nYsSN//fUXn3/+OZMnT6Zs2bIAlCtXLlvnMqPzk9m5aNu2LSVKlOCLL76wJxHSLFiwgNq1a1OnTh3ANojszz//zBNPPMFNN93EwYMHiY6Opnnz5uzatSvdReixxx7jlltuYfz48ekufFdzZr9ZPVfOvueceZ0yc73znNXnd/ZcAXzzzTc88cQTVK9eneeff54SJUrYz2FmsvI6P/PMM3z11VcMGjSIWrVqcebMGTZs2MDu3bvT/SGdkccff5xq1aoxYcIEfvnlF959913+/fdfPvnkE6f3n9XPmTP+/PNPWrVqRbly5Rg7diypqalERkam+2y48t653vGCe97jWfnOcuX9nCar7686depQsmRJ1q9fT7t27QDbjyuz2czvv/9OYmIiAQEBWK1Wfv75Z5566qkM9+PsZzw7x5YRZ/aXlXOf0WfZ2fezs9+x2fmMOnO827ZtIzw8nODgYKKiorBYLIwbN+6616aMdOrUiZo1a/LGG2+wdOlSXnvtNUqXLs0HH3zA/fffz5tvvslnn33GiBEj+N///sc999yT587X9Vz7WrvyvZXT5yjNjV73rF5jXTnWa89XWovRjD4zOXkNzU9OJmWedHGlnrNuueUWihUrxurVq+nbt2+69T///DNVq1bl5ZdftpcdOnQoXb0aNWpQo0YNhg0bRufOnZk9ezYdOnTgzjvvZNeuXVlu/ZDZ/ry9vbFYLOnqlytXzuGP9X379jkkHGvWrMmnn37KpUuX7K1eMrrJ8uCDD1K8eHGio6NZvnw569evz1LcbmEyQT5pydW3b1+mTJnC0aNHadGiBZUrVwagYcOGNxx38+rfZPHx8fTs2ZOXX36ZuLg4unbtytatW10fP9TlTkoiHpSQkGAAxsMPP+xU/fbt2xve3t7GgQMH7GXHjh0z/P39jXvuucde1qdPHyM4ONg4ffq0w/ZPPPGEERgYaFy4cMFetnbtWgMwvvzyy+uWGYat7yfX9Fvu3r27YTabjV9//TVdvGn9BzPaztkY08Yj6N27t0O9Dh06GGXKlLEvZ7VPtbPnMrNzkZHOnTsbQUFBRmpqqr0sLi7OMJvNxrhx4+xlV5//NJs2bTIA45NPPrGXpR17586d09XP6Jw6u9/rnatr9+vseXL2dcpMZuc5q8+f0bnKyN69ew0/Pz+jQ4cO6fpBX7p06brbOvs6BwYGGgMHDnQqnqulHUu7du0cygcMGGAAxu+//+70/p39nPXo0cOoWrVqprFcrX379oavr69x6NAhe9muXbsMLy8vh7pZfe1udLyG4Z73uDPfWdl9P7v6/mrbtq0RFhZmX+7YsaPRsWNHw8vLy/j+++8NwzCMrVu3GoCxePFie71rP7fOjPHi6rFd+1xZ2V9Wzn1Gn2Vn38/Ovk+c+Qxl53gjIiIMPz8/4+jRo/ayffv2GUWKFHFqPKS057p6DIfU1FTjpptuMkwmk/HGG2/Yy//991+jWLFiRo8ePexlnjhfWfkuyey1zspvmNw6R1l53bPye8SVY732fF3vM5NT19D85uf9p9ON7ZLR4+f9p2+8sywaO3asUapUKeP//u//jP379xubNm0yPvroI8MwDGPx4sVGkSJFjM8//9zYv3+/MXXqVKN06dL2cVYuXLhgDBw40Fi7dq1x8OBBY8OGDUZoaKgxcuRIwzAM4/fffzeKFStmDBw40Ni2bZvx119/GYsWLcr0c3qj/W3cuNEAjB9++ME4deqUcf78ecMwbO/HmjVrGlu3bjV+/fVX4/777zeKFi1qH+MlKSnJKFu2rPHkk08aO3fuNJYuXWrcfPPNDmO8pHnppZcMb29vo2bNmm4+0wXP2bNnDT8/P8Pb29uYP3++y/t57LHHjEaNGhmXL182zp07Z9xyyy3GgAEDXN6fuhpJvpSYmAjYRjS/EYvFwsqVK2nfvj3Vq1e3lwcHB9OlSxc2bNhAYmIihmHw9ddfExERgWEYnD592v5o3bo1CQkJN+zq4Cyr1cqiRYuIiIigYcOG6dZn1pTalRifeeYZh+VmzZpx5swZ+znMCmfPZVZ16tSJkydPsm7dOnvZV199hdVqpVOnTvayqzPMly9f5syZM9x8882ULFkyw9fm2mPPTFb3eyOunCdPv07OnqsxY8bg6+vLnDlzHPokA/j4+Fx3W2df55IlS7J582aOHTvmVEzXGjhwoMPys88+C8CyZcuc2n9OfBdYLBZWrFhB+/btqVKlir28Zs2atG7d2qFeVl+7Gx0vZP89ntXvLFffz66+v5o1a8bWrVvtU4Fu2LCBBx98kHr16vHTTz8BtlYwJpMp290A3PlZdWZ/2T33WXk/O/s+yc5n9EbHa7FY+OGHH2jfvj0VK1a017v55ptvOBvFta6+U+7l5UXDhg0xDIM+ffo4HMutt97K33//DeS983U9V59LV7+3cvocZRQrZO9z4+qxZnadu7Y8J6+h+U1YSGmCA33JrIOfCdvsRmEhpd3+3KNHj+a5555jzJgx1KxZ0/4bAqBdu3YMGzaMQYMGUa9ePX7++WdGjx5t39bLy4szZ87QvXt3atSoweOPP06bNm2IiooC4I477uDHH3/kr7/+olmzZtSvX58xY8Y4fOdc7Ub7a9KkCc888wydOnWiXLlyvPXWWwC88847VK5cmWbNmtGlSxdGjBjh0Dq7RIkSLFmyhD///JP69evz8ssvZ9p6sk+fPqSkpNCrV6/sn9wCLjAwkEceeYQSJUrQvn17l/bxySefsGzZMj799FOKFClC8eLFmTt3Lh9++CHff/+9S/tUVyPJl9IGz0pKSrph3VOnTnHhwgVuvfXWdOtq1qyJ1WrlyJEjlCtXjrNnzzJz5kxmzpyZ4b7SvvCz69SpUyQmJtq7VmRlu6zGePUfeQClSpUC4N9//3UYhMzZ53fmXNauXTtL+w0PDycwMJAFCxbYB1JbsGAB9erVo0aNGvZ6Fy9eZMKECcyePZujR486NOdNSEhIt9+QkBCnnj+r+70RV86Tp18nZ85VcnIyS5YsoW/fvlmOCZx/nd966y169OhB5cqVadCgAQ8++CDdu3d3+AF8PbfccovDcmhoKGaz2T5WwI3278rn7EZOnTrFxYsX08UGcOutt9qTJK68djc6Xsj+ezyr31muvJ+z8/5q1qwZqampbNq0icqVK3Py5EmaNWvGzp07HRIvtWrVonTp7P2B4M7PqjP7y+q5v/aznJX3s7Pvk+x8Rm90vCdPnuTixYsZdgHIareAa58rMDAQX19fezeWq8vPnDkD5L3zdT1Xv9aufm/l9DnK7Hmye41z5Vgzu85l9JnJiWtofuRlNhEZUYv+c7diAodBdtOSMZERtdw6sG4as9nMyy+/7NCd6GpvvfWWPcGRJq2Lmbe3N59//vl19/+///2PlStXOhWLM/uLjo4mOjraoaxixYqsWLHCoezs2bMOy3fddVe67i9Xf5ekOXr0KEWLFqV79+5OxVzYHT16lK5du97wpmBmunfvnu5ch4WFpRvTLiuUeJF8KSAggIoVK9oH43QHq9UKwJNPPkmPHj0yrHPHHXe47flc4UqMmc0qkdGXuqf4+PjQvn17vvnmG6ZPn86JEyfYuHEj48ePd6j37LPPMnv2bIYOHUrjxo0JDAzEZDLxxBNP2M/N1Zztg5nV/eYET79Ozpyrv//+mwsXLtCgQQOXnsPZ1/nxxx+nWbNmfPPNN6xcuZK3336bN998k4ULF2b5jjekbxFwo/1n5XOWWeu0jPp655aMYsrt97gr7+fsvL/SBmFdv349VapUISgoiBo1atCsWTOmT59OcnIyP/30Ex06dMjyvq/l7s+qu/d37Wc5K+9nZ98n2fmM5uZ3XUbPdaPn99T5cuW75OrX2tXfMDl9jpzdZ1a4eqyZXedcHq/BzfvIq8LrBBP95J1ELdnlMNBuhUBfIiNqEV4n/QQX4j7JycmcOnWKsWPH8thjj113/EixJXPXrVvHunXrmD59uqfDcaDEi+RbDz30EDNnzmTTpk3ppl67Wrly5fDz82Pv3r3p1u3Zswez2UzlypUpXrw4/v7+WCwWWrRokZOhU65cOQICArKcOCpXrpzbY8zKtGjOnktXdOrUif/7v/9j9erV7N69G8MwHLqfgK1bSo8ePRxmV7h06VK6uwdZ5ex+nT1XOXmePPn8Fy9eBLL2nrmWM68z2Jp0DxgwgAEDBnDy5EnuvPNOXn/9dacSL/v27XO4+7h//36sVqvDjCHX239WPmelSpXK8P137SB/5cqVo1ixYuzbty9d3atfJ1deO2eON7vvcVe/s7IiO+8vb29vwsLC+Omnn6hSpQrNmjUDbC1hkpOT+eyzzzhx4oR9YNDMZOe9nVOye+6z8n7Oyndsdj6j15M2k9X+/fvTrcuozN08db6c/S5xR9zZlVPPlZVrbE4eq6ev4XlReJ1gWtaqQExsPCeTLhHkb+telBMtXcTR559/Tp8+fahXr57DoPmSsfr16/Pvv//y5ptvZthqzZM0xovkWyNHjqR48eL07duXEydOpFt/4MABpk6dipeXF61atWLx4sUOTe9PnDjBvHnzaNq0KQEBAXh5efHII4/w9ddfZ/gD99SpU26L3Ww20759e5YsWcKWLVvSrc/sDlBOxFj8vxHKnUleOHsuXdGiRQtKly7NggULWLBgAWFhYema7np5eaU7N++99162Wxc4u19nz1VOnidn5NTzpzXz/+GHH9Ktc3Z6xBu9zhaLJV3Xl6CgICpWrEhycrJTzzFt2jSH5ffeew+wTSXszP6z8jkLDQ0lISGBP/74w14WFxeXbopJLy8vWrduzaJFizh8+LC9fPfu3Q7NkF157a53vFfvNzvvcVe/s7Iiu++vZs2asXnzZtauXWtPvJQtW5aaNWva+8ynlWcmK9+HuSW75z4r72dn3ifu+IzeKN4WLVqwaNEihzFR9u/f73K/+qw+vyfOl7PfJe6IO7ty6rmyco3NyWP19DU8r/Iym2gcWoaH61WicWgZJV1ySc+ePbFYLPz2229UqlTJ0+HkeQcPHiQhIYERI0Z4OpR01OJF8q3Q0FDmzZtnnwqxe/fu1KlTh5SUFH7++We+/PJL+7ztr732GqtWraJp06YMGDCAIkWK8MEHH5CcnOzQP/SNN95g7dq1NGrUiH79+lGrVi3i4+PZunUrP/zwA/Hx8W6Lf/z48axcuZJ7772Xp556ipo1axIXF8eXX37Jhg0bKFmyZIbbuTvGtGb9L7/8Mk888QRFixYlIiLC/gPoWs6ey6wqWrQoHTt2ZP78+Zw/f56JEyemq/PQQw/x6aefEhgYSK1atdi0aRM//PADZcqUcfl5s7LfrJyrnDpPzsqJ5w8ICKBnz57MmTOH5ORkmjdvTlJSEmvXrqVt27bpBnnNyI1e56SkJG666SYeffRR6tatS4kSJfjhhx/49ddfHe4qX09sbCzt2rUjPDycTZs2MXfuXLp06ULdunU5e/asU/t39nP2xBNP8MILL9ChQwcGDx7MhQsXiI6OpkaNGukGd4yKimL58uU0a9aMAQMGkJqaynvvvUft2rUd/tjK6mt3veNN4473uKvfWc7K7vurWbNmvP766xw5csQhwXLPPffwwQcfUK1aNW666abr7iOr34e5Jbvn3tn3szPvE3d8Rm9k7NixrFy5krvvvpv+/ftjsVh4//33qVOnzg2nAnUHT5yvrHyXZDfu3DxHWZGVz19OH6unr+EiUgC5PB+SSB7x119/Gf369TOqVatmeHt7G/7+/sbdd99tvPfeew7Tj27dutVo3bq1UaJECcPPz8+47777jJ9//jnd/k6cOGEMHDjQqFy5slG0aFGjQoUKxgMPPGDMnDnToV52p5M2DMM4dOiQ0b17d6NcuXKGj4+PUb16dWPgwIFGcnLydbdzJsa0KQ5PnTp1w1heffVVo1KlSobZbHZqKkdnzmVWppNOs2rVKgMwTCaTceTIkXTr//33X6NXr15G2bJljRIlShitW7c29uzZY1StWtVhmsvMjj2z43d2v4aR+bnKaL/OnKesvE4Zud55zs7zZ+b8+fPGyy+/bNxyyy2Gj4+PERwcbDzyyCPG/v37ndreMK7/OicnJxvPP/+8UbduXcPf398oXry4UbduXWP69Ok33G/asezatct49NFHDX9/f6NUqVLGoEGD7FMTZ2X/zn4XrFy50qhTp47h7e1t3HrrrcbcuXMznALWMAzjxx9/NBo0aGB4e3sb1atXN2bMmJFh3ay8dtc73jTueI8bxo2/s7L7fs7O+ysxMdHw8vIy/P39HaYsnzt3rgEY3bp1S7dNVr4Ps3tsmU2v7Oz+XD33aZx5PzvzPnH2M5Td4129erVRv359w9vb2wgNDTU++ugj47nnnjN8fX2ve56v91w9evQwihcvnq7+vffea9SuXduj58swnP8uud5r7ez3Vm6do6y+7ln5PZLdY73RZyYnrqEiUniZDCMPjbApIiLiorFjxxIVFcWpU6fSzcghIvlf+/bt2blzZ4ZjJYmIiORlGuNFRERERPKUtMGW0+zbt49ly5bRvHlzzwQkIiKSDRrjRURERETylOrVq9OzZ0+qV6/OoUOHiI6Oxtvbm5EjR3o6NBERkSxT4kVERERE8pTw8HA+//xzjh8/jo+PD40bN2b8+PHccsstng5NREQkyzTGi4iIiIiIiIhIDtEYLyIiIiIiIiIiOUSJFxERERERERGRHKLEi4iIiIiIiIhIDlHiRUREREREREQkhyjxIiIiIiIiIiKSQ5R4ERERERERERHJIUq8iIiIiIiIiIjkECVeRAohk8nE2LFjPR2GiIiI5GP6PSEi4hwlXkQKiDlz5mAymRweQUFB3HfffXz//feeDk9ERETc7Nprv6+vLzVq1GDQoEGcOHHC0+Fl2/Tp05kzZ46nwxARybYing5ARNxr3LhxhISEYBgGJ06cYM6cOTz44IMsWbKEhx56CICLFy9SpIg+/iIiIgVB2rX/0qVLbNiwgejoaJYtW8aOHTvw8/PzdHgumz59OmXLlqVnz56eDkVEJFv0l5dIAdOmTRsaNmxoX+7Tpw/ly5fn888/tydefH19PRWeiIiIuNnV1/6+fftSpkwZJk2axOLFi+ncuXO6+ufPn6d48eK5HaaISKGlrkYiBVzJkiUpVqyYQwuXjPpkb9u2jTZt2hAQEECJEiV44IEH+OWXXxzqpDVp3rBhA4MHD6ZcuXKULFmSp59+mpSUFM6ePUv37t0pVaoUpUqVYuTIkRiG4bCPiRMn0qRJE8qUKUOxYsVo0KABX331Vbq4V61aRdOmTSlZsiQlSpTg1ltv5aWXXnKo895771G7dm38/PwoVaoUDRs2ZN68edk8YyIiIvnb/fffD0BsbCw9e/akRIkSHDhwgAcffBB/f3+6du0K2BIwzz33HJUrV8bHx4dbb72ViRMnprt2JycnM2zYMMqVK4e/vz/t2rXjn3/+Sfe8PXv2pFq1aunKx44di8lkSlc+d+5cwsLC7Nfxe+65h5UrVwJQrVo1du7cyY8//mjvStW8efNsnhkREc9QixeRAiYhIYHTp09jGAYnT57kvffe49y5czz55JOZbrNz506aNWtGQEAAI0eOpGjRonzwwQc0b96cH3/8kUaNGjnUf/bZZ6lQoQJRUVH88ssvzJw5k5IlS/Lzzz9TpUoVxo8fz7Jly3j77bepU6cO3bt3t287depU2rVrR9euXUlJSWH+/Pk89thjfPfdd7Rt29Yez0MPPcQdd9zBuHHj8PHxYf/+/WzcuNG+nw8//JDBgwfz6KOPMmTIEC5dusQff/zB5s2b6dKli5vPqoiISP5x4MABAMqUKQNAamoqrVu3pmnTpkycOBE/Pz8Mw6Bdu3asXbuWPn36UK9ePVasWMHzzz/P0aNHmTx5sn1/ffv2Ze7cuXTp0oUmTZqwZs0a+zXbVVFRUYwdO5YmTZowbtw4vL292bx5M2vWrKFVq1ZMmTKFZ599lhIlSvDyyy8DUL58+Ww9p4iIxxgiUiDMnj3bANI9fHx8jDlz5jjUBYzIyEj7cvv27Q1vb2/jwIED9rJjx44Z/v7+xj333JPuOVq3bm1YrVZ7eePGjQ2TyWQ888wz9rLU1FTjpptuMu69916H575w4YLDckpKilGnTh3j/vvvt5dNnjzZAIxTp05lerwPP/ywUbt27eufFBERkQIs7br8ww8/GKdOnTKOHDlizJ8/3yhTpoxRrFgx459//jF69OhhAMaLL77osO2iRYsMwHjttdccyh999FHDZDIZ+/fvNwzDMLZv324AxoABAxzqdenSJd3viR49ehhVq1ZNF2dkZKRx9Z8d+/btM8xms9GhQwfDYrE41L3690Xt2rXT/Y4QEcmP1NVIpICZNm0aq1atYtWqVcydO5f77ruPvn37snDhwgzrWywWVq5cSfv27alevbq9PDg4mC5durBhwwYSExMdtunTp49Dk+FGjRphGAZ9+vSxl3l5edGwYUP+/vtvh22LFStm//e///5LQkICzZo1Y+vWrfbykiVLArB48WKsVmuGcZcsWZJ//vmHX3/99QZnREREpGBr0aIF5cqVo3LlyjzxxBOUKFGCb775hkqVKtnr9O/f32GbZcuW4eXlxeDBgx3Kn3vuOQzDsM+IuGzZMoB09YYOHepyvIsWLcJqtTJmzBjMZsc/RzLqkiQikt8p8SJSwISFhdGiRQtatGhB165dWbp0KbVq1WLQoEGkpKSkq3/q1CkuXLjArbfemm5dzZo1sVqtHDlyxKG8SpUqDsuBgYEAVK5cOV35v//+61D23Xffcdddd+Hr60vp0qUpV64c0dHRJCQk2Ot06tSJu+++m759+1K+fHmeeOIJvvjiC4ckzAsvvECJEiUICwvjlltuYeDAgQ5dkURERAqLtJsua9euZdeuXfz999+0bt3avr5IkSLcdNNNDtscOnSIihUr4u/v71Bes2ZN+/q0/5vNZkJDQx3qZfS7wVkHDhzAbDZTq1Ytl/chIpKfKPEiUsCZzWbuu+8+4uLi2Ldvn1v26eXl5XS5cdUAfT/99BPt2rXD19eX6dOns2zZMlatWkWXLl0c6hUrVoz169fzww8/0K1bN/744w86depEy5YtsVgsgO2H4d69e5k/fz5Nmzbl66+/pmnTpkRGRrrlGEVERPKLtJsuzZs3p2bNmulakfj4+KQrywmZtVZJu3aLiBRWSryIFAKpqakAnDt3Lt26cuXK4efnx969e9Ot27NnD2azOV1LFld9/fXX+Pr6smLFCnr37k2bNm1o0aJFhnXNZjMPPPAAkyZNYteuXbz++uusWbOGtWvX2usUL16cTp06MXv2bA4fPkzbtm15/fXXuXTpklviFRERKaiqVq3KsWPHSEpKcijfs2ePfX3a/61Wq33A3jQZ/W4oVaoUZ8+eTVee1nomTWhoKFarlV27dl03RnU7EpGCQokXkQLu8uXLrFy5Em9vb3vz4at5eXnRqlUrFi9ezMGDB+3lJ06cYN68eTRt2pSAgAC3xOLl5YXJZHK483Xw4EEWLVrkUC8+Pj7dtvXq1QNsU1oCnDlzxmG9t7c3tWrVwjAMLl++7JZ4RURECqoHH3wQi8XC+++/71A+efJkTCYTbdq0AbD//91333WoN2XKlHT7DA0NJSEhgT/++MNeFhcXxzfffONQr3379pjNZsaNG5duLLerW8AWL148w0SOiEh+o+mkRQqY77//3n636uTJk8ybN499+/bx4osvZppAee2111i1ahVNmzZlwIABFClShA8++IDk5GTeeustt8XWtm1bJk2aRHh4OF26dOHkyZNMmzaNm2++2eFH2rhx41i/fj1t27alatWqnDx5kunTp3PTTTfRtGlTAFq1akWFChW4++67KV++PLt37+b999+nbdu26fqri4iIiKOIiAjuu+8+Xn75ZQ4ePEjdunVZuXIlixcvZujQofYxXerVq0fnzp2ZPn06CQkJNGnShNWrV7N///50+3ziiSd44YUX6NChA4MHD+bChQtER0dTo0YNh0H0b775Zl5++WVeffVVmjVrRseOHfHx8eHXX3+lYsWKTJgwAYAGDRoQHR3Na6+9xs0330xQUBD3339/7pwgERE3UuJFpIAZM2aM/d++vr7cdtttREdH8/TTT2e6Te3atfnpp58YNWoUEyZMwGq10qhRI+bOnUujRo3cFtv999/Pxx9/zBtvvMHQoUMJCQnhzTff5ODBgw6Jl3bt2nHw4EFmzZrF6dOnKVu2LPfeey9RUVH2gXyffvppPvvsMyZNmsS5c+e46aabGDx4MK+88orb4hURESmozGYz3377LWPGjGHBggXMnj2batWq8fbbb/Pcc8851J01axblypXjs88+Y9GiRdx///0sXbo0XVfkMmXK8M033zB8+HBGjhxJSEgIEyZMYN++fQ6JF7DdZAkJCeG9997j5Zdfxs/PjzvuuINu3brZ64wZM4ZDhw7x1ltvkZSUxL333qvEi4jkSybj6vZ8IiIiIiIiIiLiNhrjRUREREREREQkhyjxIiIiIiIiIiKSQ5R4ERERERERERHJIUq8iIiIiIiIiIjkECVeRERERERERERyiBIvIiIiIiIiIiI5pIinA7ja+vXrefvtt/ntt9+Ii4vjm2++oX379k5tu3HjRu69917q1KnD9u3bnX5Oq9XKsWPH8Pf3x2QyuRa4iIiIGxmGQVJSEhUrVsRs1j0Sd9D1XkRE8hJd6wuXPJV4OX/+PHXr1qV379507NjR6e3Onj1L9+7deeCBBzhx4kSWnvPYsWNUrlw5q6GKiIjkuCNHjnDTTTd5OowCQdd7ERHJi3StLxzyVOKlTZs2tGnTJsvbPfPMM3Tp0gUvLy8WLVqUpW39/f0B2xs+ICAgy88tIiLibomJiVSuXNl+jZLs0/VeRETyEl3rC5c8lXhxxezZs/n777+ZO3cur7322g3rJycnk5ycbF9OSkoCICAgQD/EREQkT1GXGPdJO5e63ouISF6ia33hkK87k+3bt48XX3yRuXPnUqSIczmkCRMmEBgYaH+o2bGIiIiIiIiI5JR8m3ixWCx06dKFqKgoatSo4fR2o0aNIiEhwf44cuRIDkYpIiIiIiIiIoVZvu1qlJSUxJYtW9i2bRuDBg0CbDMWGIZBkSJFWLlyJffff3+67Xx8fPDx8cntcEVERERERESkEMq3iZeAgAD+/PNPh7Lp06ezZs0avvrqK0JCQjwUmYiIiIiIiIiITZ5KvJw7d479+/fbl2NjY9m+fTulS5emSpUqjBo1iqNHj/LJJ59gNpupU6eOw/ZBQUH4+vqmKxcRERERERER8YQ8lXjZsmUL9913n315+PDhAPTo0YM5c+YQFxfH4cOHPRWeiIiIiIiIiEiWmAzDMDwdhCclJiYSGBhIQkKCppcUEZE8Qdcm99M5FRGRvETXpcIl385qJCIiIiIiIiKS1ynxIiIiIiIiIiKSQ5R4ERERERERERHJIXlqcF0REZH8yGI1iImN52TSJYL8fQkLKY2X2eTpsEREREQkD1DiRUREJBuW74gjasku4hIu2cuCA32JjKhFeJ1gD0YmIiIiInmBuhqJiIi4aPmOOPrP3eqQdAE4nnCJ/nO3snxHnIciExEREXeyWA02HTjD4u1H2XTgDBZroZ4cWLJILV5ERERcYLEaRC3ZRUY/uwzABEQt2UXLWhXU7UhERCQfW74jjqjFO4hLSrGXqXWrZIVavIiIiLggJjY+XUuXqxlAXMIlYmLjcy8oERERcSt769bEZIdytW6VrFDiRURExAUnkzJPurhST0RERPIWi9UgauHvGIYBJsfWq2ktXqOW7FK3I7khJV5ERERcEPTRdOfq+fvmcCQiIiKSE2K+XkXcBUu6pEsatW4VZynxIiIiklXNmxM2/Q2CE09hMqwZVjFh6/8dFlI6d2MTERGR7PvkE05Gvu5UVbVulRtR4kVERMRZhgFly8KPP+JlWIlcPRNMZq69D5a2HBlRSwPrioiI5Devvgo9ehB07l+nqqt1q9yIEi8iIiLOsFjAbIYzZ+xF4bs3EP3knVQIdPzBVSHQl+gn79RMByIiIvlNjx4wZgwAYf/sJLh4kXQ3WNKodas4S9NJi4iI3MiFC1C8+JXl4GA4dgyA8DrBtKxVgZjYeE4mXSLI3/YDTC1dRERE8pm77oLNm+2LXmdOE3nUNnuRiSsD6oJat0rWKPEiIiJyPadOQVDQleUWLWDVKocqXmYTjUPL5HJgIiIi4haGASVK2G60pLl0CXx8CC8F0U/eSdSSXcQlXBnLpUKgL5ERtdS6VZyixIuIiEhm9u2DGjWuLA8cCO+/77l4RERExL1SU6FoUceytO7F/1HrVskujfEiIiKSkU2bHJMu77yjpIsbrF+/noiICCpWrIjJZGLRokVOb7tx40aKFClCvXr1ciw+EREpRM6dc0y6hIbaWr+Y0/+ZnNa69eF6lWgcWkZJF8kSJV5ERESutXAhNGlyZfnLL2H4cM/FU4CcP3+eunXrMm3atCxtd/bsWbp3784DDzyQQ5GJiEihcvw4+PtfWW7XDvbv91w8UqCpq5GIiMjVpk6FoUOvLG/YAHff7bFwCpo2bdrQpk2bLG/3zDPP0KVLF7y8vLLUSkZERCSd3buhVq0ry889BxMnei4eKfDU4kVERCTNkCGOSZe9e5V0yQNmz57N33//TWRkpNPbJCcnk5iY6PAQERFh/XrHpMv77yvpIjlOLV5EREQAwsNhxYoryydOOM5mJB6xb98+XnzxRX766SeKFHH+Z8uECROIiorKwchERCTfmT8fOne+srx4sa2LkUgOU4sXERGRypUdky7nzyvpkgdYLBa6dOlCVFQUNa4e6NgJo0aNIiEhwf44cuRIDkUpIiL5wptvOiZdNm9W0kVyjVq8iIhI4WW1gpeXY1lqavoy8YikpCS2bNnCtm3bGDRoEABWqxXDMChSpAgrV67k/vvvz3BbHx8ffHx8cjNcERHJq55+GmbOvLK8f79tBiORXKLEi4iIFE6XLkGxYleWS5eG06fBpOkh84qAgAD+/PNPh7Lp06ezZs0avvrqK0JCQjwUmYiI5Bv33msb1yXN6dNQpozn4pFCSYkXEREpfM6cgbJlryw3bQo//eS5eAqRc+fOsf+q6TpjY2PZvn07pUuXpkqVKowaNYqjR4/yySefYDabqVOnjsP2QUFB+Pr6pisXERFxYBhQrpztmp/mwgXHmy4iuURjvIiISOESG+uYdOnTR0mXXLRlyxbq169P/fr1ARg+fDj169dnzJgxAMTFxXH48GFPhigiIvmdxQJms2PSxWJR0kU8xmQYhuHpIDwpMTGRwMBAEhISCAgI8HQ4IiKSk379FcLCriyPHw+jRnkunkzo2uR+OqciIoXEhQtQvPiV5eBgOHbMc/FkQtelwkUtXkREpHBYssQx6fLZZ3ky6SIiIiIuOnXKMenSsmWeTLpI4aPEi4iIFHzR0Y5TRq5dC126eC4eERERca99+yAo6MryoEGwcqXn4hG5ihIvIiJSsI0cCQMGXFneuROaN/dYOCIiIuJmP/8MNWpcWZ40Cd57z3PxiFxDsxqJiEjB1b49LF58ZfnYMVtfbxERESkYFi6ERx65svzll/Doo56LRyQDSryIiEjBVKOGrdlxmqQkKFHCc/GIiIiIe02ZAsOGXVneuBGaNPFYOCKZUeJFREQKFsOwTSF5tcuXoYgueSIiIgXG4MGO3Yn27nXsbiSSh+hXqIiIFBzJyeDre2XZ19c2raTJ5LmYRERExL3Cw2HFiivLJ044Dqwrksco8SIiIgXD2bNQqtSV5YYN4ddfPRaOiIiI5IDKleGff64snz8Pfn6ei0fECZrVSERE8r/Dhx2TLk8+qaSLiIhIQWK12lqwXp10SU1V0kXyBSVeREQkf9u2DapWvbI8dix8+qnHwhERERE3u3QJvLyuLJcubUvEXF0mkocp8SIiIvnX8uVw551XlmfPhshIz8UjIiIi7nXmDBQrdmW5aVNbmcZvk3xEiRcREcmfPv4Y2rS5srxyJfTs6bFwRERExM1iY6Fs2SvLffvCTz95Lh4RF7mcePn555/ZsWOHO2MRERFxzujRth9faX7/HVq29Fw8IiIi4l6//grVq19ZnjABPvzQc/GIZIPLiZeBAweyefPmdOUHDhwgKSkpW0GJiIhk6okn4LXXriwfOQJ33OG5eERERMS9liyBsLAry/PmwYsvei4ekWxyOfGyd+9emjdvnq78hx9+oHPnzi7tc/369URERFCxYkVMJhOLFi26bv2FCxfSsmVLypUrR0BAAI0bN2bF1fO5i4hIwVK3LixYcGX57Fm46SaPhSMiIiJuFh0N7dpdWV63Dlz8+1Ikr3A58RIQEMC///6brrxZs2b88ssvLu3z/Pnz1K1bl2nTpjlVf/369bRs2ZJly5bx22+/cd999xEREcG2bdtcen4REcmjDAPMZvjjjytlyckQGOi5mERERMS9Ro6EAQOuLO/cCffe67l4RNykiKsbhoeHM3HiRObPn+9QbjabSUlJcWmfbdq0oc3VAyXewJQpUxyWx48fz+LFi1myZAn169d3KQYREcljLl8Gb2/HMqtVsxmIiIgUJO3bw+LFV5aPHYPgYI+FI+JOLrd4efXVV/nxxx955JFH+PPPPwG4dOkSb775Jnd4qK+91WolKSmJ0qVLZ1onOTmZxMREh4eIiORRiYmOSZdatWytX5R0ERERKThuucUx6ZKUpKSLFCguJ14qV67ML7/8wsWLF6lbty7FihXD39+fJUuW8Pbbb7szRqdNnDiRc+fO8fjjj2daZ8KECQQGBtoflStXzsUIRUTEaUePOnYlevRRW5NjERERKRjSbqbs33+l7PJlKFHCczGJ5ACXuxoBVK1alWXLlnH48GG2b99O0aJFadSo0XVbnOSUefPmERUVxeLFiwkKCsq03qhRoxg+fLh9OTExUckXEZG85s8/HWcqGjUKxo/3XDwiIiLiXsnJ4Ot7ZdnXFy5cUKtWKZCylXhJU6VKFapUqeKOXblk/vz59O3bly+//JIWLVpct66Pjw8+Pj65FJmIiFyPxWoQExvPyaRLBPn7EhZSGq91a+GBB65U+uADeOopj8UoIiIirsnwOm822WYlLFXqSsWGDeHXXz0Wp0hOc0vixZM+//xzevfuzfz582nbtq2nwxERESct3xFH1JJdxCVcspcFF7EQ+eUbhKcVLF0KDz7okfhERETEdRle5wN9ibwriPD7r2rV+uST8OmnHohQJPe4PMZLTjh37hzbt29n+/btAMTGxrJ9+3YOHz4M2LoJde/e3V5/3rx5dO/enXfeeYdGjRpx/Phxjh8/TkJCgifCFxERJy3fEUf/uVsdfowBHL9son/7l1heozFs2aKki4iISD6U6XU+4RL9lx+yXecBxo5V0kUKhTyVeNmyZQv169e3TwU9fPhw6tevz5gxYwCIi4uzJ2EAZs6cSWpqKgMHDiQ4ONj+GDJkiEfiFxGRG7NYDaKW7MLIYJ1hMgMGUd3GYql/Z26HJiIiItl03ev8f/+NeuApLLPnQGRkrsYm4il5qqtR8+bNMYyMPqI2c+bMcVhet25dzgYkIiJuFxMbn+4O2NUMk5m4c5eJiY2ncWiZXIxMREREssup63xAOWKa3UXjXIxLxJOylXhZvXo1q1ev5uTJk1itVod1s2bNylZgIiJSMJ1MyvzHmCv1REREJO/QdV4kPZcTL1FRUYwbN46GDRsSHByMSdN+iYiIE4L8fW9cKQv1REREJO/QdV4kPZcTLzNmzGDOnDl069bNnfGIiEgBF1apBMGp5znuVey/MV0cmYAKgbYpJ0VERCR/CQspTXCgL8fPXtB1XuQ/Lg+um5KSQpMmTdwZi4iIFHTnzuH1cDsil0wBTJiuGXovre1kZEQtvMxqSSkiIpLfeJkgcs5owITJcByOQtd5KaxcTrz07duXefPmuTMWEREpyE6dgvvvh5UrCT/6B9G3e1EhsJhDlQqBvkQ/eSfhdYI9FKSIiIi4LDkZzGbC/9pE9KLxVEg647Ba13kprLLU1Wj48OH2f1utVmbOnMkPP/zAHXfcQdGiRR3qTpo0yT0RiohIvmGxGsTExnMy6RJB/rZmxF5mExw6BK1awV9/QZkysGwZ4WFhtMysvoiIiOQvp05BUJB9MfyvTbTcvVHXeRGymHjZtm2bw3K9evUA2LFjh0O5BtoVESl8lu+II2rJLocpJEsX96Z9ZR9avhtJ2L79eFWpAitWwG23AeBlNmnKaBERkfxuzx6oWdOxzDDwAl3nRQCTYRjGjasVXImJiQQGBpKQkEBAQICnwxERyZeW74ij/9ytXO+CEnzxLJEd6xJ+b51ciyu/0rXJ/XRORURyyOrV0KLFleVGjeCXXzwXTz6h61Lh4vIYLyIiImDrXhS1ZNd1ky4AccVK0v/7QyzfEZcrcYmIiEgO++gjx6TL008r6SKSAZcTLxMmTGDWrFnpymfNmsWbb76ZraBERCT/iImNd+hedCNRS3ZhsRbqxpYiIiL534gR0K/fleWpU2HGDM/FI5KHuZx4+eCDD7jtvz76V6tduzYz9IETESk0TiY5n3QxgLiES8TExudcQCIiIpKzWraEd965srx0KQwe7Ll4RPK4LA2ue7Xjx48THJx+GrBy5coRF6dm5CIihUWQv2+Wt8lKskZERETykMBASEy8svz773DHHZ6LRyQfcLnFS+XKldm4cWO68o0bN1KxYsVsBSUiIvnHv+dTyOrMkK4ka6RgWL9+PREREVSsWBGTycSiRYuuW3/hwoW0bNmScuXKERAQQOPGjVmxYkXuBCsiIo5MJseky7FjSrqIOMHlxEu/fv0YOnQos2fP5tChQxw6dIhZs2YxbNgw+l3d109ERAqs5TviGDhvK1Ynx2wxAcGBvoSFlM7ZwCTPOn/+PHXr1mXatGlO1V+/fj0tW7Zk2bJl/Pbbb9x3331ERESwbdu2HI5URETsDMOWdLna+fOQQQ8IEUnP5a5Gzz//PGfOnGHAgAGkpKQA4OvrywsvvMCLL77otgBFRCRvslgNohbtwMjox1gG0mpERtTCK6tNZKTAaNOmDW3atHG6/pQpUxyWx48fz+LFi1myZAn169d3c3QiIpJOSgr4+DiWWSxg1gS5Is5yOfFy5MgRJkyYwOjRo9m9ezfFihXjlltuwdvbmyNHjlClShV3xikiInlMTMwe4s6lOJV0AagQ6EtkRC3C6+jumLjOarWSlJRE6dLXbzWVnJxMcnKyfTnx6qbxIiLinPh4KFPGsczQzIQiWeVy4iUkJIS4uDiCgoL43//+Zy8/c+YMISEhWCwWtwQoIiJ50O7dnBzxEjTte8Oq3RtXpU2dYMJCSquli2TbxIkTOXfuHI8//vh1602YMIGoqKhcikpEpADavx9uucWxTEkXEZe43D7MyORDd+7cOXx9NWiiiEiB9csv0LQpQYcPOFW9TZ1gGoeWUdJFsm3evHlERUXxxRdfEBQUdN26o0aNIiEhwf44cuRILkUpIlIA/PSTY9Kldm0lXUSyIcstXoYPHw6AyWRizJgx+Pn52ddZLBY2b95MvXr13BagiIjkId9/D48+ChcuEHZLDYJLeHP8XAoZ/RQzYetepIF0xR3mz59P3759+fLLL2nRosUN6/v4+OBz7ZgEIiJyY59+Ct27X1nu3h3+7/88F49IAZDlxEvaLAKGYfDnn3/i7e1tX+ft7U3dunUZMWKE+yIUEZG84bPPoGdPSE2F1q3x+vprImMT6T93KyZwSL5oIF1xp88//5zevXszf/582rZt6+lwREQKrldegddfv7L85pswcqTn4hEpILKceFm7di0AvXr1YurUqQQEBLg9KBERyWMmT4b/WjzStSvMmgXe3oTXKU70k3cStWQXcQmX7NU1kK5k5ty5c+zfv9++HBsby/bt2yldujRVqlRh1KhRHD16lE8++QSwdS/q0aMHU6dOpVGjRhw/fhyAYsWKERgY6JFjEBEpkNq3h8WLryx//TV07OixcEQKEpOR2WAthURiYiKBgYEkJCQoiSQici3DgFGjbHe8AIYNg4kT000habEaxMTGczLpEkH+vhpIN5sK8rVp3bp13HfffenKe/TowZw5c+jZsycHDx5k3bp1ADRv3pwff/wx0/rOKsjnVEQk2266CY4evbL866/QsKHn4ikEdF0qXLKdeNm1axeHDx8mJSXFobxdu3bZCiy36A0vIpKJ1FR4+mlb6xaAN96wNTd2cvpocZ2uTe6ncyoikolrr+uHD0Plyp6JpRDRdalwcXk66b///psOHTrw559/YjKZ7LMcmf774Go6aRGRfOziRXjiCfj2W1vrlg8/hN69PR2ViIiIuIthpGvBSmIi+Pt7Jh6RAszl6aSHDBlCSEgIJ0+exM/Pj507d7J+/XoaNmxobx4sIiL50L//QqtWtqSLry98842SLiIiIvmUxWqw6cAZFm8/yqYDZ7BYDVur1muTLqmpSrqI5BCXW7xs2rSJNWvWULZsWcxmM2azmaZNmzJhwgQGDx5sn/1IRETykaNHITwcduyAwEBYsgSaNfN0VCIiIuKC5Tvi0g2AH+zvTeQnkYRfXbFwD/spkuNcbvFisVjw/y8jWrZsWY4dOwZA1apV2bt3r3uiExGR3LN3L9x9ty3pEhwMP/2kpIuIiEg+tXxHHP3nbnVIugAcT7xE//YvsbxGY1uBki4iOc7lxEudOnX4/fffAWjUqBFvvfUWGzduZNy4cVSvXt1tAYqISC749Vdo2hQOHYJbboGff4bbb/d0VCIiIuICi9UgaskuMkqpGCYzYBDVegAWizW3QxMplFxOvLzyyitYrbYP6rhx44iNjaVZs2YsW7aMd999120BiohIDlu1Cu67D06fhgYNYMMGqFbN01GJiIiIi2Ji49O1dLmaYTIT51eKmNj4XIxKpPByeYyX1q1b2/998803s2fPHuLj4ylVqpR9ZiMREcnj5s+H7t3h8mVo0QIWLtTAeiIiIvncyaTMky6u1BOR7HG5xcvVDMPAMAxKly6tpIuISH7x3nvQpYst6dKpE3z3nZIuIiIiBUCQv69b64lI9mQr8fLxxx9Tp04dfH198fX1pU6dOnz00Ufuik1ERHKCYcDo0TB4sO3fgwbBvHng4+PpyERERMQNwkJKE+wNJiPjMVxMQHCgL2EhpXM3MJFCyuXEy5gxYxgyZAgRERF8+eWXfPnll0RERDBs2DDGjBnjzhhFRMRdLBZ45hl47TXb8quvwrvvgtktDSBFREQkD/Ca9xmRX74BmDBdM2tRWv+EyIhaeJnVW0EkN7g8xkt0dDQffvghnTt3tpe1a9eOO+64g2effZZx48a5JUAREck6i9UgJjaek0mXCPK33dHySkm2dS365htboiU6Gp56ytOhioiIiDtNmgTPPUc4EH333URVb0FcYrJ9dYVAXyIjahFeJ9hzMYoUMi4nXi5fvkzDhg3TlTdo0IDU1NRsBSUiIq5bviOOqCW7HGYzCPb3JnLLF4Qv+sbWpWjePOjY0YNRioiIiFsZBrz4Irz1lm152DDCJ46nJab0N2PU0kUkV7nctrxbt25ER0enK585cyZdu3bNVlAiIuKa5Tvi6D93a7opJI8nJtO/xsMsr/sALF+upIuIiEhBkpoKffpcSbq88Qa88w6YzXiZTTQOLcPD9SrROLSMki4iHpClFi/Dhw+3/9tkMvHRRx+xcuVK7rrrLgA2b97M4cOH6d69u3ujFBGRG7JYDaKW7MLIYJ1hMmEyrER1HEHLe+7FK9ejExERkRxx4QI88QQsWWLrSvzhh9C7t6ejEpGrZCnxsm3bNoflBg0aAHDgwAEAypYtS9myZdm5c6ebwhMREWfFxMana+lyNcNkJu6ChZjYeBqHlsnFyERERCS7Mhy/LeEsRETAxo3g6wsLFkC7dp4OVUSukaXEy9q1a3MqDhERyaaTSZknXVypJyIiInlDhuO3lShK5LqPCd+4EQIDbS1emjXzYJQikhmXB9cFOHv2LB9//DG7d+8GoHbt2vTu3ZvAwEC3BCciIs4L8vd1az0RERHxvGV/xDFg3tZ05ceTUujfoBvR584R/uEbcPvtHohORJzh8uC6W7ZsITQ0lMmTJxMfH098fDyTJk0iNDSUrVvTfzGIiEjOCgspTbBXKibDmuF6ExAcaGuaLCIiInnfsj+OMejzjP+2Mky2QXKj2g7GUrtOboYlIlnkcuJl2LBhtGvXjoMHD7Jw4UIWLlxIbGwsDz30EEOHDnVpn+vXryciIoKKFStiMplYtGjRDbdZt24dd955Jz4+Ptx8883MmTPHpecWEcnXDAOvV8cR+dWbgAmT4TjEbtr8BZERtTSbgYiISD6wfEccA+Ztw5rRqPn/MUwm4s6nEhMbn3uBiUiWZavFywsvvECRIld6KxUpUoSRI0eyZcsWl/Z5/vx56taty7Rp05yqHxsbS9u2bbnvvvvYvn07Q4cOpW/fvqxYscKl5xcRyZcsFhg0CMaOJfyvTUQX3U+FksUcqlQI9CX6yTsJrxPsoSBFRETEWWkzFTpL47eJ5G0uj/ESEBDA4cOHue222xzKjxw5gr+/v0v7bNOmDW3atHG6/owZMwgJCeGdd94BoGbNmmzYsIHJkyfTunVrl2IQEclXkpOhWzf48kswmeC99wgfOJCWGc18oJYuIiIi+cKNZiq8lsZvE8nbXE68dOrUiT59+jBx4kSaNGkCwMaNG3n++efp3Lmz2wK8nk2bNtGiRQuHstatW7vc1UlEJF9JSoIOHWD1aihaFObOhccfB8DLbNKU0SIiIvlUVlqwaPw2kbzP5cTLxIkTMZlMdO/endTUVACKFi1K//79eeONN9wW4PUcP36c8uXLO5SVL1+exMRELl68SLFixdJtk5ycTHJysn05MTExx+MUEXG7kyehTRvYuhVKlIBFi+CBBzwdlYiIiLjBwdPnna6r8dtE8j6XEy/e3t5MnTqVCRMmcODAAQBCQ0Px8/NzW3A5YcKECURFRXk6DBER18XGQqtWsH8/lCsH338PDRp4OioRERFxg+U74pj8wz4wDFs34kyYTfB+Z43fJpIfuDy4bho/Pz9uv/12br/99lxPulSoUIETJ044lJ04cYKAgIAMW7sAjBo1ioSEBPvjyJEjuRGqiIh7/P47NGliS7pUqwYbNyrpIiIiUkBYrAZRi3fcMOkC8H7n+jx4h5IuIvlBllq8DB8+3Om6kyZNynIwWdW4cWOWLVvmULZq1SoaN26c6TY+Pj74+PjkdGgiIu63fj1EREBiItx+OyxfDhUrejoqERERcZOY3/YRl5Ryw6TLsBY1ePAO/QYQyS+ylHjZtm2bw/LWrVtJTU3l1ltvBeCvv/7Cy8uLBi7efT137hz79++3L8fGxrJ9+3ZKly5NlSpVGDVqFEePHuWTTz4B4JlnnuH9999n5MiR9O7dmzVr1vDFF1+wdOlSl55fRCTPWrQInnjCNotRs2bw7bdQsqSnoxIRERF32bePkyNehsY9b1i1Wtm8PbyDiDjKUuJl7dq19n9PmjQJf39//u///o9SpUoB8O+//9KrVy+aNWvmUjBbtmzhvvvusy+ntbDp0aMHc+bMIS4ujsOHD9vXh4SEsHTpUoYNG8bUqVO56aab+OijjzSVtIgULB99BE8/DVYrPPwwfP45ZNKdUkRERPKhrVshPJwg3wqQeeN9O00fLZK/mAzDMFzZsFKlSqxcuZLatWs7lO/YsYNWrVpx7NgxtwSY0xITEwkMDCQhIYGAgABPhyMicoVhwIQJ8PLLtuXeveGDD6CIy+OiSz6ha5P76ZyKSJ61Zg20bw9JSVjq1afpI29w/NxlMvojzQRUCPRlwwv3ayajfE7XpcLF5cF1ExMTOXXqVLryU6dOkZSUlK2gREQKPasVhg69knQZNcrW8kVJFxERkYLjq6+gTRtISoLmzfFat5bI9rcDtiTL1dKWNX20SP7jcuKlQ4cO9OrVi4ULF/LPP//wzz//8PXXX9OnTx86duzozhhFRAqXlBR48kl4913b8pQpMH78DQfaExERkXwkOhoef9x23e/YEb7/HgIDCa8TTPSTd1Ih0LE7UYVAX6Kf1PTRIvmRy7dOZ8yYwYgRI+jSpQuXL1+27axIEfr06cPbb7/ttgBFRAqVc+fgkUdg5Upb65b/+z/o0sXTUYmIiIi7GAZERdkeYBvHbdo08PKyVwmvE0zLWhWIiY3nZNIlgvx9CQsprZYuIvmUy2O8pDl//jwHDhwAIDQ0lOLFi7slsNyivnUikmecPg1t20JMDBQvDl9/DRosvFDStcn9dE5FJE+wWODZZ22tXQDGjIGxY9WqtRDSdalwyfZgAcWLF+eOO+5wRywiIoXXoUO2JMvevVCmDCxbBmFhno5KRERE3CU52daV+KuvbImW996DgQM9HZWI5AKXEy/jxo277voxY8a4umsRkcJl505b0uXoUahSBVasgNtu83RUIiIi4i6JidChg20Go6JFYe5c2/guIlIouJx4+eabbxyWL1++TGxsLEWKFCE0NFSJFxERZ2zcCA89BGfPQu3asHw53HSTp6MSERERdzlxAh58ELZuhRIlYNEieOABT0clIrnI5cTLtm3b0pUlJibSs2dPOnTokK2gREQKhe++g8ceg0uXoEkTWLIESpf2dFQiIiLiLrGx0KoV7N8P5crZZi5q0MDTUYlILnN5OumMBAQEEBUVxejRo925WxGRgmfOHGjf3pZ0adsWVq1S0kVERKQg+f13242V/fuhWjVbK1clXUQKJbcmXgASEhJISEhw925FRAqOt9+GXr1sMxv06AHffAN+fp6OSiRXrF+/noiICCpWrIjJZGLRokU33GbdunXceeed+Pj4cPPNNzNnzpwcj1NEJFt+/BHuuQeOH4fbb7clXW65xdNRiYiHuNzV6N1333VYNgyDuLg4Pv30U9q0aZPtwEREChyrFUaOhHfesS0//zy8+aamkJRC5fz589StW5fevXvTsWPHG9aPjY2lbdu2PPPMM3z22WesXr2avn37EhwcTGtNty4iedE330DnzrZZjJo1g2+/hZIlPR2ViHiQy4mXyZMnOyybzWbKlStHjx49GDVqVLYDExEpUC5fhj594NNPbctvvw0jRng2JhEPaNOmTZZu0MyYMYOQkBDe+S9hWbNmTTZs2MDkyZOVeBGRvOejj+Dpp203Wx5+GD7/HIoV83RUIuJhLideYmNj3RmHiEjBdf68bcrIZcvAywtmzYLu3T0dlUi+sGnTJlq0aOFQ1rp1a4YOHXrd7ZKTk0lOTrYvJyYm5kR4IiI2hgHjx8Mrr9iWe/eGDz6AIi7/uSUiBUi2xnj56aefePLJJ2nSpAlHjx4F4NNPP2XDhg1uCU5EJN+Lj4cWLWxJl2LFYPFiJV1EsuD48eOUL1/eoax8+fIkJiZy8eLFTLebMGECgYGB9kflypVzOlQRKaysVhgy5ErSZdQoW8sXJV1E5D8uJ16+/vprWrduTbFixdi6dav9rlJCQgLjx493W4AiIvnWP//Y+nb/8guUKgWrV9tmMBKRHDdq1Cj7gP8JCQkcOXLE0yGJSEGUkgJdu8J779mWp0yxtXzR+G0ichWXEy+vvfYaM2bM4MMPP6Ro0aL28rvvvputW7e6JTgRkbzOYjXYdOAMi7cfZdOBM1ishm3F7t22KSR37YJKleCnn6BxY88GK5IPVahQgRMnTjiUnThxgoCAAIpdZ9wEHx8fAgICHB4iIm517hxERMD8+bbWLZ99Zmv5IiJyDZfbv+3du5d77rknXXlgYCBnz57NTkwiIvnC8h1xRC3ZRVzCJXtZcKAvkbcWJbxfB1s3o9tugxUroEoVD0Yqkn81btyYZcuWOZStWrWKxkpkiognnTpla8X666/g5wdffw3h4Z6OSkTyKJdbvFSoUIH9+/enK9+wYQPVq1fPVlAiInnd8h1x9J+71SHpAnA84RL9NyeyvOyt0KiRraWLki4idufOnWP79u1s374dsA3Wv337dg4fPgzYugh1v2ocpGeeeYa///6bkSNHsmfPHqZPn84XX3zBsGHDPBG+iAgcOgRNm9qSLmXKwJo1SrqIyHW5nHjp168fQ4YMYfPmzZhMJo4dO8Znn33GiBEj6N+/vztjFBHJUyxWg6gluzAyWGf899+otoOxrPoBypbN3eBE8rgtW7ZQv3596tevD8Dw4cOpX78+Y8aMASAuLs6ehAEICQlh6dKlrFq1irp16/LOO+/w0UcfaSppEfGMHTtsXYn/+gsqV4YNG2w3WkRErsPlrkYvvvgiVquVBx54gAsXLnDPPffg4+PDiBEjePbZZ90Zo4hInhITG5+upcvVDJOZOG9/Yk4m09i/RC5GJpL3NW/eHMPIKG1pM2fOnAy32bZtWw5GJSLihI0b4aGH4OxZqF0bli+Hm27ydFQikg+4nHgxmUy8/PLLPP/88+zfv59z585Rq1YtSpTQHxkiUrD9sOu4U/VOJmWenBEREZG8wWI1iImN52TSJYL8fQkLKY2X+ZpZib77Dh57DC5dsrV4WbIESpf2TMAiku9ke3J5b29vatWq5Y5YRETyPIvV4JvtR52qG+Tvm8PRiIiISHZkOlB+RC3C6wTbCubMgb59wWKxDaj7xRe2AXVFRJzk8hgvFy9e5MKFC/blQ4cOMWXKFFasWOGWwERE8qKY2Hjiz1++Yb0yxb0JC9GdMBERkbzqugPlz93K8h1x8Pbb0KuXLenSowd8842SLiKSZS4nXh5++GE++eQTAM6ePUtYWBjvvPMO7du3Jzo62m0BiojkJc52H3q4XsX0zZRFREQkT7jxQPkQ9enPWF540bbw/PMwezYULZpbIYpIAeJy4mXr1q00a9YMgK+++ooKFSpw6NAhPvnkE9599123BSgikpcEpZxzql7LWhVyOBIRERFx1Q0HygfiTL7E3FTb1urlrbfApBsqIuIalxMvFy5cwN/fH4CVK1fSsWNHzGYzd911F4cOHXJbgCIiecZffxHWKZzgxFOYDGum1YIDfdXNSEREJA9ztgXryedfghEjcjgaESnoXE683HzzzSxatIgjR46wYsUKWrVqBcDJkycJCAhwW4AiInnCli1w9914HTxI5K4lYDJz7X0v03+PyIha6mYkIiKShzk7AH7Qgy1zOBIRKQxcTryMGTOGESNGUK1aNcLCwmjcuDFga/1Sv359twUoIuJxP/wA990Hp09DgwaEfxFN9JN3UiHQ8UdbhUBfop+888osCCIiIpInhYWUJjjQN91NlDQm1IJVRNzH5emkH330UZo2bUpcXBz16tXDMAxMJhMPPPAAHTp0cGeMIiK5xmI1iImN52TSJYL8fQn79Qe8uneDy5fhgQdssxn4+xMeZBvHxaFuSGm1dBEREckHvMwmIiNq0X/uVkzgMMhu2pVcLVhFxF1cTrwALF26lMmTJ7Nv3z4AbrnlFoYOHUrfvn3dEpyISG5aviOOqCW7HAbbC068SGRIQ8LrVYZPPgEfH/s6L7OJxqFlPBGqiIiIZFN4nWCiw0oQteYQcSWuXM8rBPoSGVFLLVhFxG1cTryMGTOGSZMm8eyzz9q7GW3atIlhw4Zx+PBhxo0b57YgRURy2vIdcfSfuzXdtJLH/cvQv/1LRHetT/hVSRcRERHJ+9K1ZL26der33xPe7VFaXrxETMtHOPnKOIIqllMLVhFxO5NhGBlNX39D5cqV491336Vz584O5Z9//jnPPvssp0+fdkuAOS0xMZHAwEASEhI0KLBIIWWxGjR9c02m00qasN392vDC/fohJrlC1yb30zkVKXwybMma1prl9zXQsyekpkLr1vDVV1CihOeClUJH16XCxeXBdS9fvkzDhg3TlTdo0IDU1NRsBSUikptiYuMzTbqArd93XMIlYmLjcy8oERERcVlaS9Zrr+/HEy7Rf+5vLB83zZZ06dIFvv1WSRcRyVEuJ166detGdHR0uvKZM2fStWvXbAUlIpKbTiZlnnRxpZ6IiIh4jsVqELVkV7ruw/DfILqGQdQDT2EZOhQ+/RS8vXM3QBEpdLI1uO7HH3/MypUrueuuuwDYvHkzhw8fpnv37gwfPtxeb9KkSdmLUkQkBwVdvuBcPX/fG1cSERERj7phS1aTmbiAcsT0e5nGZpfvQ4uIOM3lxMuOHTu48847AThw4AAAZcuWpWzZsuzYscNez2TSeAgikocdOEDYE20Ibv0Kx/3LYJjS/wBLG+MlLKR07scnIiIiWeJ8S9bkHI5ERMTG5cTL2rVr3RmHiEju27YNwsPxOnmSyB2L6d+kLyZwaJqcljqOjKilgXVFRETyoGtnLipbwrlZCNWSVURyS7a6GomI5Ftr18LDD0NSEtSrR/gX0USfNtLNflAhbfaDOsEeDFZEREQyktHMRRUCfCjpV5SEC5czHOdFLVlFJLcp8SIihc/XX9tmMUhJgebNYdEiCAwkvAK0rFXB4a5ZWEhptXQRERHJg9JmLro2uXIiMdk+iK4Jw6EbsVqyiognKPEiIoXLBx9A//5gGNCxI3z2GfheaWrsZTbROLSMBwMUERGRG7nRzEUmw0rgxSR8MTjuV9K+Ti1ZRcQTlHgRkcLBMODVVyEy0rb89NMwbRp4eXk2LhEREckyZ2YuOusXyGeP1sBcqrRasoqIRynxIiIFn8UCQ4bYEi0AY8bA2LGgWddERETyJWdnLjpdxI+H1ZJVRDzMpYnrL1++zAMPPMC+ffvcHQ/Tpk2jWrVq+Pr60qhRI2JiYq5bf8qUKdx6660UK1aMypUrM2zYMC5dcu6LWEQKHovVYNOBMyzefpRNB85guXjJNp7LtGm2RMv770NUlJIuIiIi+ZizMxJp5iIRyQtcavFStGhR/vjjD3fHwoIFCxg+fDgzZsygUaNGTJkyhdatW7N3716CgoLS1Z83bx4vvvgis2bNokmTJvz111/07NkTk8nEpEmT3B6fiORtGc1sEJySROT2I4QXLQpz58Ljj3swQhEREXGHsJDSBAf6cjzhkmYuEpE8z6UWLwBPPvkkH3/8sTtjYdKkSfTr149evXpRq1YtZsyYgZ+fH7Nmzcqw/s8//8zdd99Nly5dqFatGq1ataJz5843bCUjIgVP2swG1/b3Pl60OP3bv8TyOUuUdBERESkgvMwmItveZpu5yLA6rNPMRSKS17g8xktqaiqzZs3ihx9+oEGDBhQvXtxhfVZbnKSkpPDbb78xatQoe5nZbKZFixZs2rQpw22aNGnC3LlziYmJISwsjL///ptly5bRrVu3TJ8nOTmZ5ORk+3JiYmKW4hSRvOe6MxuYzJiAqENFaGk19ANMRESkILh0ifCxzxK98zhRDzxNXEBZ+yrNXCQieY3LiZcdO3Zw5513AvDXX385rDO5MHbC6dOnsVgslC9f3qG8fPny7NmzJ8NtunTpwunTp2natCmGYZCamsozzzzDSy+9lOnzTJgwgaioqCzHJyJ51w1nNgDiEi4RExuvqaJFRETyu4QEePhh+PFHwr29afmAPzH17tLMRSKSZ7mceFm7dq0743DJunXrGD9+PNOnT6dRo0bs37+fIUOG8OqrrzJ69OgMtxk1ahTDhw+3LycmJlK5cuXcCllEcoCzMxs4W09ERETyqOPHITwcfv8dAgJg8WK8mjensafjEhG5jmxNJ3327Fk+/vhjdu/eDUDt2rXp3bs3gYGBWd5X2bJl8fLy4sSJEw7lJ06coEKFChluM3r0aLp160bfvn0BuP322zl//jxPPfUUL7/8MmZz+iFsfHx88PHxyXJ8IpJ3aWYDERGRQuDAAWjVCv7+G8qXh+XLoV49T0clInJDLg+uu2XLFkJDQ5k8eTLx8fHEx8czadIkQkND2bp1a5b35+3tTYMGDVi9erW9zGq1snr1aho3zjiHfeHChXTJFS8vLwAMI6PRHkSkIApbu4jgxNPpBtdLYwKCNbOBiIhI/rVtGzRpYku6hIbCxo1KuohIvuFy4mXYsGG0a9eOgwcPsnDhQhYuXEhsbCwPPfQQQ4cOdWmfw4cP58MPP+T//u//2L17N/379+f8+fP06tULgO7duzsMvhsREUF0dDTz588nNjaWVatWMXr0aCIiIuwJGBEpwAwDJkzAq19fIld/AJi4tke3ZjYQERHJ59asgXvvhZMnbcmWjRttyRcRkXzC5a5GW7Zs4cMPP6RIkSu7KFKkCCNHjqRhw4Yu7bNTp06cOnWKMWPGcPz4cerVq8fy5cvtA+4ePnzYoYXLK6+8gslk4pVXXuHo0aOUK1eOiIgIXn/9dVcPS0TyC6sVhg+HqVMBCH+kOdGdGxD13S6HgXY1s4GIiEg+9tVX0LUrpKRA8+awaBG4MKyBiIgnmQwX++SUL1+eTz/9lFatWjmUr1ixgu7du6cbqyWvSkxMJDAwkISEBAICAjwdjog4IyUFevaEzz+3LU+ZAkOGALappWNi4zWzgeRruja5n86pSD40YwYMGGBr4dqxI3z2GfhqvDYpGHRdKlxcbvHSqVMn+vTpw8SJE2nSpAkAGzdu5Pnnn6dz585uC1BExMG5c/DII7ByJRQpAv/3f9Cli321l9mkKaNFRETyM8OAceNg7Fjb8tNPw7RpoKEERCSfcjnxMnHiREwmE927dyc1NRWAokWL0r9/f9544w23BSgiYnf6NLRtCzEx4OcHX39tm1JSRERECgaLBQYPhunTbctjxtgSMCa1XhWR/CtLiZc//viDOnXqYDab8fb2ZurUqUyYMIEDBw4AEBoaip+fX44EKiKF3KFD0Lo17N0LZcrA0qXQqJGnoxIRERF3SU6Gbt3gyy9tiZb33oOBAz0dlYhItmUp8VK/fn3i4uIICgqievXq/Prrr5QpU4bbb789p+ITEYGdO21Jl6NHoXJlWzej227zdFQiIiLiLklJ0KEDrF4NRYvC3Lnw+OOejkpExC2yNJ10yZIliY2NBeDgwYNYrdYcCUpECieL1WDTgTMs3n6UTQfOYLEatikjmza1JV1q1YKff1bSRaQAmDZtGtWqVcPX15dGjRoRExNz3fpTpkzh1ltvpVixYlSuXJlhw4Zx6dKl624jIvnEyZO2GYtWr4YSJWDZMiVdRKRAyVKLl0ceeYR7772X4OBgTCYTDRs2xCuTQa7+/vtvtwQoIoXD8h1xRC1xnAo62NsgcuFEws+ehcaN4bvvoHRpzwUpIm6xYMEChg8fzowZM2jUqBFTpkyhdevW7N27l6CgoHT1582bx4svvsisWbNo0qQJf/31Fz179sRkMjFp0iQPHIGIuE1sLLRqBfv3Q7lytqRLw4aejkpExK2yPJ308uXL2b9/P4MHD2bcuHH4+/tnWG/If1O75nWaxkvE85bviKP/3K1c+2VkMqyAiejDKwj/+E3bgLoihUBBvzY1atSI//3vf7z//vsAWK1WKleuzLPPPsuLL76Yrv6gQYPYvXs3q1evtpc999xzbN68mQ0bNjj1nAX9nIrkS7//bhsk//hxqFrV1pW4Rg1PRyWSK3RdKlyyPKtR+H8ziPz2228MGTIk08SLiIgzLFaDqCW70iVdAAyTGZNhEHXHw7T0LYYmkRTJ/1JSUvjtt98YNWqUvcxsNtOiRQs2bdqU4TZNmjRh7ty5xMTEEBYWxt9//82yZcvo1q1bboUtItlgsRrExMZzMukSQf6+hIWUxmvDTxARAYmJcPvtsHw5VKzo6VBFRHKEy9NJz549251xiEghFRMb79C96FqGyURcQjIxsfE0Di2Ti5GJSE44ffo0FouF8uXLO5SXL1+ePXv2ZLhNly5dOH36NE2bNsUwDFJTU3nmmWd46aWXMn2e5ORkkpOT7cuJiYnuOQARyZJMuxJ//TbhiYm2cdyWLIGSJT0XpIhIDsvS4LoiIu52Msm5wTGdrSciBc+6desYP34806dPZ+vWrSxcuJClS5fy6quvZrrNhAkTCAwMtD8qV66cixGLCFzpSnztDZbjyQb9H3qe5V0H27oXKekiIgWcEi8i4lFB/r5urScieVvZsmXx8vLixIkTDuUnTpygQoUKGW4zevRounXrRt++fbn99tvp0KED48ePZ8KECZnOsDhq1CgSEhLsjyNHjrj9WEQkczfqSgwQVbsdFh9d30Wk4FPiRUQ8KiwQgi8l/jeQbnomIDjQ1h9cRPI/b29vGjRo4DBQrtVqZfXq1TRu3DjDbS5cuIDZ7PiTJW1WxczmCPDx8SEgIMDhISK5x7muxJeIiY3PxahERDxDiRcR8Zx//sHr3nuI/P49wITpmtVpy5ERtfAyX7tWRPKr4cOH8+GHH/J///d/7N69m/79+3P+/Hl69eoFQPfu3R0G342IiCA6Opr58+cTGxvLqlWrGD16NBEREfYEjIjkLepKLCJyhcuD6wKsXr2a1atXc/LkyXRNfWfNmpWtwESkgNu9G1q3hiNHCK9UiejmQURtT3K4O1Yh0JfIiFqE1wn2YKAi4m6dOnXi1KlTjBkzhuPHj1OvXj2WL19uH3D38OHDDi1cXnnlFUwmE6+88gpHjx6lXLlyRERE8Prrr3vqEETkBtSVWETkCpORWRvdG4iKimLcuHE0bNiQ4OBgTCbHu9HffPONWwLMaZo/XcQDNm+GBx+E+Hi49VbbwHpVqmQ83aRaukghpGuT++mciuQuy8lTNB2/iuM+/vYxXa5mwnaDZcML9+taL4WSrkuFi8stXmbMmMGcOXPo1q2bO+MRkYJu+XJ45BG4cAHCwmDpUihbFgAvs0lTRouIiOR3hw7h1bo1kUZp+rd/CRM4DLKrrsQiUti4PMZLSkoKTZo0cWcsIlLQffYZRETYki6tW8Pq1faki4iIiBQAO3ZAkyawdy/hF/8h+v4KVAh07E5UIdCX6CfvVFdiESk0XG7x0rdvX+bNm8fo0aPdGY+IFFSTJ8Pw4bZ/d+4Mc+aAt7dHQxIRERHXpesiHLcbr4gIOHsWatWCFSsIv+kmWrZUV2IRKdxcTrxcunSJmTNn8sMPP3DHHXdQtGhRh/WTJk3KdnAiUgAYBowaBW++aVseMgQmTQKzJlUTERHJr5bviCNqyS6HQfGDk04TGVST8JrAd99B6dKAuhKLiLicePnjjz+oV68eADt27HBYd+1AuyJSSKWmwtNPQ9osZxMmwAsvgL4jRERE8q3lO+LoP3cr187QcbyEbUyX6MdvJ/y/pIuIiGQj8bJ27Vp3xiEiBc3Fi/DEE/Dtt7bWLTNnQp8+no5KREREssFiNYhasitd0gXAMJkxAVEr99OyfhV1JxIR+Y/LiRcRkUynf/73X2jXDjZsAF9fmD8fHn7Y0+GKiIhINsXExjt0L7qWAcQlXCImNl7di0RE/pOtxMvZs2f5+OOP2b17NwC1atWiT58+BAYGuiU4Ecm7MuzbHehL5N3BhA/sZJvVIDAQliyBZs08GKmIiIi4y8mkzJMurtQTESkMXB7dcsuWLYSGhjJ58mTi4+OJj49n8uTJhIaGsnXrVnfGKCJ5TFrf7mvveB1PuET/pX+zPMUfgoNh/XolXURERAqQoKIZdTLKoJ6/740riYgUEi4nXoYNG0a7du04ePAgCxcuZOHChcTGxvLQQw8xdOhQN4YoInmJxWow9ttM+nb/99+o1gOw/LQB7rgjd4MTERGRnBMfT1jfxwlOPIXJsGZYxYStBWxYiAbXFRFJk60WLy+88AJFilzprVSkSBFGjhzJli1b3BKciOQ976/Zx/HE6/TtNpmJ8ytFDOpyKCIiUmAcOQJNm+L1yyYif5kH/w2ke7W05ciIWhpYV0TkKi4nXgICAjh8+HC68iNHjuDv75+toEQkb1q+I47JP+xzqq76douIiBQQu3dDkya2/1eqRPink4l+8k4qBDp2J6oQ6Ev0k3cSXifYQ4GKiORNLg+u26lTJ/r06cPEiRNp0qQJABs3buT555+nc+fObgtQRPKGtOkjnaW+3SIiIgXAL79A27YQHw+33gorV0KVKoQDLWtVyHh2QxERceBy4mXixImYTCa6d+9OamoqhmHg7e1N//79eeONN9wZo4jkATeaPvJq6tstIiJSAHz/PTz6KFy4AGFhsHQplC1rX+1lNmnKaBERJ7icePH29mbq1KlMmDCBAwcOABAaGoqfn5/bghORvCMrXYfUt1tERCSf++wz6NkTUlOhdWv46isoUcLTUYmI5EtZSrwMHz6cV199leLFizN8+PDr1p00aVK2AhORvMXZrkPDWtRQ324REZH8bPJkSPut36ULzJ4N3t6ejUlEJB/LUuJl27ZtXL582f7vzJhMutMtUtCElfYiODmJ497FMUwZj8tdIcCHQfffnMuRiYiIiFsYBowaBW++aVseOhTeeQfMLs/HISIiZDHxsnbt2gz/LSIF3PHjeLVpQ+SFYvRv/xImwLhqdVqqdWy72upiJCIikh+lpsLTT8OsWbblCRPghRdAN1RFRLLN5fT14cOHMQwj03UiUkAcOAB33w3btxOe8DfRTUtr+kgREZGC5OJFeOQRW9LFbIaPPoIXX1TSRUTETVweXDckJIS4uDiCgoIcys+cOUNISAgWiyXbwYmIh23bBm3awIkTUL06rFxJeGgoLdsamj5SRESkIPj3X2jXDjZsAF9fmD8fHn7Y01GJiBQoLideDMPIcCyXc+fO4evr3CCcIpKHrVtn+yGWlAT16tmmlKxQAdD0kSIiIvmJxZrJDZNjx2wzFu3YAYGBsGQJNGvm6XBFRAqcLCde0mYzMplMjB492mH6aIvFwubNm6lXr57bAhQRD1i4EDp3hpQUaN4cFi2y/SATERGRfGX5jjiiluwiLuGSvSw40JfIBqUIf6ojHDoEwcGwfDnccYcHIxURKbiynHhJm83IMAz+/PNPvK+aWs7b25u6desyYsQI90UoIjki07tfM2dC//5gtULHjvDZZ7amxyIiIpKvLN8RR/+5W7l2VMbjCZfov/oY0T4VCb/FG1asgJAQj8QoIlIYZDnxkjabUa9evZg6dSoBAQFuD0pEclamd78u7SJ83GBbwVNPwfTp4OXloShFRETEVRarQdSSXemSLmCbmdCEQVSbQbR88QG8KpTP7fBERAoVl8d4mT17NgC7du3i8OHDpKSkOKxv165d9iITkRyR6d2vsxfpTwjRNRoT3qkFREVpNgMREZF8KiY23uEGy7UMk5k430BizhehcS7GJSJSGLmceImNjaV9+/b8+eefmEwm+9TSaQPualYjkbznune/TCZMhpWoR1+g5dh2eCnpIiIikm+dTMo86eJKPRERcZ3Z1Q0HDx5MSEgIJ0+exM/Pj507d7J+/XoaNmzIunXrXA5o2rRpVKtWDV9fXxo1akRMTMx16589e5aBAwcSHByMj48PNWrUYNmyZS4/v0hB5tTdL0sRYmLjczEqERERcbcgf+fGZ3O2noiIuM7lFi+bNm1izZo1lC1bFrPZjNlspmnTpkyYMIHBgwfbB+HNigULFjB8+HBmzJhBo0aNmDJlCq1bt2bv3r0EBQWlq5+SkkLLli0JCgriq6++olKlShw6dIiSJUu6elgiBZrufomIiBRM1w6a36BqKYIDfDiecAkjg1asJqBCoG1wfRERyVkuJ14sFgv+/v4AlC1blmPHjnHrrbdStWpV9u7d69I+J02aRL9+/ejVqxcAM2bMYOnSpcyaNYsXX3wxXf1Zs2YRHx/Pzz//TNGiRQGoVq2aawckUgjo7peIiEjBk+Gg+QE+tDsYw8xSd2AyrBimKw3d09IwkRG1bDMaiohIjnK5q1GdOnX4/fffAWjUqBFvvfUWGzduZNy4cVSvXj3L+0tJSeG3336jRYsWV4Izm2nRogWbNm3KcJtvv/2Wxo0bM3DgQMqXL0+dOnUYP378dceXSU5OJjEx0eEhUliEhZQm2M8Lk2HNcL0J2+xGuvslIiKSP6QNmn9tV+LjCZeYWeoOntqyiAo+jsmVCoG+RD95J+F1gnMzVBGRQsvlFi+vvPIK58+fB2DcuHE89NBDNGvWjDJlyrBgwYIs7+/06dNYLBbKl3eczq58+fLs2bMnw23+/vtv1qxZQ9euXVm2bBn79+9nwIABXL58mcjIyAy3mTBhAlFRUVmOT6Qg8Nq4gchvJtK/1VBMhuHQ9Fh3v0RERPIXZwbN/7ZZR358JZzfDv1r74YUFlJa13oRkVzkcuKldevW9n/ffPPN7Nmzh/j4eEqVKmWf2SinWa1WgoKCmDlzJl5eXjRo0ICjR4/y9ttvZ5p4GTVqFMOHD7cvJyYmUrly5VyJV8Sjvv0WOnUi/NIloqtUJSrsCeKSrkwDXyHQl8iIWrr7JSIikk84NWj+JYPfDv1L49AyuRiZiIhczeXES0ZKl3a9e0LZsmXx8vLixIkTDuUnTpygQoUKGW4THBxM0aJF8fLyspfVrFmT48ePk5KSgre3d7ptfHx88PHxcTlOkbzs2oH17He0Zs2Cfv3AaoV27Qif/z4tfXwzrisiIiL5ggbNFxHJH7KUeBk+fDivvvoqxYsXd2g1kpFJkyZlKRBvb28aNGjA6tWrad++PWBr0bJ69WoGDRqU4TZ333038+bNw2q1Yjbbhqv566+/CA4OzjDpIlKQZTiwXqAvkZf3Eh450FbQuzd88AEUKYIX6O6XiIhIPqZB80VE8ocsJV62bdvG5cuX7f/OjKtdjYYPH06PHj1o2LAhYWFhTJkyhfPnz9tnOerevTuVKlViwoQJAPTv35/333+fIUOG8Oyzz7Jv3z7Gjx/P4MGDXXp+kfwqbWC9a/t4Hz97kf5UIbpGY8I73gvjx0MudQUUERGRnBUWUprgolaOp+Awa1EaTRktIpI3ZCnxsnbt2gz/7S6dOnXi1KlTjBkzhuPHj1OvXj2WL19uH3D38OHD9pYtAJUrV2bFihUMGzaMO+64g0qVKjFkyBBeeOEFt8cmklc5M7Be1CMjafnaw3gp6SIiIlJgeM38gMgvPqV/+1EaNF9EJA8zGYaR0d9r13X58mXCw8OZMWMGt9xyS07ElWsSExMJDAwkISGBgIAAT4cjkmWbDpyh84e/3LDe5/3uUtcikXxC1yb30zmV/CrD8dtMwLhxMHYsAMsHRhJVsSlxicn27YI1aL5InqbrUuHi0uC6RYsW5Y8//nB3LCLiAg2sJyIiUjBlOH5bgA+RJ34m/N2xtoLRowmPiqSlgQbNFxHJo9J3BnXSk08+yccff+zOWETEBRpYT0Tyo2nTplGtWjV8fX1p1KgRMTEx161/9uxZBg4cSHBwMD4+PtSoUYNly5blUrQiuS9t/LZrp4s+nnCJ/r53srxGE3jvPVvLF5MJL7OJxqFleLheJRqHllHSRUQkD3F5OunU1FRmzZrFDz/8QIMGDShevLjD+qzOaiQirgkLKU2wnxfHz6c69O1Oo4H1RCSvWbBgAcOHD2fGjBk0atSIKVOm0Lp1a/bu3UtQUFC6+ikpKbRs2ZKgoCC++uorKlWqxKFDhyhZsmTuBy+SC5wav+3xF2k54CG8cj06ERHJKpcTLzt27ODOO+8EbFM4X83VWY1EJOu8ftlE5KJJ9G85WAPriUi+MGnSJPr162eftXDGjBksXbqUWbNm8eKLL6arP2vWLOLj4/n5558pWrQoANWqVcvNkEVyVUxsfLqWLlczTGbiLtvqafw2EZG8z+XES07MaiQiWbR0KTz2GOEXLxJdqRJRd3UhLinFvrqCBtYTkTwmJSWF3377jVGjRtnLzGYzLVq0YNOmTRlu8+2339K4cWMGDhzI4sWLKVeuHF26dOGFF17Ayyvj+/3JyckkJ18ZaDQxMdG9ByKSgzR+m4hIweJy4kVEPOyTT6B3b7BY4MEHCV8wjZa+xTSwnojkaadPn8ZisVC+fHmH8vLly7Nnz54Mt/n7779Zs2YNXbt2ZdmyZezfv58BAwZw+fJlIiMjM9xmwoQJREVFuT1+kdyg8dtERAqWbCdedu3axeHDh0lJSXEob9euXXZ3LSKZmTgRnn/e9u/u3eGjj6BoUbxATY5FpMCxWq0EBQUxc+ZMvLy8aNCgAUePHuXtt9/ONPEyatQohg8fbl9OTEykcuXKuRWySLaEhZQm2NfE8YsWDFP6uTA0fpuISP7icuLl77//pkOHDvz555+YTCYMwzb8V9r4LhaLxT0RisgVViu88IIt8QIwYgS8+SaYXZ6gTEQkV5UtWxYvLy9OnDjhUH7ixAkqVKiQ4TbBwcEULVrUoVtRzZo1OX78OCkpKXh7e6fbxsfHBx8fH/cGL5JLvJZ8S+SXk+j/0PMav01EpABw+a+1IUOGEBISwsmTJ/Hz82Pnzp2sX7+ehg0bsm7dOjeGKCIAXL4MvXpdSbq89Ra8/baSLiKSr3h7e9OgQQNWr15tL7NaraxevZrGjRtnuM3dd9/N/v37sVqt9rK//vqL4ODgDJMuIvnaxx9Dx46E71pP9NFVVAh07E5UIdCX6Cfv1PhtIiL5iMstXjZt2sSaNWsoW7YsZrMZs9lM06ZNmTBhAoMHD2bbtm3ujFOkcLtwAR5/3DaYrpeX7UdZjx6ejkpExCXDhw+nR48eNGzYkLCwMKZMmcL58+ftsxx1796dSpUqMWHCBAD69+/P+++/z5AhQ3j22WfZt28f48ePZ/DgwZ48DBH3Mgx44w146SXbcu/ehH/wDi3NXhq/TUQkn3M58WKxWPD39wdszYaPHTvGrbfeStWqVdm7d6/bAhQp9OLj4aGHYNMmKFYMvvjCtiwikk916tSJU6dOMWbMGI4fP069evVYvny5fcDdw4cPY76qNV/lypVZsWIFw4YN44477qBSpUoMGTKEF154wVOHIOJeVisMGwbvvmtbfvFFGD8eTCaN3yYiUgC4nHipU6cOv//+OyEhITRq1Ii33noLb29vZs6cSfXq1d0Zo0jh9c8/0Lo17NoFJUvaWrw0aeLpqEREsm3QoEEMGjQow3UZdVlu3Lgxv/zySw5HJZJzLFYj45YrKSnQsyd8/rmt4uTJMHSoJ0MVERE3cznx8sorr3D+/HkAxo0bx0MPPUSzZs0oU6YMCxYscFuAIoVBhj/G/toLrVrBkSNQqRKsWAG1a3s6VBEREcmi5TviiFqyi7iES/ay4EBfIltWJ/zlZ2DlSihSBObMga5dPReoiIjkCJcTL61bt7b/++abb2bPnj3Ex8dTqlQp+8xGInJjGf4Y8zUT+d0Uwo8cgVtvtf0gq1LFg1GKiIiIK5bviKP/3K0Y15QfT7hE/y93En0wiXA/P/j6awgP90iMIiKSs1yeDqVv377pmgKXLl1aSReRLEj7MXZ10gXg+MVU+j/wLMsf7A4bNijpIiIikg9ZrAZRS3alS7oA/5UZRLV8Bsvq1Uq6iIgUYC4nXk6dOkV4eDiVK1fm+eefZ/v27W4MS6Tgu+6PMZPtoxl1dzcspTWgnoiISH4UExuf7ubK1QyTmbgSZYgpd0suRiUiIrnN5cTL4sWLiYuLY/To0fz66680aNCA2rVrM378eA4ePOjGEEUKDovVYNOBMyzefpQ5G2Nv8GPMRFxiMjGx8bkYoYiIiLjLyaTMr/Ou1BMRkfzJ5TFeAEqVKsVTTz3FU089xT///MPnn3/OrFmzGDNmDKmpqe6KUaRAyGgsF2fox5iIiEj+FOTv69Z6IiKSP7nc4uVqly9fZsuWLWzevJmDBw9Svnx5d+xWpMDIbCwXZ+jHmIiISP4UFlKa4EBfTBl2LAYTttmNwkJK525gIiKSq7KVeFm7di39+vWjfPny9OzZk4CAAL777jv++ecfd8Unku9dbywXAAz9GBMRESmIvMwmIi37wACTYXVYlzYdRWRELbzMmpxCRKQgc7mrUaVKlYiPjyc8PJyZM2cSERGBj4+PO2MTKRBuNLAeGcwEph9jIiIi+YvFahATG8/JpEsE+fsSVrUkXqNeJHziRKJrNCaq/XPEcaUVa4VAXyIjahFeJ9iDUYuISG5wOfEyduxYHnvsMUqWLOnGcEQKHlfGaNGPMRERkfwjo3Hcgi0XiPx2I+FAeN8OtHyuo2NiJqS0bq6IiBQSLide+vXr5844RAosZ8doGd22JmX9ffRjTEREJB9JG8ft2o7Dx82+9G//EtE3JRH+bGe8gMahZTwRooiIeFi2ZjUSkRtLG1jveMKlDMd5MWFr4dLz7hAlW0RERPKR643jZpjMmDCIOhdES6uha7yISCHmllmNRCRzXmYTkVVTwTA0sJ6IiEgBcqNx3AxMxCVcIiY2PhejEhGRvCZLiZc//vgDq9V644oicsUXXxDeM4LoReOpcPm8w6oKgb5EP3mnxnIRERHJh5wdx82V8d5ERKTgyFJXo/r16xMXF0dQUBDVq1fn119/pUwZ9VUVydT778PgwWAYhNerTMvX2xNz7LwG1hMRESkAnB3Hzdl6IiJSMGUp8VKyZEliY2MJCgri4MGDav0ikhnDgMhIePVV2/LAgTB1Kl5eXjQO1Y8vERGRgiDsrxiCk05zvERpDFP6huRp47iFhZTO/eBERCTPyFLi5ZFHHuHee+8lODgYk8lEw4YN8fLyyrDu33//7ZYARfIdiwUGDICZM23LUVEwejSY1LJFRESkwPjsM7x69iSy+v/o3/4lTOAwyK7GcRMRkTRZSrzMnDmTjh07sn//fgYPHky/fv3w9/fPqdhE8jyL1SAmNv5K16FgP7y6PQkLF9oSLdOnwzPPeDpMERERcacpU2DYMADCG1QjunNdor7/y2Gg3QqBvkRG1NI4biIikvXppMPDwwH47bffGDJkiBIvUmgt3xFH1JJdDj+ygpOTiNwRR7i3N8ybB4884sEIRURExK0MA156Cd54w7Y8ZAhMmkS42UzLO25yvBmjcdxEROQ/JsMwjBtXy9jZs2f5+OOP2b17NwC1a9emd+/eBAYGui3AnJaYmEhgYCAJCQkEBAR4OhzJJ5bviKP/3K1c++GxTRdtIrq+D+FPtPREaCJSAOja5H46p5Jtqanw9NMwa5Ztefx4ePFFdSUWEZfoulS4ZGk66att2bKF0NBQJk+eTHx8PPHx8UyaNInQ0FC2bt3qzhhF8hSL1SBqya50SRfANrCeyURUrBmL1eWcpoiIiHiAxWqw6cAZFm8/yqYDZ65cyy9etLVinTULzGb48EMYNUpJFxERcUqWuxqlGTZsGO3atePDDz+kSBHbblJTU+nbty9Dhw5l/fr1bgtSJC+JiY136F50LQOIS7hETGw8jUM13bqIiEh+kGEX4kBfIu+vRvjzveCnn8DHB+bPh/btPReoiIjkOy4nXrZs2eKQdAEoUqQII0eOpGHDhm4JTiQvOpmUedLFlXoiIiLiWZl1IT6ecIn+C3cTfSKV8MBA+PZbuOcej8QoIiL5l8tdjQICAjh8+HC68iNHjmjAXSnQgvx93VpPREREPOe6XYj/+29Uq2ewrPtRSRcREXGJy4mXTp060adPHxYsWMCRI0c4cuQI8+fPp2/fvnTu3NmdMYrkKWGrviI48dR/A+mmZ8LWNDkspHTuBiYiIiJZYrEazNkYe/0uxCYzccXLEON/Uy5GJiIiBYnLXY0mTpyIyWSie/fupKamAlC0aFH69+/PG2lT7IkUJIYBr76KV2QkkTUa07/9S5jA4Q5Z2hB7kRG1NIWkiIhIHpbRmC7Xoy7EIiLiKpdbvHh7ezN16lT+/fdftm/fzvbt24mPj2fy5Mn4+Pi4M0YRz7NY4NlnITISgPDHHyD6yQZUCHTsTlQh0JfoJ+8kvE6wJ6IUERERJ6SN6eJs0gXUhVhERFzncouXNH5+ftx+++3uiEXEoyxWg5jYeE4mXSLI39ZVyMtsguRk6N4dvvjCNm3k1Knw7LOEAy1rV8h4GxEREcmTrjemS0ZM2G6sqAuxiIi4KtuJF5GCINMpJFtUJ3xUP1i9GooWhU8/hU6d7HW8zCZNGS0iIpKPxMTGO93SRV2IRUTEHVzuaiRSUGTW3Ph4wiX6f7WT5UcuQPHisHSpQ9JFRERE8p+sjNWiLsQiIuIOeTLxMm3aNKpVq4avry+NGjUiJibGqe3mz5+PyWSiffv2ORugFBhOTSHZ8hksa9dCy5a5G5yIiIi4nbNjtYxuW5MNL9yvpIuIiGSby4mXw4cPYxjp/1w1DIPDhw+7HNCCBQsYPnw4kZGRbN26lbp169K6dWtOnjx53e0OHjzIiBEjaNasmcvPLYXPjZobGyYzcSXKEFO6ei5GJSIiIjklLKQ0wf7emDL4HQu27kXBgb70vDtE3YtERMQtXE68hISEcOrUqXTl8fHxhISEuBzQpEmT6NevH7169aJWrVrMmDEDPz8/Zs2alek2FouFrl27EhUVRfXq+gNZnOdsc2NNISkiIlIweJ08QeT6OQCYDKvDOo3pIiIiOcHlxIthGJhM6S9I586dw9fXten2UlJS+O2332jRosWVAM1mWrRowaZNmzLdbty4cQQFBdGnT58bPkdycjKJiYkODym8nG1urCkkRURECoADB+DuuwlfOY/otdOo4Oc4z4TGdBERkZyQ5VmNhg8fDoDJZGL06NH4+fnZ11ksFjZv3ky9evVcCub06dNYLBbKly/vUF6+fHn27NmT4TYbNmzg448/Zvv27U49x4QJE4iKinIpPil4wkJKExzoy/GEixikTyRqCkkREZH8xWI1iImN52TSJYL8bddwL7MJtm2DNm3gxAmoXp3wee/RsnpoxnVFRETcKMuJl23btgG2Fi9//vkn3t7e9nXe3t7UrVuXESNGuC/C60hKSqJbt258+OGHlC1b1qltRo0aZU8eASQmJlK5cuWcClHyOC8TRF7eQ3+jKiasGKYrjcDU3FhERCR/Wb4jjqgluxzGbwsO9CUyxCD8qY6QlAT16sH330OFCngBjUPLeCxeEREpHLKceFm7di0AvXr1YurUqQQEBLgtmLJly+Ll5cWJEyccyk+cOEGFChXS1T9w4AAHDx4kIiLCXma12vrqFilShL179xIaGuqwjY+PDz4+Pm6LWfIxqxWGDyd86lSiazQmqsMI4rjy3qgQ6EtkRC01NxYREckHlu+Io//crelmKjyecJH+2yA6uA7hDXxg0SIIDPREiCIiUki5PMbL7Nmz3Zp0AVuLmQYNGrB69Wp7mdVqZfXq1TRu3Dhd/dtuu40///yT7du32x/t2rXjvvvuY/v27WrJIoCtyfGmA2dYvP0omw6cwWI1ICUFunWDqVMBCO//OBvGd+Dzfncx9Yl6fN7vLk0hKSKSg6ZNm0a1atXw9fWlUaNGxMTEOLXd/PnzMZlMtG/fPmcDlHzFYjWIWrIrXdIF+K8rsUHUQ0OwLF2mpIuIiOS6LLd4udrq1atZvXo1J0+etLc0SXO9WYiuZ/jw4fTo0YOGDRsSFhbGlClTOH/+PL169QKge/fuVKpUiQkTJuDr60udOnUcti9ZsiRAunIpnDJscuzvTeQfiwj/Yh4UKQJz5kDXrmpuLCKSSxYsWMDw4cOZMWMGjRo1YsqUKbRu3Zq9e/cSFBSU6XYHDx5kxIgRNGvWLBejlfwgJjbe4Vp/LcNkJq5oCWLiLtA4tFguRiYiIpKNFi9RUVG0atWK1atXc/r0af7991+Hh6s6derExIkTGTNmDPXq1WP79u0sX77cPuDu4cOHiYuLc3n/UnikNTm+9ofY8cRk+ldrw/Lbm8OSJdC1q2cCFBEppCZNmkS/fv3o1asXtWrVYsaMGfj5+V33po3FYqFr165ERUVRvXr1XIxW8oOTSZknXVypJyIi4k4ut3iZMWMGc+bMoVu3bu6MB4BBgwYxaNCgDNetW7fuutvOmTPH7fFI/nPdJscmEybDStQjI2nZqjVeuR6diEjhlZKSwm+//caoUaPsZWazmRYtWrBp06ZMtxs3bhxBQUH06dOHn376KTdClXwkyN/XrfVERETcyeXES0pKCk2aNHFnLCJu41ST44tWYmLj1b1IRCQXnT59GovF8v/t3XlclXXe//H34SCLCigqi0a5ZBpqkQuGWjYqwlSk0zSZ5TKlVrikMbm1SGSJeZvZzM1g2jqTZovVVBpmlpOaE+Vym2XeuWU/A9cEXEHO9fuDGwo5yDmHs/N6Ph48Zs51vuc6n++Fw+eaz/VdqkayVoqOjtb3339v9TMbNmzQiy++qG3bttn8PefOndO5c+eqXhcXFzsUL3xDYrtIxYYFqbD4nAxTzZ0ITapYND+xXaT7gwMANHgOTzUaO3asli1b5sxYAKdhyDEA+IeSkhKNHDlSS5YsUcuWLW3+XHZ2tiIiIqp+WHDfv5mPHlHmhn9IkkxG9XUHK8swmWnxMgfULMoAAOBqDo94OXv2rBYvXqxPPvlEV111lRo1alTt/QULFtQ7OMBRDDkGAO/UsmVLmc1mHTp0qNrxQ4cOKSYmpkb7PXv2aP/+/UpLS6s6Vrmgf2BgoHbt2qUOHTrU+NzMmTOVkZFR9bq4uJjii7/at09KSVHqDz8o98gRZaVNVsGZX4svMREhykyLZ6dCAIDHOFx42b59uxISEiRJO3bsqPaeycoQT8CdEttFKjawXIVlJhmmmgO7GHIMAJ4RFBSkHj16aO3atVVbQlssFq1du9bq+m6dO3fWN998U+3Yo48+qpKSEj333HO1FlOCg4MVHBzs9PjhZbZvl1JTpYIC6bLLlLrsr0q+vKPy9x3X4ZKzigqryPWMdAEAeJLDhZfPPvvMmXEATmVe8Iwy33pH6UMflskwqs33ZsgxAHhWRkaGRo8erZ49eyoxMVELFy7UqVOndPfdd0uSRo0apTZt2ig7O1shISHq2rVrtc83a9ZMkmoch38qtxjWCynr10tpaVJRkdStm5SXJ7VuLbPE+m0AAK/icOEF8EoWizR9ujR/vlIl5Vq+VVbznioo/nUtF4YcA4BnDRs2TEeOHNGsWbNUWFiohIQE5eXlVS24e+DAAQUEOLwMHfxI3o4CZX3wXbUF82MjQpQZc0qp44dJZ89K/fpJH3wg/V9BDgAAb2MyDMPajrs2Wb9+vZ5//nnt2bNHb7/9ttq0aaN//vOfateunfr16+fMOF2muLhYERERKioqUnh4uKfDQX2UlUljx0r/qFhcT/PmSVOn1v6kDAC8FLnJ+bimvidvR4HSX9uiC29UTTIkQ8p9b45SO7eSli+XQkM9EiMAOIq81LA4/DhpxYoVSklJUWhoqLZu3Vq1ZWNRUZHmzJnjtACBC5VbDG3ac0z/2nZQm/YcU7nFkE6flv7wh4qii9ksvfKKNHWqJMkcYFJShxYaktBGSR1aUHQBAMDLlVsMZX3wXY2iiyQZMkkylHXLgyp/622KLgAAr+fwVKMnn3xSixYt0qhRo7R8+fKq43379tWTTz7plOCAC1kdchwWpMz/LFPqypUVN19vvindfLMHowQAAPWRv+94tVx/IcMUoAJzY+X/VMx6LgAAr+fwiJddu3bp+uuvr3E8IiJCJ06cqE9MgFWVQ44vvBErLD6n9Pg/Ku+aQdInn1B0AQDAxx0uqb3o4kg7AAA8yeHCS0xMjHbv3l3j+IYNG9S+fft6BQVc6KJDjv9vx6KsoX9R+bVJ7g0MAAA4XVRYiFPbAQDgSQ4XXsaNG6fJkyfryy+/lMlk0s8//6ylS5fqoYceUnp6ujNjBGwYcmxSwely5e877saoAACAKyS2i1Rs0yCZatkDwqSK3Y0S20W6NzAAABzg8BovM2bMkMVi0cCBA3X69Gldf/31Cg4O1kMPPaRJkyY5M0aAIccAADQg5v/3kzLXLlZ64miZDIsM06/PCiuXyM9Mi2fBfACAT3C48GIymfTII49o6tSp2r17t06ePKn4+Hg1bdrUmfEBkhhyDACAvym3GMrfd1yHS84qKqxi9Io5wCR9+62UkqLUgweVe+6cslLHq+B0edXnYiJClJkWr9SusR6MHgAA2zlceKkUFBSk+Ph4Z8QC1CqxXaRiA8pUWG6u9tSrkkkVN2IMOQYAwPtZ3aUwIkSZHc1KvfdW6ZdfpCuvVOobOUpuc4n1Ag0AAD7CrsJLRkaGZs+erSZNmigjI+OibRcsWFCvwNDw1PrkyzBkfvQRZa5Yp/ShD8tkGFUL6koMOQYAwJdU7lJ44eothUVnlf6VodxWnZXayZA+/FBq0UJmiS2jAQA+za7Cy9atW1VWVlb13wFnqfXJ142dlfq3TOnFF5UqKbfxj8oK6lytHUOOAQDwDRfdpVCSSYaybnpAyVk3yxzG9HUAgH+wq/Dy2WefWf3vQH1c9MnXsq3KXf+dUgMCpOefV+rYsUqubWQMAADwanXvUhiggqAw5R8+pyQKLwAAP+HwGi/Z2dmKjo7WPffcU+34Sy+9pCNHjmj69On1Dg7+z6YnX4PuU/LcaTL/YagkyRxgYsgxAAA+4rdTiX84dNKmz7BLIQDAnzhceHn++ee1bNmyGse7dOmiO+64g8ILbGLTk6+wlsq/6loluTEuAABQf9amEtuCXQoBAP7E4cJLYWGhYmNrrqnRqlUrFRQU1CsoNBy2PtHiyRcAAL6ltqnEkiTDkEw1pwmzSyEAwB/V3JfXRnFxcdq4cWON4xs3blTr1q3rFRQaDlufaPHkCwAA33GxqcRVjOrvskshAMBfOTziZdy4cZoyZYrKyso0YMAASdLatWs1bdo0/eUvf3FagPBvie0iFRsRosKis1ZvznjyBQCA76lrKrG10S7sUggA8FcOF16mTp2qY8eOafz48SotLZUkhYSEaPr06Zo5c6bTAoR/MweYlBl5QukngmWSIcP06yAsnnwBAOCbbJ0iPPF3HdQxOoxdCgEAfs3hwovJZNLTTz+txx57TDt37lRoaKg6duyo4OBgZ8YHP1B+se2fc3KUOmmScjteq6y0KSoIbFL1OZ58AQDgm2ydItz38lbsVAgA8HsOF14qNW3aVL169XJGLPBD1nYziI0IUebN8Up9e5H0xBOSpNRB1yg5+1blHyiyXqABAAA+g6nEAAD8yq7CS0ZGhmbPnq0mTZooIyPjom0XLFhQr8Dg+2rbzaCw6KzSX9us3PfWKFWSHn9cmjVLZpOJp14AAPgBc4BJmc2OKf1EY6YSAwAaPLsKL1u3blVZWZkkacuWLTJZWRhNUq3H0XBcbDcDQ5JJhrIG3qvkKaNkTr/f3eEBAABXeu45pU6ZotwrkphKDABo8OwqvDz33HMKDw+XJK1bt84V8cBP1LWbgWEKUEF4K+UPvlZJbowLAAC4kGFIjzwiZWdLklJ/n6jkuX9U/o8nmEoMAGiw7Cq8XHPNNSooKFBUVJTat2+vr776Si1aMDUENdm6m4Gt7QAAgJc7f1667z7ppZcqXs+ZI82YwVRiAECDZ1fhpVmzZtq3b5+ioqK0f/9+WSwWV8UFH2frbga2tgMAAF7szBnpjjuk99+XAgKk55+Xxo71dFQAAHgFuwovf/zjH9W/f3/FxsbKZDKpZ8+eMpvNVtvu3bvXKQHCN7GbAQAA/qXcYih/3/GaU4ZOnJBuuUVav14KDpaWL5eGDvV0uAAAeA27Ci+LFy/Wrbfeqt27d+uBBx7QuHHjFBYW5qrY4ANquwkzB5iU2c5Q+laD3QwAAPBxeTsKlPXBd9XWb4uNCFFm31ilTrxD+uYbKSKiYsTL9dd7MFIAALyPXYWX7du3a/DgwUpNTdXmzZs1efJkCi8NWK03YWnxSv3fTUodPVy5bXso68ZJKggOr2rDbgYAAPiOvB0FSn9tS40RrIVFZ5W+cq9yzzVVakyMtHq1dNVVHokRAABv5vDiuv/+979VWlrqqrjg5S56E/baZuW+t0CppaVK7RKj5KeGKr/gNLsZAADgY8othrI++M7qtGFDkkmGslLGK3lyH5k7tHd3eAAA+AQW14Xd6rwJMwxlDRir5OvjZc7NldlsVlKHUHeHCQAA6il/3/FqI1svZJgCVNC4ufIVoSQ3xgUAgC9hcV3YzaabsPBWyh83R0m1/PsAAADe73BJ7fnekXYAADRELK4Lu9l+E3bOxZEAAABXigoLcWo7AAAaIrsKL5KUmpoqSSyu24BxEwYAQMOQ2C5SsREhKiw6I0M112czqWLR/MR2ke4PDgAAHxFQdxPrXn75ZW3btk0jRoxQnz59dPDgQUnSP//5T23YsMFpAcL7VN6E1bY8rkkVuxtxEwYAgG8otxjatOeY/rXtoDbtOaZyS8VKbmbDosyD6yVDMhnV1/arvA/ITItn0XwAAC7C4cLLihUrlJKSotDQUG3ZskXnzlVMKykqKtKcOXOcFiC8jznApMzerSTD4CYMAAAfl7ejQP2e/lTDl/xHk5dv0/Al/1G/pz9V3pYD0u23KzUnS7nvZSsmsHrOj4kIUe6I7krtGuuhyAEA8A0OF16efPJJLVq0SEuWLFGjRo2qjvft21dbtmypV1A5OTlq27atQkJC1Lt3b+Xn59fadsmSJbruuuvUvHlzNW/eXIMGDbpoezjBN98odUSqct+bo5gzRdXe4iYMAADfkbejQOmvbamxaH5h0Vmlv7FdeTsKpKAgpT71oDbMvkWvj7tWz92RoNfHXasN0weQ7wEAsIHda7xU2rVrl66//voaxyMiInTixAmHA3rjjTeUkZGhRYsWqXfv3lq4cKFSUlK0a9cuRUVF1Wi/bt06DR8+XH369FFISIiefvppDR48WN9++63atGnjcByoxYYNUlqadOKEUlu0UPLUG5RfGqrDJWcVFVYxvYiRLgAAeL9yi6GsD76TYeU9Q5JJhrIG3afkWy+ReeBAmSUldWjh5igBAPB9Do94iYmJ0e7du2sc37Bhg9q3b+9wQAsWLNC4ceN09913Kz4+XosWLVLjxo310ksvWW2/dOlSjR8/XgkJCercubNeeOEFWSwWrV271uEYGrLa5nhLkt5/X0pOlk6ckPr2lT7/XOa4S5TUoYWGJLRRUocWFF0AAPAR+fuO1xjp8luGKUAFYS2V3zbBfUEBAOCHHB7xMm7cOE2ePFkvvfSSTCaTfv75Z23atEkPPfSQHnvsMYfOWVpaqs2bN2vmzJlVxwICAjRo0CBt2rTJpnOcPn1aZWVlioy0vrDruXPnqtajkaTi4mKHYvVHeTsKlPXBd9VuwmIjQpSZFq/U/I+ke++Vysulm2+W3nhDatzYg9ECAID6OFxSe9HFkXYAAMA6h0e8zJgxQ3feeacGDhyokydP6vrrr9fYsWN13333adKkSQ6d8+jRoyovL1d0dHS149HR0SosLLTpHNOnT1fr1q01aNAgq+9nZ2crIiKi6icuLs6hWP3NRed4v7ZZeU+/UFF0+fOfpXffpegCAKgX1nNzvwtHtbZsGmzT56LCQlwcGQAA/s3hES8mk0mPPPKIpk6dqt27d+vkyZOKj49X06ZNnRmfXebOnavly5dr3bp1CgmxfpMwc+ZMZWRkVL0uLi5u8MWXOud4G4ayBt6r5D9cL3N2tmRiOhEAwHGs5+Z+1ka1xoQHq1njRio6XSpDNXO7SRWL5ie2sz6KGAAA2MbhwkuloKAgxcfHOyMWtWzZUmazWYcOHap2/NChQ4qJibnoZ+fPn6+5c+fqk08+0VVXXVVru+DgYAUH2/aEp6GwaY53eCvlj0tTEkUXAEA9/XY9N0latGiRVq5cqZdeekkzZsyo0X7p0qXVXr/wwgtasWKF1q5dq1GjRrklZl9WOar1wgcsh4rPyZAhGZJJFhmmXwdCV2b7zLR41m8DAKCeHJ5qJEknTpzQM888o7Fjx2rs2LFasGCBioqK6v5gLYKCgtSjR49qC+NWLpSblJRU6+fmzZun2bNnKy8vTz179nT4+xsq5ngDANylcj23304JdvZ6blLFmm7FxcXVfhoiW0a1NjtTrGjLuWrvxUSEKHdEd7aLBgDACRwe8fL1118rJSVFoaGhSkxMlCQ9++yzmjNnjj7++GN1797dofNmZGRo9OjR6tmzpxITE7Vw4UKdOnWq6qnYqFGj1KZNG2VnZ0uSnn76ac2aNUvLli1T27Ztq9aCadq0qUenPfkSW+duM8cbAFBfF1vP7fvvv7fpHHWt5yZVrOmWlZVVr1j9gS2jWk80jtDSMYkKCAjQ4ZKzigqrmF7ESBcAAJzD4cLLgw8+qFtuuUVLlixRYGDFac6fP6+xY8dqypQp+vzzzx0677Bhw3TkyBHNmjVLhYWFSkhIUF5eXtUN2oEDBxQQ8OtAndzcXJWWluq2226rdp7MzEw9/vjjjnWugUlsF6nYiBAVFp21+kSMOd4AAG9hy3puEmu6VbJ1tOrRU6UaksB6OQAAuEK9Rrz8tugiSYGBgZo2bVq9p/tMnDhREydOtPreunXrqr3ev39/vb4LkjnApMyEcKWvOyOTDOZ4AwBcxh3ruUms6VaJUa0AAHiew2u8hIeH68CBAzWO//TTTwoLC6tXUHC+C7eQLLf8ZmzLpk1KvStFue/NUczZ6nPgmeMNAHAm1nNzr8pRrbU9OjFJimVUKwAALuXwiJdhw4ZpzJgxmj9/vvr06SNJ2rhxo6ZOnarhw4c7LUDUn7UtJGMjQpSZFq/UA1ul226TzpxRaidDyY+mKL/YxBxvAIDLsJ6b+5gDTMpMbKn0j39iVCsAAB7icOFl/vz5MplMGjVqlM6fPy9JatSokdLT0zV37lynBYj6qW0LycKis0p/bbNy/zVXqWfOSL//vfTWWzI3aaKkVh4JFQDQQLCem/OUWwzl7zte+wOT7duVOvL3yg1rq6yU8Spo3LzqrZjKhzCMagUAwKVMhmFYW0/VZqdPn9aePXskSR06dFDjxo2dEpi7FBcXKyIiQkVFRQoPD/d0OE5VbjHU7+lPa93NwGRYFFNyTBtOfibziy9IjRq5OUIAgDX+nJs8xR+v6UVHtHaNldavl9LSpKIiqWtXlX+Up/xzIYxqBQAv4I95CbWze42XTz/9VPHx8SourlgLpHHjxurWrZu6deumsrIydenSRevXr3d6oLCfLVtIFoS3Uv6s+RRdAADwIZUjWi/M8xUjWrco7+X3pcGDK4ou/fpJn38u8yVtlNShhYYkVPwnRRcAANzD7sLLwoULNW7cOKtVuYiICN13331asGCBU4JD/di6heThk6UujgQAADhLucVQ1gff1ZhGLOn/jhnK+uq4ys+VVox4+fhjqXlzK60BAIA72F14+Z//+R+lpqbW+v7gwYO1efPmegUF52ALSQAA/E+dI1plqhjROu4v0jvvSKGhbowOAABcyO7Cy6FDh9ToItNSAgMDdeTIkXoFBedgC0kAAPyPzSNa758sBTq8jwIAAHASuwsvbdq00Y4dO2p9f/v27YqNZXV8dym3GNq055j+te2gNu05pnLLrwOPzQEmZfaJlgxDJsNS7XNsIQkAgG+yeURrOCNaAQDwBnY/Brnxxhv12GOPKTU1VSEh1RP6mTNnlJmZqZtvvtlpAaJ2de5m8P33Sh11k3JD2ihrcLoKmvw6soUtJAEA8E2VI1oLi85aXefFpIo8z4hWAAC8g93bSR86dEjdu3eX2WzWxIkT1alTJ0nS999/r5ycHJWXl2vLli2Kjo52ScDO5qvbeFXuZnDhL69y7Epu73CljvuDdOyYdMUVKs9brXxLGFtIAoAP8NXc5M188ZqWWwzl7ztuNXdX3gfIMGSYfs3nVfcBI7rzcAUAvJgv5iU4zu4RL9HR0friiy+Unp6umTNnqrJuYzKZlJKSopycHJ8puviqunYzMEnK+mSvko//InOvXtLKlTK3aqUkN8cJAAAcU9eo1tTwMuXmv6KszjepILxVVRtGtAIA4H0cWnHtsssu06pVq/TLL79o9+7dMgxDHTt2VHO2KnSLunczkArCWip/6Cgl/eNvUtOm7gsOAADUS22jWguLzir9tS3K7R+l1HtvVer/+39K3pOv/Ffe1eHm0YxoBQDAS9VrqfvmzZurV69ezooFNrJ5N4OHH6foAgCAD7FpVOvKnUo++LPMV14p8+rVSoqLc3OUAADAHnbvagTPs3k3g+YUXQAA8CU2jWpt2kL5g/8krV8vUXQBAMDrUXjxQZW7GdQ2kNikinng7GYAAIBvsXlUa9YcqUULF0cDAACcgcKLlyq3GNq055j+te2gNu05pnLLr4OOzQEmZabFS5JMF2xKVVmMyUyLZ443AAA+xuZRrS0jXBwJAABwlnqt8QLXqGsnA0lKvSRUubveVVZsP3YzAADAx9S2VXTlqNbCorNW13kxqSLXM6oVAADfQeHFy9S5k8GI7kptISk1Vanbtys54m3lv7RCh9t3ZjcDAAB8QF0PWDLT4pX+2haZDEOG6deczqhWAAB8E1ONvEhdOxlIUta721Xet6+0fbsUEyPzv/+tpFsHakhCGyV1aMGNGAAAXqzyAcuFC+hWPmDJ21Gg1PYRyj2Qp5iSo9XaxESEVDyAYVQrAAA+hREvXsSmnQxOnVf++aZKuvxyafVqqX179wUIAAAcZtNW0f/aoeRVWUr9YqOSQxsrf/FyHe7anVGtAAD4MAovXsTmnQy6dZdeelqKjnZxRAAAwFlsesBSUqr8n4qV1KyZzB9+qKS+fd0XIAAAcAkKL25W22J6kh07Gcx9gqILAAA+xuYHLHHtpeeXSV27ujgiAADgDhRe3KiuxfTq3MnAMCp2MugS576gAQCAXWp7yGLzA5b/ekrq2sXFUQIAAHeh8OImNu1W9NudDKRqbU2GIZlMyrylC/O7AQDwUhd7yJIcH1P3A5bwYCVeG+++gAEAgMuxq5GTlFsMbdpzTP/adlCb9hxTucWo9l6duxV98J3KLYZSu8Yq984ExVjOVGsX0yyUnQwAAPBide1YtOa7QmWmVRRVLnyEUvWAZUhXHrAAAOBnGPHiBHVNIbJpMb2is8rfd1xJbZoo9YnJSn7nXeXHddHhSX9R1B9uZicDAAC8QG3TiGzaseiD77Rh+gDljuiurGVfqsDSqKpNTESIMm/pwgMWAAD8EIWXerJlCtG58xabznX48C/S2NukdetkDgpS0jOzpNtuc37QAADAbhd70BIRGmTjQ5ZjSl32NyXPfVr5l3TR4T/eoagJ45TYviUPWAAA8FMUXurB1qdb8/90tU3ni3p0mrRunRQWJr33njRggPOCBQAADqvrQcs9fdvadJ7Dz/y3lJsts6Sk+++QZs6UTBRcAADwZxRe6sHWKUQydPHF9CTFnP5FiZ/9S4qKkj76SOre3VVhAwAAO9jyoOXdbQdtOlfUh+9IAQHS889LY8c6M0wAAOClWFy3Hg6X1F50+a2jp87VvpieJBmGMlf/Xea2l0kbN1J0AQDAi9jyoOX4qTJFNgmqkecrmQxDscVHlHhkt7RiBUUXAAAaEAov9RAVFmJzu9Suscod0V0xEdU/E1NyVLnvzVFq6OmKosvll7siVAAA4CBbH7QMTWgtqZYdiyRlfvGazHkfSUOHOjE6AADg7ZhqVA+J7SLrnkIUUbHjgSSldo1VcnxMxW4In65X1NOzlbh3m8zX9ZPe/7cUEeHW+AEAQN1sfdCSHB+jxHaRNRbgjSk5qszNbyn11Wekq21b9w0AAPgPCi/1YA4wKTMtXumvbZFJqlZ8qXzalZkWX22XAnOASUlrV0jp6ZLFUvHU6/XXpRDbbuoAAIB72fOgxRxgqnjIsnqTDmdlK+rnH5UYfFbm1XlS+/buDh0AAHgBphrVU61TiCJClDuiu1K7xv560DCk2bOl++6rKLqMHSu99RZFFwAAvFjlgxaplrXaVP1Bi/mzT5V0e4qGfPmhkloGyrxhPUUXAAAaMEa8OEG1KUQlZxUV9utTryoWi/TAA1JOTsXrRx6pKMKwhSQAAF6v8kFLjWlEESHKTIv/9UHLm29KI0ZIZWXSgAHSu+9K4eEeihoAAHgDCi9OYg4wKalDC+tvnjsnjR4tvfFGxeu//lWaNMl9wQEAgHqr80FLTk5FfjcM6bbbpNdek4KDPRs0AADwOAovrlZSIt16q/TJJ1KjRtKrr0rDh3s6KgAA4ACrD1oMQ3r8cemJJypep6dLf/ubZDa7PT4AAOB9KLy40pEj0o03Sl9/LTVpIr3zjjR4sKejAgAAzlJeLk2YID3/fMXrxx+XZs1iKjEAAKhC4cVV9u+vKLL88IPUooW0apWUmOjpqAAAgLOcPVuxnsuKFRWFlr//Xbr/fk9HBQAAvAyFF1f45hspJUUqKJAuvVT6+GOpUydPRwUAAJylqEgaOlRat04KCpKWLq1Y1wUAAOACFF6cbf16KS2t4oasSxdp9WqpTRtPRwUAAJylsFD6/e+lbduksDDpvfcqdjACAACwIsDTAViTk5Ojtm3bKiQkRL1791Z+fv5F27/11lvq3LmzQkJC1K1bN61atcpNkV7g/fcrphcVFUl9+kiff07RBQAAK3w21+/ZI/XtW1F0iYqqGPFC0QUAAFyE1xVe3njjDWVkZCgzM1NbtmzR1VdfrZSUFB0+fNhq+y+++ELDhw/XmDFjtHXrVg0dOlRDhw7Vjh073By5KraLPntWuvlmac0aKTLS/TEAAODlfDrXb9gg7d0rtWsnbdwode/u/hgAAIBPMRmGYXg6iN/q3bu3evXqpf/+7/+WJFksFsXFxWnSpEmaMWNGjfbDhg3TqVOn9OGHH1Ydu/baa5WQkKBFixbV+X3FxcWKiIhQUVGRwsPD6xf8uXNSTo40aVLF1tEAADjAqbnJC7k710tOvqYvvCDddJMUG1u/8wAAGix/z/WozqtGvJSWlmrz5s0aNGhQ1bGAgAANGjRImzZtsvqZTZs2VWsvSSkpKbW2P3funIqLi6v9OE1wsJSRQdEFAIBauCPXSy7O92PHUnQBAAA286rCy9GjR1VeXq7o6Ohqx6Ojo1VYWGj1M4WFhXa1z87OVkRERNVPXFycc4IHAAB1ckeul8j3AADAe3hV4cUdZs6cqaKioqqfn376ydMhAQAAJyPfAwAAb+FV20m3bNlSZrNZhw4dqnb80KFDiomJsfqZmJgYu9oHBwcrODjYOQEDAAC7uCPXS+R7AADgPbxqxEtQUJB69OihtWvXVh2zWCxau3atkpKSrH4mKSmpWntJWrNmTa3tAQCA55DrAQBAQ+NVI14kKSMjQ6NHj1bPnj2VmJiohQsX6tSpU7r77rslSaNGjVKbNm2UnZ0tSZo8ebL69++vZ555RjfddJOWL1+ur7/+WosXL/ZkNwAAQC3I9QAAoCHxusLLsGHDdOTIEc2aNUuFhYVKSEhQXl5e1aJ6Bw4cUEDArwN1+vTpo2XLlunRRx/Vww8/rI4dO+q9995T165dPdUFAABwEeR6AADQkJgMwzA8HYQnsX86AMDbkJucj2sKAPAm5KWGxavWeAEAAAAAAPAnFF4AAAAAAABchMILAAAAAACAi1B4AQAAAAAAcBEKLwAAAAAAAC5C4QUAAAAAAMBFKLwAAAAAAAC4SKCnA/A0wzAkVeyjDgCAN6jMSZU5CvVHvgcAeBNyfcPS4AsvJSUlkqS4uDgPRwIAQHUlJSWKiIjwdBh+gXwPAPBG5PqGwWQ08BKbxWLRzz//rLCwMJlMJofOUVxcrLi4OP30008KDw93coTeoSH0UWoY/WwIfZTopz9pCH2UqvczLCxMJSUlat26tQICmBXsDPXN9/7479Af+yT5Z7/ok+/wx37RJ9cwDINc34A0+BEvAQEBuuSSS5xyrvDwcL/5Y1SbhtBHqWH0syH0UaKf/qQh9FH6tZ88/XIuZ+V7f/x36I99kvyzX/TJd/hjv+iT85HrGw5KawAAAAAAAC5C4QUAAAAAAMBFKLw4QXBwsDIzMxUcHOzpUFymIfRRahj9bAh9lOinP2kIfZQaTj99lT/+fvyxT5J/9os++Q5/7Bd9AuqvwS+uCwAAAAAA4CqMeAEAAAAAAHARCi8AAAAAAAAuQuEFAAAAAADARSi8AAAAAAAAuAiFFxvl5OSobdu2CgkJUe/evZWfn3/R9m+99ZY6d+6skJAQdevWTatWrXJTpI6zp49LlizRddddp+bNm6t58+YaNGhQndfEW9j7u6y0fPlymUwmDR061LUBOoG9fTxx4oQmTJig2NhYBQcH64orrvC7f7OStHDhQnXq1EmhoaGKi4vTgw8+qLNnz7opWvt9/vnnSktLU+vWrWUymfTee+/V+Zl169ape/fuCg4O1uWXX65XXnnF5XHWl739fOedd5ScnKxWrVopPDxcSUlJWr16tXuCdZAjv8tKGzduVGBgoBISElwWHyr4Y67319zuj7ncH3O3v+Vpf8zL/pqDybvwNhRebPDGG28oIyNDmZmZ2rJli66++mqlpKTo8OHDVtt/8cUXGj58uMaMGaOtW7dq6NChGjp0qHbs2OHmyG1nbx/XrVun4cOH67PPPtOmTZsUFxenwYMH6+DBg26O3D729rPS/v379dBDD+m6665zU6SOs7ePpaWlSk5O1v79+/X2229r165dWrJkidq0aePmyO1jbz+XLVumGTNmKDMzUzt37tSLL76oN954Qw8//LCbI7fdqVOndPXVVysnJ8em9vv27dNNN92k3/3ud9q2bZumTJmisWPHeuUN0W/Z28/PP/9cycnJWrVqlTZv3qzf/e53SktL09atW10cqePs7WOlEydOaNSoURo4cKCLIkMlf8z1/prb/TGX+2Pu9sc87Y952V9zMHkXXsdAnRITE40JEyZUvS4vLzdat25tZGdnW21/++23GzfddFO1Y7179zbuu+8+l8ZZH/b28ULnz583wsLCjFdffdVVITqFI/08f/680adPH+OFF14wRo8ebQwZMsQNkTrO3j7m5uYa7du3N0pLS90VolPY288JEyYYAwYMqHYsIyPD6Nu3r0vjdBZJxrvvvnvRNtOmTTO6dOlS7diwYcOMlJQUF0bmXLb005r4+HgjKyvL+QG5gD19HDZsmPHoo48amZmZxtVXX+3SuBo6f8z1/prb/TGX+2Pu9vc87Y952V9zMHkX3oARL3UoLS3V5s2bNWjQoKpjAQEBGjRokDZt2mT1M5s2barWXpJSUlJqbe9pjvTxQqdPn1ZZWZkiIyNdFWa9OdrPJ554QlFRURozZow7wqwXR/r4/vvvKykpSRMmTFB0dLS6du2qOXPmqLy83F1h282Rfvbp00ebN2+uGua8d+9erVq1SjfeeKNbYnYHX/vb4ywWi0UlJSVe/ffHES+//LL27t2rzMxMT4fi9/wx1/trbvfHXO6PuZs8XcHb/044gz/lYPIuXCnQ0wF4u6NHj6q8vFzR0dHVjkdHR+v777+3+pnCwkKr7QsLC10WZ3040scLTZ8+Xa1bt66RXLyJI/3csGGDXnzxRW3bts0NEdafI33cu3evPv30U911111atWqVdu/erfHjx6usrMxrE48j/bzzzjt19OhR9evXT4Zh6Pz587r//vu9aghzfdX2t6e4uFhnzpxRaGiohyJzrfnz5+vkyZO6/fbbPR2K0/zwww+aMWOG1q9fr8BAUrWr+WOu99fc7o+53B9zN3m6QkPIy/6Sg8m7cDVGvKDe5s6dq+XLl+vdd99VSEiIp8NxmpKSEo0cOVJLlixRy5YtPR2Oy1gsFkVFRWnx4sXq0aOHhg0bpkceeUSLFi3ydGhOtW7dOs2ZM0d///vftWXLFr3zzjtauXKlZs+e7enQUA/Lli1TVlaW3nzzTUVFRXk6HKcoLy/XnXfeqaysLF1xxRWeDgcNlL/kdn/N5f6Yu8nTvsdfcjB5F+5AOa8OLVu2lNls1qFDh6odP3TokGJiYqx+JiYmxq72nuZIHyvNnz9fc+fO1SeffKKrrrrKlWHWm7393LNnj/bv36+0tLSqYxaLRZIUGBioXbt2qUOHDq4N2k6O/C5jY2PVqFEjmc3mqmNXXnmlCgsLVVpaqqCgIJfG7AhH+vnYY49p5MiRGjt2rCSpW7duOnXqlO6991498sgjCgjw/Tp0bX97wsPD/eKp2oWWL1+usWPH6q233vKqJ/L1VVJSoq+//lpbt27VxIkTJVX87TEMQ4GBgfr44481YMAAD0fpX/wx1/trbvfHXO6PuZs8XcGf87I/5WDyLtzB9/6CuVlQUJB69OihtWvXVh2zWCxau3atkpKSrH4mKSmpWntJWrNmTa3tPc2RPkrSvHnzNHv2bOXl5alnz57uCLVe7O1n586d9c0332jbtm1VP7fcckvVyvRxcXHuDN8mjvwu+/btq927d1fdiErS//7v/yo2NtbjN261caSfp0+frnHTVnnDahiG64J1I1/721Mfr7/+uu6++269/vrruummmzwdjlOFh4fX+Ntz//33q1OnTtq2bZt69+7t6RD9jj/men/N7f6Yy/0xd5OnK3j73wlH+VsOJu/CLTy5sq+vWL58uREcHGy88sorxnfffWfce++9RrNmzYzCwkLDMAxj5MiRxowZM6rab9y40QgMDDTmz59v7Ny508jMzDQaNWpkfPPNN57qQp3s7ePcuXONoKAg4+233zYKCgqqfkpKSjzVBZvY288LeeNOCBeyt48HDhwwwsLCjIkTJxq7du0yPvzwQyMqKsp48sknPdUFm9jbz8zMTCMsLMx4/fXXjb179xoff/yx0aFDB+P222/3VBfqVFJSYmzdutXYunWrIclYsGCBsXXrVuPHH380DMMwZsyYYYwcObKq/d69e43GjRsbU6dONXbu3Gnk5OQYZrPZyMvL81QXbGJvP5cuXWoEBgYaOTk51f7+nDhxwlNdqJO9fbwQuyu4nj/men/N7f6Yy/0xd/tjnvbHvOyvOZi8C29D4cVGf/vb34xLL73UCAoKMhITE43//Oc/Ve/179/fGD16dLX2b775pnHFFVcYQUFBRpcuXYyVK1e6OWL72dPHyy67zJBU4yczM9P9gdvJ3t/lb3njzZo19vbxiy++MHr37m0EBwcb7du3N5566inj/Pnzbo7afvb0s6yszHj88ceNDh06GCEhIUZcXJwxfvx445dffnF/4Db67LPPrP7vrLJfo0ePNvr371/jMwkJCUZQUJDRvn174+WXX3Z73Payt5/9+/e/aHtv5Mjv8re4AXQPf8z1/prb/TGX+2Pu9rc87Y952V9zMHkX3sZkGD46dg8AAAAAAMDLscYLAAAAAACAi1B4AQAAAAAAcBEKLwAAAAAAAC5C4QUAAAAAAMBFKLwAAAAAAAC4CIUXAAAAAAAAF6HwAgAAAAAA4CIUXgAAAAAAAFyEwgsAAABghWEYuvfeexUZGSmTyaRt27ZZPXbDDTdoypQpNp3TnraeYK1/7uSs6+OO6+zpawXAd5gMwzA8HQQAAABgj8LCQj311FNauXKlDh48qKioKCUkJGjKlCkaOHCgU77jo48+0pAhQ7Ru3Tq1b99eLVu21Jo1a2ocKy4uVqNGjRQWFlbnOY8fP25zW3vccMMNSkhI0MKFC+t1Hmt9DgwMdE6QNrD3+tTWb1dd59/y9LUC4Dv4ywAAAACfsn//fvXt21fNmjXTf/3Xf6lbt24qKyvT6tWrNWHCBH3//fdO+Z49e/YoNjZWffr0ueixyMhIm89pT1tPsNY/dygtLVVQUJDTro87rrMzrlVlvwH4N6YaAQAAwKeMHz9eJpNJ+fn5+uMf/6grrrhCXbp0UUZGhv7zn/9Iks6dO6cHHnhAUVFRCgkJUb9+/fTVV19VO4/FYlF2drbatWun0NBQXX311Xr77bclSX/+8581adIkHThwQCaTSW3btrV6TKo5rcVisWjevHm6/PLLFRwcrEsvvVRPPfVUrW1ri6HSDTfcoAceeEDTpk1TZGSkYmJi9Pjjj1e9/+c//1n//ve/9dxzz8lkMslkMmn//v1Wr93Frktt/futxYsXq3Xr1rJYLNWODxkyRPfcc48kKS8vT/369VOzZs3UokUL3XzzzdqzZ0+NPk2cOFFTpkxRy5YtlZKSYvX6XOxcF+v3b89jy7+Fuq7xhWq7VnV9V239rs2BAwc0evRoRUdHV/372LBhw0U/A8D7UHgBAACAzzh+/Ljy8vI0YcIENWnSpMb7zZo1kyRNmzZNK1as0KuvvqotW7bo8ssvV0pKio4fP17VNjs7W//4xz+0aNEiffvtt3rwwQc1YsSIqv8z/8QTT+iSSy5RQUGBvvrqK6vHrJk5c6bmzp2rxx57TN99952WLVum6Ohoq20vFsNvvfrqq2rSpIm+/PJLzZs3T0888YTWrFkjSXruueeUlJSkcePGqaCgQAUFBYqLi7P6fRe7Lrb0709/+pOOHTumzz77rMbv5K677pIknTp1ShkZGfr666+1du1aBQQE6A9/+EONYs2rr76qoKAgbdy4UYsWLbIa78XOZWu/bfm3UNc1vlBt18qW77Kl35L0448/KjExUWfOnNH777+v7du3a+LEiQoPD6/1MwC8lAEAAAD4iC+//NKQZLzzzju1tjl58qTRqFEjY+nSpVXHSktLjdatWxvz5s0zDMMwzp49azRu3Nj44osvqn12zJgxxvDhww3DMIxnn33WuOyyy6q9b+1Y//79jcmTJxuGYRjFxcVGcHCwsWTJEqux/batLTFUfqZfv37V2vTq1cuYPn261fPWxpbrYq1/FxoyZIhxzz33VL1+/vnnjdatWxvl5eVW2x85csSQZHzzzTfV4r3mmmtqtK2rHxeeq7b2lcdt6XNl+7qu8YUuvFa2fFdt/bbm97//vTFkyBCb2gLwbqzxAgAAAJ9h2LAvxJ49e1RWVqa+fftWHWvUqJESExO1c+dOSdLu3bt1+vRpJScnV/tsaWmprrnmGofj27lzp86dO2fTAr/2xHDVVVdVex0bG6vDhw/bFZst18UWd911l8aNG6e///3vCg4O1tKlS3XHHXcoIKBiMP0PP/ygWbNm6csvv9TRo0erRrocOHBAXbt2rTpPjx496vwuW8/ljD7X9xrb+l229PvHH3/URx99pK1bt9r8/QC8F4UXAAAA+IyOHTvKZDLVewHdkydPSpJWrlypNm3aVHsvODjY4fOGhoa6JIZGjRpVe20ymWpM3XGXtLQ0GYahlStXqlevXlq/fr2effbZau9fdtllWrJkSdV6MF27dlVpaWm181ibKmbtu2w5lzO46xrb0u9t27YpKChICQkJTv9+AO7HGi8AAADwGZGRkUpJSVFOTo5OnTpV4/0TJ06oQ4cOVWtoVCorK9NXX32l+Ph4SVJ8fLyCg4N14MABXX755dV+alsfxRYdO3ZUaGio1q5dW2dbZ8YQFBSk8vLyi7ax5brYIiQkRLfeequWLl2q119/XZ06dVL37t0lSceOHdOuXbv06KOPauDAgbryyiv1yy+/2NWXSracq65+O6vPtnDmdzVq1Ejnz5/X6dOnnRojAM9gxAsAAAB8Sk5Ojvr27avExEQ98cQTuuqqq3T+/HmtWbNGubm52rlzp9LT0zV16lRFRkbq0ksv1bx583T69GmNGTNGkhQWFqaHHnpIDz74oCwWi/r166eioiJt3LhR4eHhGj16tEOxhYSEaPr06Zo2bZqCgoLUt29fHTlyRN9++23Vd1dyZgxt27bVl19+qf3796tp06aKjIysmvpTqUmTJnVeF1vddddduvnmm/Xtt99qxIgRVcebN2+uFi1aaPHixYqNjdWBAwc0Y8YMu85tz7nq6rcz+1wXZ35X7969FRERofT0dM2YMUOGYejzzz/XwIED1bFjR6fGDcD1KLwAAADAp7Rv315btmzRU089pb/85S8qKChQq1at1KNHD+Xm5kqS5s6dK4vFopEjR6qkpEQ9e/bU6tWr1bx586rzzJ49W61atVJ2drb27t2rZs2aqXv37nr44YfrFd9jjz2mwMBAzZo1Sz///LNiY2N1//33W23rrBgeeughjR49WvHx8Tpz5oz27dtndTtoW66LLQYMGKDIyEjt2rVLd955Z9XxgIAALV++XA888IC6du2qTp066a9//atuuOEGu85v67ls6bez+mwLZ31XixYt9MEHH2jq1Knq1auXgoKCdO2112r48OFOjxmA65kMW1YoAwAAAAAAgN1Y4wUAAAAAAMBFKLwAAAAAAAC4CIUXAAAAAAAAF6HwAgAAAAAA4CIUXgAAAAAAAFyEwgsAAAAAAICLUHgBAAAAAABwEQovAAAAAAAALkLhBQAAAAAAwEUovAAAAAAAALgIhRcAAAAAAAAXofACAAAAAADgIv8fJEnPfslepD0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABF4AAAH2CAYAAABJM0jbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC3FklEQVR4nOzdfXzN9f/H8cfZYZuxzeUYiZkujEJ8p4lKkaEJJVflWkUSkpKYqehCLrqaKPxKLrpCchmRXJSESlRoLr6MYdnmYmM7n98f57uTY5udc3a2s4vn/XZb7fM578/nvM5n55zPx+vzfr/eJsMwDERERERERERExO28PB2AiIiIiIiIiEhxpcSLiIiIiIiIiEg+UeJFRERERERERCSfKPEiIiIiIiIiIpJPlHgREREREREREcknSryIiIiIiIiIiOQTJV5ERERERERERPKJEi8iIiIiIiIiIvlEiRcRERERERERkXyixIuIiIiIiIiISD5R4kVEREREREREJJ8o8SIiIiIiIiLiYYcOHcJkMrF7925PhyJupsSLiIiIiIiIiAvmzZtH+fLlPR2GFHJKvIiIiIiIiIiI5BMlXkTy4KeffqJ58+aULVvW1i0wu3Xz5s3DZDJx6NAhp/bv6naFRXbHwtPy65h68m9VGI+zOG7ChAmYTCaXtzt9+nQ+ROWawhjTtTjzuc3rayvq3+fOKmmvV6S4y7AYbDt4hmW7j7Ht4BkyLEa+Pp/FYuH111+nbt26+Pj4cP311/PKK6/YHn/uuee48cYb8fPzo06dOowbN47Lly/bHv/ll19o1aoV/v7+BAQE0KRJE3bs2GF7fPPmzbRs2ZIyZcpQs2ZNhg0bxvnz53OMJ6f9bdy4kX79+pGUlITJZMJkMjFhwgQATCYTS5cutdtP+fLlmTdvnm15+/btNG7cGF9fX5o2bcquXbtsjxmGQd26dZkyZYrdPnbv3o3JZOLAgQPOHNJi76OPPqJSpUqkpaXZre/UqROPPvqoU/v6448/8PPzY8GCBbZ1n376KWXKlGHv3r0uxVfKpa1ECpGDBw/y+uuv880333D8+HG8vb255ZZbePjhh3nssccoU6ZMvjzv5cuX6dq1K76+vkybNg0/Pz9q1KjBf/7zH7t1tWrVKtT/EN66dStr165l+PDhbu0mmd3xqVWrltv27wn5dazyojgeZ/GcwvgeL0gl/fWLeJI+f4XX6j3xxCzfS3xSqm1dcKAv0VFhRDYIzpfnHDNmDLNnz2batGm0aNGC+Ph4/vjjD9vj/v7+zJs3j+rVq/Pbb78xaNAg/P39GT16NAC9evWicePGxMbGYjab2b17N6VLlwas/3aIjIzk5ZdfZs6cOZw6dYqhQ4cydOhQ5s6dm208Oe2vefPmTJ8+nfHjx/Pnn38CUK5cOYde47lz57j//vtp06YN8+fPJy4ujqefftr2uMlkon///sydO5dRo0bZ1s+dO5c777yTunXrOndQ88Iw4MKFgnu+K/n5gQM3qLp27cqwYcP46quv6Nq1KwAJCQmsWLGCtWvX8v3339OuXbtr7uP999+nV69e3HzzzUyZMoUhQ4bQokULvLy8eOKJJ3jttdcICwtz7XUYIkXY119/bZQpU8YoX768MWzYMGPWrFnGO++8Y3Tv3t0oXbq0MWjQoHx77n379hmAMXv27GuuMwzDSE9PNy5evGhYLBannsPV7ZzxxhtvGIARFxfn1v3mdCw8LS/H9FrHqiD+VtkprMdZHBcdHW24cjrO3O7UqVNuiyWv3wf5EVN+uvpze63Xn9fX5qnvCE8paa9X8i6/rkckb1b9dtyo/dzXRq2rfmr/72fVb8fd/pzJycmGj4+PU9c2b7zxhtGkSRPbsr+/vzFv3rxs2w4YMMB47LHH7NZ9//33hpeXl3Hx4sVst7nW/ubOnWsEBgZmWQ8YS5YssVsXGBhozJ071zAMw3j//feNSpUq2T1nbGysARi7du0yDMMwjh07ZpjNZuPHH380DMMwLl26ZFSuXDnHWPLNuXOGYU2/FPzPuXMOhzl48GCjXbt2tuU333zTqFOnjmGxWIwLFy4Y+/fvv+ZPcnKy3f46dOhgtGzZ0rj33nuN++67L0/nNPV4kSIrLi6O7t27U6tWLb799luCg//NuD/55JMcOHCAFStW5NvzJyQkANjdlcluHYDZbMZsNjv9HK5uVxjkdCw85fz585QtWzbfjqmn/lb5cZwzj5VIcVeQn1tPfEd48rNclM9fRZG+t52T0/Fyx3EsTn+LDItBzPK9ZDeoyABMQMzyvbQJq4bZy/khsznZt28faWlp3HvvvTm2Wbx4MW+99RYHDx7k3LlzpKenExAQYHt85MiRDBw4kI8//pjWrVvTtWtXQkNDAeuwoV9//ZVPPvnk39djGFgsFuLi4qhXr16W57vW/vLyOm+99VZ8fX1t6yIiIuzaVK9enQ4dOjBnzhzCw8NZvnw5aWlpth4dYm/QoEH85z//4dixY9SoUYN58+bRt29fTCYTZcqUcbqX0Jw5c7jxxhvx8vLi999/d2loeCbVeJEi6/XXX+fcuXN8+OGHdkmXTHXr1rXrrrdr1y7atWtHQEAA5cqV49577+WHH37Ist2xY8fo378/VatWxcfHh/r16zNnzhy7Nn379uWuu+4CrN3aTCYTtWvXzrLu7rvvBnIe637s2DEGDBhA9erV8fHxISQkhMGDB3Pp0qVct8stxsx6BAcOHKBv376UL1+ewMBA+vXrx4X/dRWcMGECzz77LAAhISG2sam5jcnP7Vhmd3wyj8XVPv/8c0wmE999912Wx95//31MJhN79uwB4PDhwwwZMoSbbrqJMmXKUKlSJbp27Zol3szXvnfvXnr27EmFChVo0aJFjsfUkf3mdqyy268j7zlH/k45ye04O/P82R2ra/n555956KGHCAoKwtfXl5tvvpmJEyfm2N6Zv3NKSgrDhw+ndu3a+Pj4EBQURJs2bdi5c+c1Y8p8LX/88QcPP/wwAQEBVKpUiaeffprU1H+7Rzu6f0e/C2rXrp1jLFfbvHmzbThiaGgo77//fravxdHvK4DTp09f8/WCe97jmcfkWt9Zmc6ePev0+/lKzry/fv31V0wmE1999ZXd9iaTidtuu82ubbt27WjWrJlt+crPraPfh66+tqu/I5z97Od27HP7LDvyfnb0O9aRz1BeX+/GjRtp2rSp3WfF0XpIme3++usvHnnkEQIDA6lSpQrjxo3DMAyOHj3KAw88QEBAANWqVePNN9/M9ngX5PFy5rvkWn9rR+IuyGPk6N/dlesRZ1/r1ccrt89Mfp5Di4rtcYl2w4uuZgDxSalsj0t06/PmViZg27Zt9OrVi/bt2/P111+za9cuxo4da3cumjBhAr///jsdOnTg22+/JSwsjCVLlgDWIT6PP/44u3fvtv388ssv7N+/P8dkyrX2lxOTyYRh2KetrqxD46iBAweyaNEiLl68yNy5c+nWrRt+fn5O7ydP/Pzg3DnP/DjxWhs3bkzDhg356KOP+Pnnn/n999/p27cvAN9//z3lypW75s+VyTiwJunOnz/P+fPniY+Pz9MhVI8XKbKWL19OnTp1aN68ea5tf//9d1q2bElAQACjR4+mdOnSvP/++9x999189913tgvxkydPcvvtt2MymRg6dChVqlRh1apVDBgwgOTkZIYPHw7A448/To0aNZg0aRLDhg3jP//5D3FxcaSmptqtq1q1ao4xHT9+nPDwcM6ePctjjz3GzTffzLFjx/j888+5cOEC3t7e2W7naIyZHn74YUJCQpg8eTI7d+7kgw8+ICgoiNdee40uXbrw119/sXDhQqZNm0blypUBqFKlSp6OZXbHJ6dj0aFDB8qVK8enn35qSyJkWrx4MfXr16dBgwaAtYjs1q1b6d69O9dddx2HDh0iNjaWu+++m71792Y5CXXt2pUbbriBSZMmZTnxXcmR/Tp7rBx9zznyd8rJtY6zs8/v6LECWLJkCd27d6dOnTo8++yzlCtXznYMc+LM3/mJJ57g888/Z+jQoYSFhXHmzBk2b97Mvn37svxDOjsPP/wwtWvXZvLkyfzwww+89dZb/PPPP3z00UcO79/Zz5kjfvvtN+677z6qVKnChAkTSE9PJzo6Ostnw5X3zrVeL7jnPe7Md5Yr7+dMzr6/GjRoQPny5dm0aRMdO3YErBdXXl5e/PLLLyQnJxMQEIDFYmHr1q089thj2e7H0c94Xl5bdhzZnzPHPrvPsqPvZ0e/Y/PyGXXk9e7atYvIyEiCg4OJiYkhIyODiRMnXvPclJ1u3bpRr149Xn31VVasWMHLL79MxYoVef/997nnnnt47bXX+OSTTxg1ahT/+c9/uPPOOwvd8bqWq//Wrnxv5fcxypTb393Zc6wrr/Xq45XZYzS7z0x+nkOLkoSUnJMurrRz1A033ECZMmVYv349AwcOzPL41q1bqVWrFmPHjrWtO3z4cJZ2N954IzfeeCMjRoygR48ezJ07l86dO3Pbbbexd+9ep3s/5LQ/b29vMjIysrSvUqWK3T/W9+/fb5dwrFevHh9//DGpqam2Xi/Z3WRp3749ZcuWJTY2ltWrV7Np0yan4nYLkwmKSE+ugQMHMn36dI4dO0br1q2pWbMmAE2bNs217uaV12SJiYn07duXsWPHEh8fT69evdi5c6fr9UNdHqQk4kFJSUkGYDzwwAMOte/UqZPh7e1tHDx40Lbu+PHjhr+/v3HnnXfa1g0YMMAIDg42Tp8+bbd99+7djcDAQOPChQu2dRs2bDAA47PPPrvmOsOwjv3kqnHLvXv3Nry8vIyffvopS7yZ4wez287RGDPrEfTv39+uXefOnY1KlSrZlp0dU+3osczpWGSnR48eRlBQkJGenm5bFx8fb3h5eRkTJ060rbvy+Gfatm2bARgfffSRbV3ma+/Ro0eW9tkdU0f3e61jdfV+HT1Ojv6dcpLTcXb2+bM7Vtn5888/DT8/P6Nz585ZxkGnpqZec1tH/86BgYHGk08+6VA8V8p8LR07drRbP2TIEAMwfvnlF4f37+jnrE+fPkatWrVyjOVKnTp1Mnx9fY3Dhw/b1u3du9cwm812bZ392+X2eg3DPe9xR76z8vp+dvX91aFDByM8PNy23KVLF6NLly6G2Ww2Vq1aZRiGYezcudMAjGXLltnaXf25daTGi6uv7erncmZ/zhz77D7Ljr6fHX2fOPIZysvrjYqKMvz8/Ixjx47Z1u3fv98oVaqUQ/WQMp/ryhoO6enpxnXXXWeYTCbj1Vdfta3/559/jDJlyhh9+vSxrfPE8XLmuySnv7Uz1zAFdYyc+bs7cz3iymu9+nhd6zOTX+fQombrgdNZartk97P1wOncd+akCRMmGBUqVDD+7//+zzhw4ICxbds244MPPjAMwzCWLVtmlCpVyli4cKFx4MABY8aMGUbFihVtdVYuXLhgPPnkk8aGDRuMQ4cOGZs3bzZCQ0ON0aNHG4ZhGL/88otRpkwZ48knnzR27dpl/PXXX8bSpUtz/Jzmtr8tW7YYgLFu3Trj1KlTxvnz5w3DsL4f69WrZ+zcudP46aefjHvuuccoXbq0rcZLSkqKUblyZeORRx4xfv/9d2PFihVG3bp17Wq8ZHrhhRcMb29vo169em4+0sXP2bNnDT8/P8Pb29tYtGiRy/vp2rWr0axZM+Py5cvGuXPnjBtuuMEYMmSIy/vTUCMpkpKTkwFrRfPcZGRksHbtWjp16kSdOnVs64ODg+nZsyebN28mOTkZwzD44osviIqKwjAMTp8+bftp27YtSUlJuQ51cJTFYmHp0qVERUXRtGnTLI/n1JXalRifeOIJu+WWLVty5swZ2zF0hqPH0lndunUjISGBjRs32tZ9/vnnWCwWunXrZlt3ZYb58uXLnDlzhrp161K+fPls/zZXv/acOLvf3LhynDz9d3L0WI0fPx5fX1/mzZtnNyYZwMfH55rbOvp3Ll++PD/++CPHjx93KKarPfnkk3bLTz31FAArV650aP/58V2QkZHBmjVr6NSpE9dff71tfb169Wjbtq1dO2f/drm9Xsj7e9zZ7yxX38+uvr9atmzJzp07bVOBbt68mfbt29OoUSO+//57wNoLxmQy5XkYgDs/q47sL6/H3pn3s6Pvk7x8RnN7vRkZGaxbt45OnTpRvXp1W7u6devmOhvF1a68U242m2natCmGYTBgwAC713LTTTfx999/A4XveF3LlcfS1e+t/D5G2cUKefvcuPpaczrPXb0+P8+hRU14SEWCA33JaYCfCevsRuEhFd3+3OPGjeOZZ55h/Pjx1KtXz3YNAdCxY0dGjBjB0KFDadSoEVu3bmXcuHG2bc1mM2fOnKF3797ceOONPPzww7Rr146YmBgAbr31Vr777jv++usvWrZsSePGjRk/frzdd86Vcttf8+bNeeKJJ+jWrRtVqlTh9ddfB+DNN9+kZs2atGzZkp49ezJq1Ci73tnlypVj+fLl/PbbbzRu3JixY8fm2HtywIABXLp0iX79+uX94BZzgYGBPPjgg5QrV45OnTq5tI+PPvqIlStX8vHHH1OqVCnKli3L/PnzmT17NqtWrXJpnxpqJEVSZvGslJSUXNueOnWKCxcucNNNN2V5rF69elgsFo4ePUqVKlU4e/Yss2bNYtasWdnuK/MLP69OnTpFcnKybWiFM9s5G+OV/8gDqFChAgD//POPXREyR5/fkWNZv359p/YbGRlJYGAgixcvthVSW7x4MY0aNeLGG2+0tbt48SKTJ09m7ty5HDt2zK47b1JSUpb9hoSEOPT8zu43N64cJ0//nRw5VmlpaSxfvpyBAwc6HRM4/nd+/fXX6dOnDzVr1qRJkya0b9+e3r17210AX8sNN9xgtxwaGoqXl5etVkBu+3flc5abU6dOcfHixSyxAdx00022JIkrf7vcXi/k/T3u7HeWK+/nvLy/WrZsSXp6Otu2baNmzZokJCTQsmVLfv/9d7vES1hYGBUr5u0fCO78rDqyP2eP/dWfZWfez46+T/LyGc3t9SYkJHDx4sVshwA4Oyzg6ucKDAzE19fXNozlyvVnzpwBCt/xupYr/9aufm/l9zHK6Xnyeo5z5bXmdJ7L7jOTH+fQosjsZSI6KozB83diArsiu5nJmOioMLcW1s3k5eXF2LFj7YYTXen111+3JTgyZQ4x8/b2ZuHChdfc/3/+8x/Wrl3rUCyO7C82NpbY2Fi7ddWrV2fNmjV2686ePWu3fPvtt2cZ/nLld0mmY8eOUbp0aXr37u1QzCXdsWPH6NWrV643BXPSu3fvLMc6PDw8S007ZyjxIkVSQEAA1atXtxXjdAeLxQLAI488Qp8+fbJtc+utt7rt+VzhSow5zSqR3Ze6p/j4+NCpUyeWLFnCe++9x8mTJ9myZQuTJk2ya/fUU08xd+5chg8fTkREBIGBgZhMJrp37247NldydAyms/vND57+OzlyrP7++28uXLhAkyZNXHoOR//ODz/8MC1btmTJkiWsXbuWN954g9dee40vv/zS6TvekLVHQG77d+ZzllPvtOzGeheU7GIq6Pe4K+/nvLy/Mouwbtq0ieuvv56goCBuvPFGWrZsyXvvvUdaWhrff/89nTt3dnrfV3P3Z9Xd+7v6s+zM+9nR90lePqMF+V2X3XPl9vyeOl6ufJdc+bd29Romv4+Ro/t0hquvNafznMv1Gty8j8IqskEwsY/cRszyvXaFdqsF+hIdFUZkg6wTXIj7pKWlcerUKSZMmEDXrl2vWT9SrMncjRs3snHjRt577z1Ph2NHiRcpsu6//35mzZrFtm3bsky9dqUqVarg5+fHn3/+meWxP/74Ay8vL2rWrEnZsmXx9/cnIyOD1q1b52foVKlShYCAAKcTR1WqVHF7jM5Mi+bosXRFt27d+L//+z/Wr1/Pvn37MAzDbvgJWIel9OnTx252hdTU1Cx3D5zl6H4dPVb5eZw8+fwXL14EnHvPXM2RvzNYu3QPGTKEIUOGkJCQwG233cYrr7ziUOJl//79dncfDxw4gMVisZsx5Fr7d+ZzVqFChWzff1cX+atSpQplypRh//79Wdpe+Xdy5W/nyOvN63vc1e8sZ+Tl/eXt7U14eDjff/89119/PS1btgSsPWHS0tL45JNPOHnypK0waE7y8t7OL3k99s68n535js3LZ/RaMmeyOnDgQJbHslvnbp46Xo5+l7gj7rzKr+dy5hybn6/V0+fwwiiyQTBtwqqxPS6RhJRUgvytw4vyo6eL2Fu4cCEDBgygUaNGdkXzJXuNGzfmn3/+4bXXXsu215onqcaLFFmjR4+mbNmyDBw4kJMnT2Z5/ODBg8yYMQOz2cx9993HsmXL7Lrenzx5kgULFtCiRQsCAgIwm808+OCDfPHFF9le4J46dcptsXt5edGpUyeWL1/Ojh07sjye0x2g/Iix7P8qlDuSvHD0WLqidevWVKxYkcWLF7N48WLCw8OzdN01m81Zjs3bb7+d594Fju7X0WOVn8fJEfn1/Jnd/NetW5flMUenR8zt75yRkZFl6EtQUBDVq1cnLS3Noed499137ZbffvttwDqVsCP7d+ZzFhoaSlJSEr/++qttXXx8fJYpJs1mM23btmXp0qUcOXLEtn7fvn123ZBd+dtd6/Veud+8vMdd/c5yRl7fXy1btuTHH39kw4YNtsRL5cqVqVevnm3MfOb6nDjzfVhQ8nrsnXk/O/I+ccdnNLd4W7duzdKlS+1qohw4cMDlcfXOPr8njpej3yXuiDuv8uu5nDnH5udr9fQ5vLAye5mICK3EA41qEBFaSUmXAtK3b18yMjL4+eefqVGjhqfDKfQOHTpEUlISo0aN8nQoWajHixRZoaGhLFiwwDYVYu/evWnQoAGXLl1i69atfPbZZ7Z5219++WW++eYbWrRowZAhQyhVqhTvv/8+aWlpduNDX331VTZs2ECzZs0YNGgQYWFhJCYmsnPnTtatW0diYqLb4p80aRJr167lrrvu4rHHHqNevXrEx8fz2WefsXnzZsqXL5/tdu6OMbNb/9ixY+nevTulS5cmKirKdgF0NUePpbNKly5Nly5dWLRoEefPn2fKlClZ2tx///18/PHHBAYGEhYWxrZt21i3bh2VKlVy+Xmd2a8zxyq/jpOj8uP5AwIC6Nu3L/PmzSMtLY27776blJQUNmzYQIcOHbIUec1Obn/nlJQUrrvuOh566CEaNmxIuXLlWLduHT/99JPdXeVriYuLo2PHjkRGRrJt2zbmz59Pz549adiwIWfPnnVo/45+zrp3785zzz1H586dGTZsGBcuXCA2NpYbb7wxS3HHmJgYVq9eTcuWLRkyZAjp6em8/fbb1K9f3+4fW87+7a71ejO54z3u6neWo/L6/mrZsiWvvPIKR48etUuw3Hnnnbz//vvUrl2b66677pr7cPb7sKDk9dg7+n525H3ijs9obiZMmMDatWu54447GDx4MBkZGbzzzjs0aNAg16lA3cETx8uZ75K8xl2Qx8gZznz+8vu1evocLiLFkMvzIYkUEn/99ZcxaNAgo3bt2oa3t7fh7+9v3HHHHcbbb79tN/3ozp07jbZt2xrlypUz/Pz8jFatWhlbt27Nsr+TJ08aTz75pFGzZk2jdOnSRrVq1Yx7773XmDVrll27vE4nbRiGcfjwYaN3795GlSpVDB8fH6NOnTrGk08+aaSlpV1zO0dizJzi8NSpU7nG8tJLLxk1atQwvLy8HJrK0ZFj6cx00pm++eYbAzBMJpNx9OjRLI//888/Rr9+/YzKlSsb5cqVM9q2bWv88ccfRq1ateymuczptef0+h3dr2HkfKyy268jx8mZv1N2rnWc8/L8OTl//rwxduxY44YbbjB8fHyM4OBg48EHHzQOHDjg0PaGce2/c1pamvHss88aDRs2NPz9/Y2yZcsaDRs2NN57771c95v5Wvbu3Ws89NBDhr+/v1GhQgVj6NChtqmJndm/o98Fa9euNRo0aGB4e3sbN910kzF//vxsp4A1DMP47rvvjCZNmhje3t5GnTp1jJkzZ2bb1pm/3bVebyZ3vMcNI/fvrLy+n/Py/kpOTjbMZrPh7+9vN2X5/PnzDcB49NFHs2zjzPdhXl9bTtMrO7o/V499Jkfez468Txz9DOX19a5fv95o3Lix4e3tbYSGhhoffPCB8cwzzxi+vr7XPM7Xeq4+ffoYZcuWzdL+rrvuMurXr+/R42UYjn+XXOtv7ej3VkEdI2f/7s5cj+T1teb2mcmPc6iIlFwmwyhEFTZFRERcNGHCBGJiYjh16lSWGTlEpOjr1KkTv//+e7a1kkRERAoz1XgRERERkUIls9hypv3797Ny5UruvvtuzwQkIiKSB6rxIiIiIiKFSp06dejbty916tTh8OHDxMbG4u3tzejRoz0dmoiIiNOUeBERERGRQiUyMpKFCxdy4sQJfHx8iIiIYNKkSdxwww2eDk1ERMRpqvEiIiIiIiIiIpJPVONFRERERERERCSfKPEiIiIiIiIiIpJPlHgREREREREREcknSryIiIiIiIiIiOQTJV5ERERERERERPKJEi8iIiIiIiIiIvlEiRcRERERERERkXyixItICWQymZgwYYKnwxAREZEiTNcTIiKOUeJFpJiYN28eJpPJ7icoKIhWrVqxatUqT4cnIiIibnb1ud/X15cbb7yRoUOHcvLkSU+Hl2fvvfce8+bN83QYIiJ5VsrTAYiIe02cOJGQkBAMw+DkyZPMmzeP9u3bs3z5cu6//34ALl68SKlS+viLiIgUB5nn/tTUVDZv3kxsbCwrV65kz549+Pn5eTo8l7333ntUrlyZvn37ejoUEZE80b+8RIqZdu3a0bRpU9vygAEDqFq1KgsXLrQlXnx9fT0VnoiIiLjZlef+gQMHUqlSJaZOncqyZcvo0aNHlvbnz5+nbNmyBR2miEiJpaFGIsVc+fLlKVOmjF0Pl+zGZO/atYt27doREBBAuXLluPfee/nhhx/s2mR2ad68eTPDhg2jSpUqlC9fnscff5xLly5x9uxZevfuTYUKFahQoQKjR4/GMAy7fUyZMoXmzZtTqVIlypQpQ5MmTfj888+zxP3NN9/QokULypcvT7ly5bjpppt44YUX7Nq8/fbb1K9fHz8/PypUqEDTpk1ZsGBBHo+YiIhI0XbPPfcAEBcXR9++fSlXrhwHDx6kffv2+Pv706tXL8CagHnmmWeoWbMmPj4+3HTTTUyZMiXLuTstLY0RI0ZQpUoV/P396dixI//973+zPG/fvn2pXbt2lvUTJkzAZDJlWT9//nzCw8Nt5/E777yTtWvXAlC7dm1+//13vvvuO9tQqrvvvjuPR0ZExDPU40WkmElKSuL06dMYhkFCQgJvv/02586d45FHHslxm99//52WLVsSEBDA6NGjKV26NO+//z5333033333Hc2aNbNr/9RTT1GtWjViYmL44YcfmDVrFuXLl2fr1q1cf/31TJo0iZUrV/LGG2/QoEEDevfubdt2xowZdOzYkV69enHp0iUWLVpE165d+frrr+nQoYMtnvvvv59bb72ViRMn4uPjw4EDB9iyZYttP7Nnz2bYsGE89NBDPP3006SmpvLrr7/y448/0rNnTzcfVRERkaLj4MGDAFSqVAmA9PR02rZtS4sWLZgyZQp+fn4YhkHHjh3ZsGEDAwYMoFGjRqxZs4Znn32WY8eOMW3aNNv+Bg4cyPz58+nZsyfNmzfn22+/tZ2zXRUTE8OECRNo3rw5EydOxNvbmx9//JFvv/2W++67j+nTp/PUU09Rrlw5xo4dC0DVqlXz9JwiIh5jiEixMHfuXAPI8uPj42PMmzfPri1gREdH25Y7depkeHt7GwcPHrStO378uOHv72/ceeedWZ6jbdu2hsVisa2PiIgwTCaT8cQTT9jWpaenG9ddd51x11132T33hQsX7JYvXbpkNGjQwLjnnnts66ZNm2YAxqlTp3J8vQ888IBRv379ax8UERGRYizzvLxu3Trj1KlTxtGjR41FixYZlSpVMsqUKWP897//Nfr06WMAxvPPP2+37dKlSw3AePnll+3WP/TQQ4bJZDIOHDhgGIZh7N692wCMIUOG2LXr2bNnluuJPn36GLVq1coSZ3R0tHHlPzv2799veHl5GZ07dzYyMjLs2l55fVG/fv0s1xEiIkWRhhqJFDPvvvsu33zzDd988w3z58+nVatWDBw4kC+//DLb9hkZGaxdu5ZOnTpRp04d2/rg4GB69uzJ5s2bSU5OtttmwIABdl2GmzVrhmEYDBgwwLbObDbTtGlT/v77b7tty5QpY/v9n3/+ISkpiZYtW7Jz507b+vLlywOwbNkyLBZLtnGXL1+e//73v/z000+5HBEREZHirXXr1lSpUoWaNWvSvXt3ypUrx5IlS6hRo4atzeDBg+22WblyJWazmWHDhtmtf+aZZzAMwzYj4sqVKwGytBs+fLjL8S5duhSLxcL48ePx8rL/50h2Q5JERIo6JV5Eipnw8HBat25N69at6dWrFytWrCAsLIyhQ4dy6dKlLO1PnTrFhQsXuOmmm7I8Vq9ePSwWC0ePHrVbf/3119stBwYGAlCzZs0s6//55x+7dV9//TW33347vr6+VKxYkSpVqhAbG0tSUpKtTbdu3bjjjjsYOHAgVatWpXv37nz66ad2SZjnnnuOcuXKER4ezg033MCTTz5pNxRJRESkpMi86bJhwwb27t3L33//Tdu2bW2PlypViuuuu85um8OHD1O9enX8/f3t1terV8/2eOb/vby8CA0NtWuX3XWDow4ePIiXlxdhYWEu70NEpChR4kWkmPPy8qJVq1bEx8ezf/9+t+zTbDY7vN64okDf999/T8eOHfH19eW9995j5cqVfPPNN/Ts2dOuXZkyZdi0aRPr1q3j0Ucf5ddff6Vbt260adOGjIwMwHph+Oeff7Jo0SJatGjBF198QYsWLYiOjnbLaxQRESkqMm+63H333dSrVy9LLxIfH58s6/JDTr1VMs/dIiIllRIvIiVAeno6AOfOncvyWJUqVfDz8+PPP//M8tgff/yBl5dXlp4srvriiy/w9fVlzZo19O/fn3bt2tG6dets23p5eXHvvfcydepU9u7dyyuvvMK3337Lhg0bbG3Kli1Lt27dmDt3LkeOHKFDhw688sorpKamuiVeERGR4qpWrVocP36clJQUu/V//PGH7fHM/1ssFlvB3kzZXTdUqFCBs2fPZlmf2XsmU2hoKBaLhb17914zRg07EpHiQokXkWLu8uXLrF27Fm9vb1v34SuZzWbuu+8+li1bxqFDh2zrT548yYIFC2jRogUBAQFuicVsNmMymezufB06dIilS5fatUtMTMyybaNGjQDrlJYAZ86csXvc29ubsLAwDMPg8uXLbolXRESkuGrfvj0ZGRm88847duunTZuGyWSiXbt2ALb/v/XWW3btpk+fnmWfoaGhJCUl8euvv9rWxcfHs2TJErt2nTp1wsvLi4kTJ2ap5XZlD9iyZctmm8gRESlqNJ20SDGzatUq292qhIQEFixYwP79+3n++edzTKC8/PLLfPPNN7Ro0YIhQ4ZQqlQp3n//fdLS0nj99dfdFluHDh2YOnUqkZGR9OzZk4SEBN59913q1q1rd5E2ceJENm3aRIcOHahVqxYJCQm89957XHfddbRo0QKA++67j2rVqnHHHXdQtWpV9u3bxzvvvEOHDh2yjFcXERERe1FRUbRq1YqxY8dy6NAhGjZsyNq1a1m2bBnDhw+31XRp1KgRPXr04L333iMpKYnmzZuzfv16Dhw4kGWf3bt357nnnqNz584MGzaMCxcuEBsby4033mhXRL9u3bqMHTuWl156iZYtW9KlSxd8fHz46aefqF69OpMnTwagSZMmxMbG8vLLL1O3bl2CgoK45557CuYAiYi4kRIvIsXM+PHjbb/7+vpy8803Exsby+OPP57jNvXr1+f7779nzJgxTJ48GYvFQrNmzZg/fz7NmjVzW2z33HMPH374Ia+++irDhw8nJCSE1157jUOHDtklXjp27MihQ4eYM2cOp0+fpnLlytx1113ExMTYCvk+/vjjfPLJJ0ydOpVz585x3XXXMWzYMF588UW3xSsiIlJceXl58dVXXzF+/HgWL17M3LlzqV27Nm+88QbPPPOMXds5c+ZQpUoVPvnkE5YuXco999zDihUrsgxFrlSpEkuWLGHkyJGMHj2akJAQJk+ezP79++0SL2C9yRISEsLbb7/N2LFj8fPz49Zbb+XRRx+1tRk/fjyHDx/m9ddfJyUlhbvuukuJFxEpkkzGlf35RERERERERETEbVTjRUREREREREQknyjxIiIiIiIiIiKST5R4ERERERERERHJJ0q8iIiIiIiIiIjkEyVeRERERERERETyiRIvIiIiIiIiIiL5pJSnA/A0i8XC8ePH8ff3x2QyeTocERERDMMgJSWF6tWr4+VVvO6RbNq0iTfeeIOff/6Z+Ph4lixZQqdOnRzadsuWLdx11100aNCA3bt3O/W8Ot+LiEhhUpzP9ZJViU+8HD9+nJo1a3o6DBERkSyOHj3Kdddd5+kw3Or8+fM0bNiQ/v3706VLF4e3O3v2LL179+bee+/l5MmTTj+vzvciIlIYFcdzvWRV4hMv/v7+gPUNHxAQ4OFoREREIDk5mZo1a9rOUcVJu3btaNeundPbPfHEE/Ts2ROz2czSpUud3l7nexERKUyK87lesirxiZfM7sYBAQG6EBMRkUJFQ2Ks5s6dy99//838+fN5+eWXHdomLS2NtLQ023JKSgqg872IiBQuOteXDBpMJiIiIoXW/v37ef7555k/fz6lSjl+v2jy5MkEBgbafjTMSERERDxFiRcREREplDIyMujZsycxMTHceOONTm07ZswYkpKSbD9Hjx7NpyhFRERErq3EDzUSERGRwiklJYUdO3awa9cuhg4dClhnJzIMg1KlSrF27VruueeebLf18fHBx8enIMMVERERyZYSLyIiIlIoBQQE8Ntvv9mte++99/j222/5/PPPCQkJ8VBkIiIiIo5T4kVEREQKzLlz5zhw4IBtOS4ujt27d1OxYkWuv/56xowZw7Fjx/joo4/w8vKiQYMGdtsHBQXh6+ubZb2IiIhIYaXEi4iIiBSYHTt20KpVK9vyyJEjAejTpw/z5s0jPj6eI0eOeCo8EREREbczGYZheDoIT0pOTiYwMJCkpCRNLykiIoWCzk3up2MqIiKFic5LJYtmNRIRERERERERySdKvIiIiIiIiIiI5BPVeBERERERERG5hgyLwfa4RBJSUgny9yU8pCJmL5Onw5IiQokXERGRPNLFmIiISPG1ek88Mcv3Ep+UalsXHOhLdFQYkQ2CPRiZFBVKvIiIiOSBLsZERESKr9V74hk8fydXz0hzIimVwfN3EvvIbTrfS65U40VERMRFmRdjVyZd4N+LsdV74j0UmYiIiORVhsUgZvneLEkXwLYuZvleMiwleqJgcYASLyIiIi7QxZiIiEjxtj0uMcvNlSsZQHxSKtvjEgsuKCmSlHgRERFxgS7GREREireElJzP8660k5JLiRcREREX6GJMRESkeAvy93VrOym5lHgRERFxQdCenY6108WYiIhIkRQeUpHgQF9ymqfQhLWgfnhIxYIMS4ogJV5EREScNXcu4f0eJDj5FCYj+xouuhgTEREp2sxeJqKjwgAwGRa7xzKTMdFRYZi9ckrNiFgp8SIiIuIow4DXX4f+/TGnXybash9Mpix3wnQxJiIiUjxE3liJ2CWvUC3ljN36aoG+mkpaHFbK0wGIiIgUCRYLPPssTJ1qXR49mshXXyb29xPELN9rV2i3WqAv0VFhuhgTEREpys6ehQoViATa7P+R7S07kDAjliB/a49W3VwRRynxIiIikpvLl6F/f5g/37r85pswciQAkQ2CaRNWje1xiSSkpOpiTEREpDg4dAhCQmyL5m4PE7FwoefikSJNiRcREZFrOX8eunaFVaugVCmYMwcefdSuidnLRERoJQ8FKCIiIm61fTs0a/bv8oQJEB3tsXCk6FPiRUREJCdnzsD998MPP0CZMvDFF9CunaejEhERkfyydCl07vzv8kcfZbnhIuIsJV5ERESyc/QotG0L+/ZBhQqwYgVERHg6KhEREckv06fDiBH/Lm/YAHff7alopBhR4kVERORqe/daky7//S9cdx2sWQNhYZ6OSkRERPLLkCEQG/vv8t69UK+e5+KRYkWJFxERkStt22YdXpSYCDffDGvXQs2ano5KRERE8stdd8GmTf8unzwJQUGei0eKHSVeREREMq1aBQ8+CBcvWovqrVgBlVQ0V0REpFgyDAgMhJSUf9edPw9+fp6LSYolL08HICIiUijMnw8dO1qTLpGRsH69ki4iIiLFVXo6eHnZJ10yMpR0kXyhxIuIiMjUqdYZC9LToVcv+OorKFvW01GJiIhIfkhJgdKl/12uVcva+8VL/zyW/KF3loiIlFyGAc89B888Y10eMcI6beSVF2MiIiJSfPz3vxAQ8O/yAw/AoUMeC0dKBiVeRESkWMqwGGw7eIZlu4+x7eAZMiyGfYP0dBgwAF5/3br86qvw5pu62yUiIlJc7d5tXzD/uedg6VJPRSMliIrriohIsbN6Tzwxy/cSn5RqWxcc6Et0VBiRDYLhwgXo3h2WLwezGWbPhn79PBixiIiIuCrDYrA9LpGElFSC/H0JD6mI2ctk32jVKmjf/t/lWbNg0KCCDVRKLCVeRESkWFm9J57B83dyVf8WTiSlMnj+TmI73UTkqL6wZQv4+sKnn0JUlCdCFRERkTzK9WYLQGwsDBny70Zr1sB99xVwpFKSqT+1iIgUGxkWg5jle7MkXQDbupiFP5KxdRuULw/ffKOki4iISBGVebPlyqQL/HuzZfWeeGsdtyuTLr/+qqSLFDglXkREpNjYHpeY5eLrSgYQX6Y82xvdCZs2QYsWBReciIiIuI1DN1vmfEfGtOn/PnDsGNxySwFEJ2JPiRcRESkWMiwGWw6ccqhtwmvTdeElIiJShDl0s8Xbn+3X1beuSEmB6tULJjiRq6jGi4iIFFmZxfS+2XuCpbuPk3j+kkPbBdW5Lp8jExERkfyUkJJz0sWuXbkKcPkylNI/fcVz9O4TEZEiKbtierkxAdUCrbMdiIiISNEV5O/rWLvlXyjpIh6noUYiIlLk5FRM71oyJ5WMjgrLOsWkiIiIFCnhIRUJDvQlpzO6yTAIDvQlPKRSgcYlkp1ClXjZtGkTUVFRVK9eHZPJxNKlS6/Z/ssvv6RNmzZUqVKFgIAAIiIiWLNmTcEEKyIiHnGtYnrXUi3Ql9hHbvt3akkREREpssxeJqKjwgCyJF9MhgEmk262SKFRqBIv58+fp2HDhrz77rsOtd+0aRNt2rRh5cqV/Pzzz7Rq1YqoqCh27dqVz5GKiIin5FZMLztDW9Vl83P3KOkiIiJSjEQ2CCa2TQ2qpZy2W1+tfBndbJFCpVANdmvXrh3t2rVzuP306dPtlidNmsSyZctYvnw5jRs3dnN0IiJSGDhaTO9Kd9StrDteIiIixc2uXUT2akebhFNsv64+CRNeIeiu5oSHVNR5XwqVQpV4ySuLxUJKSgoVK+ZcNDEtLY20tDTbcnJyckGEJiIibuJoMT1QMV0REZFi69tvoVMnSEnBfOutRKxeDcHq4SKFU6EaapRXU6ZM4dy5czz88MM5tpk8eTKBgYG2n5o1axZghCIikle5FdPLpGK6IiIixdTixRAZCSkpcPfdsGmTki5SqBWbxMuCBQuIiYnh008/JSgoKMd2Y8aMISkpyfZz9OjRAoxSRETy6lrF9K6kYroiIiLF0FtvQY8ecPkyPPQQrFoFgYGejkrkmorFUKNFixYxcOBAPvvsM1q3bn3Ntj4+Pvj4+BRQZCIikh8iGwQT27w8Md/8TXzZf4cRVSxbms6NatA6rJrGd4uIiBQnhgEvvACvvmpdfvJJmDEDzGbPxiXiAJcTL1u3biUgIIAGDRq4Mx6nLVy4kP79+7No0SI6dOjg0VhERKSAfPstkY90os2582xv9QAJ418m6LqqSraIiIgUR5cvw2OPwbx51uWXX7YmYUw650vR4HLi5cknn2To0KFZEi8HDx4kKCgIf39/p/d57tw5Dhw4YFuOi4tj9+7dVKxYkeuvv54xY8Zw7NgxPvroI8A6vKhPnz7MmDGDZs2aceLECQDKlClDoLqbiYgUT59/Dr16waVLmFu1ImLJPAgI8HRUIiIikh/On4eHH4aVK8HLC2bNggEDPB2ViFNcrvHy559/cvfdd2dZv27dOnr06OHSPnfs2EHjxo1tU0GPHDmSxo0bM378eADi4+M5cuSIrf2sWbNIT0/nySefJDg42Pbz9NNPu/T8IiJSyMXGWi++Ll2CBx+0XoQp6VKkbNq0iaioKKpXr47JZGLp0qXXbP/ll1/Spk0bqlSpQkBAABEREaxZs6ZgghUREc86fRruvdd6vvf1haVLlXSRIsnlHi8BAQH8888/Wda3bNmSsWPHurTPu+++G8Mwcnx8XmbXsv/ZuHGjS88jIiJFjGFATIz1B+CJJ+CddzSuuwg6f/48DRs2pH///nTp0iXX9ps2baJNmzZMmjSJ8uXLM3fuXKKiovjxxx9tN2pERKToyLAYbI9LJCEllSB/35yHCR8+DG3bwp9/QoUK8PXX0Lx5wQcs4gYuJ14iIyOZMmUKixYtslvv5eXFpUuX8hyYiIgIABkZ8NRT1t4uANHR1h+N6y6S2rVrR7t27RxuP336dLvlSZMmsWzZMpYvX67Ei4hIEbN6Tzwxy/cSn5RqWxcc6Et0VJj9LIS//WadLvr4cbjuOlizBsLCPBCxiHu4PNTopZde4rvvvuPBBx/kt99+AyA1NZXXXnuNW2+91W0BiohICZaWBt27W5MuJhO8+y5MmKCkSwlmsVhISUmhYsWK12yXlpZGcnKy3Y+IiHjO6j3xDJ6/0y7pAnAiKZXB83eyek+8dcWmTdCypTXpUr8+bNumpIsUeS4nXmrWrMkPP/zAxYsXadiwIWXKlMHf35/ly5fzxhtvuDNGEREpiZKToX17azHd0qVh0SIYMsTTUYmHTZkyhXPnzvHwww9fs93kyZMJDAy0/dSsWbOAIhQRkatlWAxilu8lu6ISmetilu8l44sv4b77ICkJWrSA77+39ngRKeJcHmoEUKtWLVauXMmRI0fYvXs3pUuXplmzZrnehRIREbmmkyetSZedO6FcOWsxvXvv9XRU4mELFiwgJiaGZcuWERQUdM22Y8aMYeTIkbbl5ORkJV9ERDxke1xilp4uVzKA+KRUto+cQERaGjzwACxcCGXKFFiMIvkpT4mXTNdffz3XX3+9O3YlIiIlXVyc9W7XgQNQpQqsWgVNmng6KvGwRYsWMXDgQD777DNat26da3sfHx98fHwKIDIREclNQkrOSRe7dmUrwKBB8N57UMot/1QVKRRcHmokIiLidr/8Yp2x4MABqF0btmxR0kVYuHAh/fr1Y+HChXTo0MHT4YiIiJOC/H0da/dgFLz/vpIuUuzoHS0iIoXDd99Bx47W2i633gqrV0NwcO7bSZFy7tw5Dhw4YFuOi4tj9+7dVKxYkeuvv54xY8Zw7NgxPvroI8A6vKhPnz7MmDGDZs2aceLECQDKlClDYGCgR16DiIg4JzykIsGBvpxISs22zovJsFCtlIXwmGdUQF+KJfV4ERERz1uyBNq2tSZd7rzTmoRR0qVY2rFjB40bN7ZNBT1y5EgaN27M+PHjAYiPj+fIkSO29rNmzSI9PZ0nn3yS4OBg28/TTz/tkfhFRMR5Zi8T0VHWmYmuTquYDAuYTET3CMfspaSLFE8mwzCySzqWGMnJyQQGBpKUlERAQICnwxERKXk++AAefxwsFujUCRYsKPHF9HRucj8dUxERz1u9J56YT38m/tK/CZZgXxPRDzUmskHJuuGi81LJkqehRuvXr2f9+vUkJCRgsVjsHpszZ06eAhMRkWLOMGDSJHjxRevygAEwc6bGdYuIiBRTkUs/pM3L0Wy/rj4J5SoQNOMNwu/9j3q6SLHn8tVtTEwMEydOpGnTpgQHB2PSWDwREXGUxQLDh8Pbb1uXX3gBXn5Z47pFRESKq4cegi++wAxEHP0N5s+HNuGejkqkQLiceJk5cybz5s3j0UcfdWc8IiJSzGRYDLbHJZKQkkqQvy/hNcph7tcXFi2yNpgxA4YN82iMIiIiko9q1IDjx/9d3roVIiI8F49IAXM58XLp0iWaN2/uzlhERKSYWb0nnpjle4lPSrWtC76UQvTOw0SWLg3/93/Qo4cHIxQREZF8dXVv1kOHoFYtj4Qi4ikuz2o0cOBAFixY4M5YRESkGFm9J57B83faJV0ATpQuy+BOL7B6zldKuoiIiBRXhpE16ZKcrKSLlEhO9XgZOXKk7XeLxcKsWbNYt24dt956K6VLl7ZrO3XqVPdEKCIiRU6GxSBm+V6ymzbPMHlhAmKOlqaNxVBBPRERkeImLQ18fe3XpaeD2eyZeEQ8zKnEy65du+yWGzVqBMCePXvs1qvQrohIybY9LjFLT5crGUB8Uirb4xKJCK1UcIGJiIhI/jp1CoKC7NcZ2d2KESk5nEq8bNiwIb/iEBGRYiQhJeekiyvtREREpAjYswduucV+nZIuIq7XeBEREclJkL9v7o2caCciIiKF3IoV9kmX5s2VdBH5H5cTL5MnT2bOnDlZ1s+ZM4fXXnstT0GJiEjRFv7dVwSnnMZkWLJ93AQEB/oSHlKxYAMTERER95s6Fe6//9/lYcNgyxbPxSNSyLiceHn//fe5+eabs6yvX78+M2fOzFNQIiJSRBkGvP465gH9iV73PmDi6qpfmcvRUWEqrCsiIlKEZFgMth08w7Ldx9h28AwZFgP69IFnnvm30ezZMGOG54IUKYScqvFypRMnThAcHJxlfZUqVYiPj89TUCIiUgRZLPDss9a7XkBkp5bEPtKEmK/32hXarRboS3RUGJENsp5DREREpHBavSeemOX25/Tgi2eJ/mE/kZkrvv0WWrXySHwihZnLiZeaNWuyZcsWQkJC7NZv2bKF6tWr5zkwEREpQi5fhv79Yf586/KUKfDMM0QCbepXY3tcIgkpqQT5W4cXqaeLiIhI0bF6TzyD5+/k6ootJ3wDGNzpBWKXTiJyxUdQt65H4hMp7FxOvAwaNIjhw4dz+fJl7rnnHgDWr1/P6NGjeebKrmYiIlK8nT8PXbvCqlVgNsOcOdC7t+1hs5dJU0aLiIgUURkWg5jle7MkXQAMkxcmw0JM7xja1AnFXODRiRQNLidenn32Wc6cOcOQIUO4dOkSAL6+vjz33HM8//zzbgtQREQKsTNnrMX0fvgBypSBzz+H9u09HZWIiIi4yfa4RLvhRVczTF7Ep1xie1yibrSI5MDlxMvRo0eZPHky48aNY9++fZQpU4YbbrgBb29vjh49yvXXX+/OOEVEpLA5ehTatoV9+6BCBes0khERno5KRERE3CghJeekiyvtREoilxMvISEhxMfHExQUxH/+8x/b+jNnzhASEkJGRoZbAhQRkUJo3z647z7473+hRg1Yswbq1/d0VCIiIuJmQf6+bm0nUhK5PJ20YWQ3yg/OnTuHr68+dCIixdYPP0CLFtaky803w9atSrqIiIgUU+F+lwlOTcJkWLJ93AQEB1qL54tI9pzu8TJy5EgATCYT48ePx8/Pz/ZYRkYGP/74I40aNXJbgCIiUoisWgUPPggXL0KzZvD111C5sqejEhERkfxw8CDmtm2JNgcxuNMLmMCuyG7mHIXRUWGasVDkGpxOvOzatQuw9nj57bff8Pb2tj3m7e1Nw4YNGTVqlPsiFBGRwmH+fOjXD9LTrbVdvvgCypb1dFQiIiKSH3buhHbtICGByBALsa2rE7PjH7tCu9UCfYmOCiOyQbAHAxUp/JxOvGzYsAGAfv36MWPGDAICAtwelIiIFDJTp8Izz1h/79kT5s6FKxLvIiIiUoysWwedO8O5c9CoEaxaRWS1arS512B7XCIJKakE+VuHF6mni0juXC6uO3fuXHfGISIihZFhwPPPw+uvW5eHD4c33wQvl0uEiYiISGG2aBH07g2XL8M998CSJfC/m+1mL5OmjBZxgcuJl0x79+7lyJEjXLp0yW59x44d87prERHxpPR0eOwxa+8WgMmT4bnnwKQ7WyIiIsXS9OkwYoT194cfho8+Ah8fj4YkUhy4nHj5+++/6dy5M7/99hsmk8k2y5Hpfxfkmk5aRKQIu3ABuneH5cutvVtmzYIBAzwdlYiIiOQHw4AxY+C116zLw4bBtGnq4SriJi5/kp5++mlCQkJISEjAz8+P33//nU2bNtG0aVM2btzoxhBFRKRA/fMP3HefNeni62vtYqyki4iISPF0+TL07ftv0mXyZGvPFyVdRNzG5R4v27Zt49tvv6Vy5cp4eXnh5eVFixYtmDx5MsOGDbPNfiQiIkXIsWMQGQl79kBgoDX50rKlp6MSERGR/HD+PHTtCqtWgdkMH3xgTcKIiFu5nMbMyMjA398fgMqVK3P8+HEAatWqxZ9//ume6EREpOD8+SfccYc16RIcDN9/r6SLiIhIcXX6tLV47qpVUKYMLFumpItIPnG5x0uDBg345ZdfCAkJoVmzZrz++ut4e3sza9Ys6tSp484YRUQkv/30E7Rvb70Iu+EGWLsWatf2dFQiIiKSHw4dgrZt4a+/oGJFWLECbr/d01GJFFsuJ15efPFFzp8/D8DEiRO5//77admyJZUqVWLx4sVuC1BERPLZ2rXQpYu1u3GTJrByJQQFeToqERERyQ+//modVhwfD9dfD2vWwM03ezoqkWLN5cRL27Ztbb/XrVuXP/74g8TERCpUqGCb2UhERAq5hQuhTx9rYb3WreHLL+F/w0hFRESkmNm4ER54AJKToUEDWL0aatTwdFQixZ5bSlUbhoFhGFSsWFFJFxGRouKtt6BnT2vSpVs3+PprJV1ERESKq88/tw4vSk6GO++01nJT0kWkQOQp8fLhhx/SoEEDfH198fX1pUGDBnzwwQfuik1ERPKDYcCLL8LTT1uXhw6FBQvAx8ezcYmIiEj+eO89ePhhuHTJOrx4zRooX97TUYmUGC4PNRo/fjxTp07lqaeeIiIiArBOMT1ixAiOHDnCxIkT3RakiIi4SXo6DBkCs2dblydOtCZh1FtRRESk+DEMGD8eXn7ZuvzEE/DOO9apo0WkwLiceImNjWX27Nn06NHDtq5jx47ceuutPPXUU0q8iIh4UIbFYHtcIgkpqQT5+xIeUhHzpTTo0QOWLgUvL+vdr8cf93SoIiIikh/S02HwYMgckaCbLSIe4/JQo8uXL9O0adMs65s0aUJ6erpL+9y0aRNRUVFUr14dk8nE0qVLc91m48aN3Hbbbfj4+FC3bl3mzZvn0nOLiBQXq/fE0+K1b+kx+weeXrSbHrN/oMXkdazu8ZQ16eLtDZ99pqSLiIhIcXXhAjz4oDXp4uUF778P48Yp6SLiIS4nXh599FFiY2OzrJ81axa9evVyaZ/nz5+nYcOGvPvuuw61j4uLo0OHDrRq1Yrdu3czfPhwBg4cyJo1a1x6fhGRom71nngGz99JfFKq3foTyWkMvvEBVje8xzqDQZcuHopQRERE8lViIrRpA199Bb6+8MUX8Nhjno5KpERzaqjRyJEjbb+bTCY++OAD1q5dy+233w7Ajz/+yJEjR+jdu7dLwbRr14527do53H7mzJmEhITw5ptvAlCvXj02b97MtGnT7Ka7FhEpCTIsBjHL92Jk85hhMmEyLMR0HkWbu+5GI7tFRESKoaNHrTMX7dtnLZ67fDm0aOHpqERKPKcSL7t27bJbbtKkCQAHDx4EoHLlylSuXJnff//dTeFd27Zt22jdurXdurZt2zJ8+PAct0lLSyMtLc22nJycnF/hiYgUqO1xiVl6ulzJMHkRf9HC9rhEIkIrFWBkIiIiku9+/x0iI+G//7VOE71mDdSv7+moRAQnEy8bNmzIrzhccuLECapWrWq3rmrVqiQnJ3Px4kXKlCmTZZvJkycTExNTUCGKiBSYhJScky6utBMREZEiYssWuP9+OHsW6tWzDiu+/npPRyUi/+PyrEYAZ8+e5cMPP2Tfvn0A1K9fn/79+xMYGOiW4PLDmDFj7IZMJScnU7NmTQ9GJCLiHkH+vm5tJyIiIkXAsmXQvTukpkJEBHz9NVSs6OmoROQKLhfX3bFjB6GhoUybNo3ExEQSExOZOnUqoaGh7Ny5050x5qhatWqcPHnSbt3JkycJCAjItrcLgI+PDwEBAXY/IiLFQXhIRYLN6ZgMS7aPm4DgQOvU0iIiIlIMzJ5tLZifmgpRUbBunZIuIoWQy4mXESNG0LFjRw4dOsSXX37Jl19+SVxcHPfff/81a6y4U0REBOvXr7db98033xAREVEgzy8iUmgYBuaXJhL9+WuACZNhX2I3c/LI6KgwzF6aSlJERKRIMwx46SXrbEUWCwwYAF9+CX5+no5MRLKRpx4vzz33HKVK/TtaqVSpUowePZodO3a4tM9z586xe/dudu/eDVini969ezdHjhwBrMOErpwx6YknnuDvv/9m9OjR/PHHH7z33nt8+umnjBgxwtWXJSJS9GRkwNChMGECkX9tI7b0fqqVt+/1Vy3Ql9hHbiOyQbCHghSx2rRpE1FRUVSvXh2TycTSpUtz3Wbjxo3cdttt+Pj4ULduXebNm5fvcYqIFFoZGfDkkzB+vHX5xRetPV9K5amKhIjkI5c/nQEBARw5coSbb77Zbv3Ro0fx9/d3aZ87duygVatWtuXMWix9+vRh3rx5xMfH25IwACEhIaxYsYIRI0YwY8YMrrvuOj744ANNJS0ixUqGxWB7XCIJKakE+VuHCtl6raSlwaOPwmefgckEb71F5NChtLnWNiIedP78eRo2bEj//v3p0qVLru3j4uLo0KEDTzzxBJ988gnr169n4MCBBAcH63wvIsVelmuAYD/Mjz5i7d1iMsHbb1uTMCJSqJkM46r+6A4aNmwYS5YsYcqUKTRv3hyALVu28Oyzz/Lggw8yffp0d8aZb5KTkwkMDCQpKUn1XkSk0Fm9J56Y5XvtpokODvQlOiqMyFrloHNnWL8eSpeG+fPh4Yc9GK24S0k5N5lMJpYsWUKnTp1ybPPcc8+xYsUK9uzZY1vXvXt3zp49y+rVqx1+rpJyTEWk+Mj2GiAtmeiVbxN56Gf45BN46CEPRih5ofNSyeJyj5cpU6ZgMpno3bs36enpAJQuXZrBgwfz6quvui1AEZGSavWeeAbP38nV2fETSakMnr+T2F8WErl+PZQrB0uWQOvWHolTJD9t27aN1le9t9u2bZtrPbm0tDTS0tJsy8nJyfkRnohIvsjxGsC7HIM7vUBsY18iH9J5X6SocLnGi7e3NzNmzOCff/6x1WVJTExk2rRp+Pj4uDNGEZESJ8NiELN8b5YLLsC6zjCICWlNRlAQbNigpIsUWydOnKBq1ap266pWrUpycjIXL17McbvJkycTGBho+6lZs2Z+hyoi4hbXvAYweYHJREyciQyLSwMXRMQDXE68ZPLz8+OWW27hlltuwU9VtEVE3GJ7XKJd1+KrGSYT8QFV2P7pGmjatAAjEykaxowZQ1JSku3n6NGjng5JRMQhuV4DAPFJqWyPSyy4oEQkT5waapRZ7NYRU6dOdToYERGxSkjJ+YLLrl1glXyORMSzqlWrxsmTJ+3WnTx5koCAAMqUKZPDVuDj46MeuCJSJDl8DeBgOxHxPKcSL7t27bJb3rlzJ+np6dx0000A/PXXX5jNZpo0aeK+CEVESqAgf1+3thMpqiIiIli5cqXdum+++YaIiAgPRSQikr90DSBS/DiVeNmwYYPt96lTp+Lv78///d//UaFCBQD++ecf+vXrR8uWLd0bpYhICRMeUpHgQF9OJKVmO8bbBFQLtE4TLVKUnDt3jgMHDtiW4+Li2L17NxUrVuT6669nzJgxHDt2jI8++giAJ554gnfeeYfRo0fTv39/vv32Wz799FNWrFjhqZcgIpJ/DIPwT2cTnFyNE/6VrDVdrqJrAJGix+UaL2+++SaTJ0+2JV0AKlSowMsvv8ybb77pluBEREoqs5eJ6PvDAAOTYbF7zPS//0dHhWH2MmXZVqQw27FjB40bN6Zx48aAdRhz48aNGT9+PADx8fEcOXLE1j4kJIQVK1bwzTff0LBhQ958800++OAD2rZt65H4RUTyjcUCw4djfmEM0etnASauPsvrGkCkaHJ5Ounk5GROnTqVZf2pU6dISUnJU1AiIiWexULkh68Ru2o7Mfc+RnzAv7VcqgX6Eh0VRmSDYA8GKOKau+++G8PIeSaOefPmZbvN1cOdRUSKlbQ06N0bPv0UgMjBDxPbugkxy/faFdrVNYBI0eRy4qVz587069ePN998k/DwcAB+/PFHnn32Wbp06eK2AEVESpxLl6BfP1iwgEigzeBubI+KIiEllSB/a9di3eUSEREpJpKToXNn+PZbKF0aPvoIune3XgOEVWN7XKKuAUSKOJcTLzNnzmTUqFH07NmTy5cvW3dWqhQDBgzgjTfecFuAIiIlyrlz8OCDsHYtlCoF//d/mHv2RGVERUREiocMi/FvMuXyBcIf7455104oVw6WLIHWrW1tzV4mIkIreTBaEXEHk3Gt/r4OOH/+PAcPHgQgNDSUsmXLuiWwgpKcnExgYCBJSUkEBAR4OhwRKclOn4YOHWD7dvDzgy++gMhIT0clHqBzk/vpmIpIYbB6T3yW4UPByaeI3rGYyNiXQbPDlhg6L5UsLvd4yVS2bFluvfVWd8QiIlJyHT4MbdvCn39CpUqwYgU0a+bpqERERMRNVu+JZ/D8nVlmKzzhX5nB9wwl1qc6ut0iUjy5nHiZOHHiNR/PnJ1ARERy8fvv1qTLsWNQs6Z1mNHNN3s6KhEREXGTDItBzPK9WZIuAIbJOntRzPK9tAmrphouIsWQy4mXJUuW2C1fvnyZuLg4SpUqRWhoqBIvIiKO2LoV7r8f/vkHwsJgzRq47jpPRyUiIiJutD0u0W540dUMID4ple1xiarpIlIMuZx4yW5ax+TkZPr27Uvnzp3zFJSISImwYgV07QoXL0JEBHz9NVSs6OmoRERExM0SUnJOurjSTkSKFi937iwgIICYmBjGjRvnzt2KiBQ///d/8MAD1qRLhw6wbp2SLiIiIkVchsVg28EzLNt9jG0Hz5BhMcBiIeiTuQ5tH+Tvm88Riogn5Lm47tWSkpJISkpy925FRIqPN96A0aOtv/fpA7NnQ+nSno1JRERE8iTbGYsCfIiOW0+bD18n+IkPORFQGYOsNVxMQLVAX8JDdBNGpDhyOfHy1ltv2S0bhkF8fDwff/wx7dq1y3NgIiLFjsUCzz0HU6ZYl599Fl57DUwqoiciIlJUZVgM3vn2ANPW/ZXlsRNJqQyueAexN0UQHebL4P9aC+leWWQ38yogOipMhXVFiimXEy/Tpk2zW/by8qJKlSr06dOHMWPG5DkwEZGiKMNisD0ukYSUVIL8rXeuzF4muHwZBg6Ejz6yNnzjDRg1yrPBioiISJ6s3hPPhK9+50RyWraPGyYTJsNCzMNj2DykPbF7T2TpFVMt0JfoqDAiGwQXVNgiUsBcTrzExcW5Mw4RkSIv2y7Ggb5EtwklMvpJWLkSzGaYMwd69/ZgpCIiIpJXq/fEM3j+zmyniL6SYfIiPs06s1Fkg2DahFXL/iaNiBRbeSqu+/333/PII4/QvHlzjh07BsDHH3/M5s2b3RKciEhRkXnxdfVUkSeSUhn82R5WH/gHypSBZcuUdBERESniMiwGMcv35pp0uVLmjEVmLxMRoZV4oFENIkIrKekiUgK4nHj54osvaNu2LWXKlGHnzp2kpVm71yUlJTFp0iS3BSgiUthd6+LL+N9/Y9o8QcY331hnMBIREZEibXtcYpabLbnRjEUiJZfLiZeXX36ZmTNnMnv2bEpfMRvHHXfcwc6dO90SnIhIUZDbxZdh8iK+XCW2V7u5AKMSERGR/JLZe8URJqxDjzVjkUjJ5XLi5c8//+TOO+/Msj4wMJCzZ8/mJSYRkSLF0YsvZy7SREREpPBytveKZiwSKdlcTrxUq1aNAwcOZFm/efNm6tSpk6egRESKEkcvvtTFWEREpHgID6lIcKAvplyqvAQH+hL7yG2asUikhHM58TJo0CCefvppfvzxR0wmE8ePH+eTTz5h1KhRDB482J0xiogUarldfKmLsYiISPFizkgn+vC3YIDJsGTbZkTrG9j83D1KuoiI69NJP//881gsFu69914uXLjAnXfeiY+PD6NGjeKpp55yZ4wiIoWa2ctEtOlvBhvBmLBgmP7NaWd2KlYXYxERkWLiwgV4+GEiV6wg9qY7iHloNPHp/z4cHOhLdFSYEi4iYmMyDMOZWdCyuHTpEgcOHODcuXOEhYVRrlw5d8VWIJKTkwkMDCQpKYmAgABPhyMiRY1hwAsvwKuvsvrGCGI6PUO86d8hRbr4Elfo3OR+OqYi4hZnzsD998MPP4CvLyxeTMb9UWyPSyQhJZUgf2sPV91skdzovFSyuNzjJZO3tzdhYWHuiEVEpGhJT4fHH4c5cwCI7NeRNs92Zvuhf3TxJSIiUtwcPgxt28Kff0KFCrB8OdxxB2YgIrSSp6MTkULM5cTLxYsXMQwDPz8/AA4fPsySJUuoV68ebdu2dVuAIiKF0sWL0L07fPUVeHnBrFkwYIAuvkRERIqj336DyEg4fhyuuw7WrAHdfBYRB7lcXPeBBx7go48+AuDs2bOEh4fz5ptv0qlTJ2JjY90WoIhIofPPP3Dffdaki68vfPklDBjg6ahEREQkP2zaBC1bWpMu9evDtm1KuoiIU1xOvOzcuZOWLVsC8Pnnn1OtWjUOHz7MRx99xFtvveW2AEVECpXjx+HOO2HzZggMhLVr4YEHPB2ViIiI5IclS6w3W5KS4I474PvvrT1eRESc4HLi5cKFC/j7+wOwdu1aunTpgpeXF7fffjuHDx92W4AiIoXGX39B8+awZw8EB/97B0xERESKn5kz4aGHIC0NOnaEb76x1nYREXGSy4mXunXrsnTpUo4ePcqaNWu47777AEhISFBVZhEpfnbssN7pOnwYbrgBtmyBW2/1dFQiIiLiboYBEybA4MFgscCgQfDFF1CmjKcjE5EiyuXEy/jx4xk1ahS1a9cmPDyciIgIwNr7pXHjxm4LUETE49atg1at4PRpaNLEOswoJMTTUYmIiIi7ZWTAE09ATIx1efx4eP99KJXnyWBFpARz+RvkoYceokWLFsTHx9OoUSMMw8BkMnHvvffSuXNnd8YoIuI5ixfDo4/C5cvQurW1kO7/hlmKiIhI0ZNhMdgel0hCSipB/r6Eh1TE7GWyzljYsycsXQomE7z3njUJIyKSR3lK3a5YsYJp06axf/9+AG644QaGDx/OwIED3RKciIhHvfMODBtm7XLcrRv83/+Bj4+noxIREREXrd4TT8zyvcQnpdrWBQf6Et2qFpHP9rP2avXxgQULoEsXD0YqIsWJy4mX8ePHM3XqVJ566inbMKNt27YxYsQIjhw5wsSJE90WpIhIgTIMa9fil1+2Lg8dCjNmgJfLozNFRETEw1bviWfw/J0YV60/kZTK4CV/EJuQQWRgICxbBnfd5ZEYRaR4MhmGcfV3j0OqVKnCW2+9RY8ePezWL1y4kKeeeorTp0+7JcD8lpycTGBgIElJSSoKLCLWsd1DhsCsWdbliRPhxRetXY5FCojOTe6nYypSsmVYDFq89q1dT5crmQwL1S6cZfPAhpgbqni+5D+dl0oWl3u8XL58maZNm2ZZ36RJE9LT0/MUlIiIR6SmWsd2L1li7d3y3nvw+OOejkpERETyaHtcYo5JFwDD5EV82YpsL1eDiAKMS0RKBpf7zT/66KPExsZmWT9r1ix69eqVp6BERApcUhJERlqTLt7e8NlnSrqIiIgUEwkpOSddXGknIuKMPBXX/fDDD1m7di233347AD/++CNHjhyhd+/ejBw50tZu6tSpeYtSRCQ/nThhTbr88ot1xqJly6zTR4uIiEixEOTv69Z2IiLOcDnxsmfPHm677TYADh48CEDlypWpXLkye/bssbUzqS6CiBRmBw/CfffB339D1aqwahU0buzpqERERMSNwkMqEhzoy4mkixhk/feJCagWaJ1aWkTE3VxOvGzYsMGdcdi8++67vPHGG5w4cYKGDRvy9ttvEx4enmP76dOnExsby5EjR6hcuTIPPfQQkydPxtdX2WoRycWuXdaeLgkJUKcOrF0LoaGejkpERETczGxYiD65jcE+jTBhwTD9W3EhMw0THRWG2Us3jUXE/QrV3KiLFy9m5MiRREdHs3PnTho2bEjbtm1JSEjItv2CBQt4/vnniY6OZt++fXz44YcsXryYF154oYAjF5EiZ8MG61SRCQnQqBFs3aqki4iISHGUlgY9ehA5YxyxSydTzWyxe7haoC+xj9xGZINgDwUoIsVdnmq8uNvUqVMZNGgQ/fr1A2DmzJmsWLGCOXPm8Pzzz2dpv3XrVu644w569uwJQO3atenRowc//vhjgcYtIkXMF19YZy+6dAnuvhuWLoXAQE9HJSIiIu6WlASdOsHGjVC6NJETh9Gma0e2xyWSkJJKkL91eJF6uohIfio0PV4uXbrEzz//TOvWrW3rvLy8aN26Ndu2bct2m+bNm/Pzzz+zfft2AP7++29WrlxJ+/btc3yetLQ0kpOT7X5EpPjJsBhsO3iGZbuPse3gGTIshvWBmTOha1dr0qVLF2tNFyVdREREip/4eGvv1o0brcXzV6+Gbt0we5mICK3EA41qEBFaSUkXEcl3habHy+nTp8nIyKBq1ap266tWrcoff/yR7TY9e/bk9OnTtGjRAsMwSE9P54knnrjmUKPJkycTExPj1thFpHBZvSeemOV7iU/6d0rI4EBfoi/uIfKl4dYVjz8O774LZrNnghQREZH889df0LYtHDqk4vki4nGFpseLKzZu3MikSZN477332LlzJ19++SUrVqzgpZdeynGbMWPGkJSUZPs5evRoAUYsIvlt9Z54Bs/faZd0AThx9iKD00JZfWMEjB8PsbFKuoiIiBRH27fDHXdYky5161rruCnpIiIe5FLi5fLly9x7773s37/fbYFUrlwZs9nMyZMn7dafPHmSatWqZbvNuHHjePTRRxk4cCC33HILnTt3ZtKkSUyePBmLxZLtNj4+PgQEBNj9iEjxkGExiFm+FyObxwyTCTCIeeg5MqIngKa6F/God999l9q1a+Pr60uzZs1sw4ZzMn36dG666SbKlClDzZo1GTFiBKmpqdfcRkRKoNWroVUrOH0amjSBLVusMxeKiHiQS4mX0qVL8+uvv7o1EG9vb5o0acL69ett6ywWC+vXryciIiLbbS5cuICXl/1LMP/vDrZhZPdPLxEpzrbHJWbp6XIlw+RFfEYptsclFmBUInI1zWIoIvni448hKgouXIA2bawzGAYFeToqERHXhxo98sgjfPjhh+6MhZEjRzJ79mz+7//+j3379jF48GDOnz9vm+Wod+/ejBkzxtY+KiqK2NhYFi1aRFxcHN988w3jxo0jKirKloARkeIvs5Duqj3xDrVPSNFdchFPunIWw7CwMGbOnImfnx9z5szJtv2VsxjWrl2b++67jx49euTaS0ZESgjDgDfegN69IT3dOnPh119bC+qKiBQCLhfXTU9PZ86cOaxbt44mTZpQtmxZu8enTp3q9D67devGqVOnGD9+PCdOnKBRo0asXr3aVnD3yJEjdj1cXnzxRUwmEy+++CLHjh2jSpUqREVF8corr7j6skSkiMmukG5ugvx98zEiEbmWzFkMr7yR4sgshvPnz2f79u2Eh4fbZjF89NFHc3yetLQ00tLSbMuaxVCkmLJYYNQomDbNujxypDUJ41WkS1mKSDHjcuJlz5493HbbbQD89ddfdo+Z8lA7YejQoQwdOjTbxzZu3Gi3XKpUKaKjo4mOjnb5+USk6MospJtlYKFhZFvDxQRUC/QlPKRiQYQnItnQLIYi4jaXLkG/frBggXV5yhR45hnPxiQikg2XEy8bNmxwZxwiIk65ViFdTKYsyZfM36KjwjB7qbCuSFFy5SyGzZo148CBAzz99NO89NJLjBs3LtttxowZw8iRI23LycnJ1KxZs6BCFpH8lpICDz4I33wDpUrB3LnwyCOejkpEJFsuJ14Azp49y4cffsi+ffsAqF+/Pv379ycwMNAtwYmI5CS3QrpX93ipFuhLdFQYkQ2C8zkyEbmWvM5iCHDLLbdw/vx5HnvsMcaOHZul0D5YZzH08fFx/wsQEc87eRI6dICff4ayZeHzzyEy0tNRiYjkyOXBjzt27CA0NJRp06aRmJhIYmIiU6dOJTQ0lJ07d7ozRhER4N8iust2H2PLgVMObdM7ohYLB93O5ufuUdJFpBDQLIYikicHD8Idd1iTLpUrW2cuUtJFRAo5l3u8jBgxgo4dOzJ79mxKlbLuJj09nYEDBzJ8+HA2bdrktiBFRFwpogvQrkEwEaGV8ikqEXHFyJEj6dOnD02bNiU8PJzp06dnmcWwRo0aTJ48GbDOYjh16lQaN25sG2qkWQxFSqCdO6FdO0hIgJAQWLMGbrjB01GJiOTK5cTLjh077JIuYC12O3r0aJo2beqW4EREIJciuqBCuiJFjGYxFBGnrVsHnTvDuXPQsCGsXg05DE8UESlsXE68BAQEcOTIEW6++Wa79UePHsXf3z/PgYmIgINFdFVIV6TI0SyGIuKwRYugd2+4fBlatYIlS0A1JUWkCHG5xku3bt0YMGAAixcv5ujRoxw9epRFixYxcOBAevTo4c4YRaQEc6iIbjaFdGMfuU01XURERIq66dOhRw9r0uXhh2HVKiVdRKTIcbnHy5QpUzCZTPTu3Zv09HQASpcuzeDBg3n11VfdFqCIlGwJKY7VdBnaqi43VC1HkL91eJF6uoiIiBRhhgFjxsBrr1mXhw6FGTMgm1nMREQKO6cSL7/++isNGjTAy8sLb29vZsyYweTJkzl48CAAoaGh+Pn55UugIlIyBfn7OtTujrqVVURXRESkiMmwGGyPSyQhJfXfmycZ6TBwIHz0kbXRK69YkzDZ1HQTESkKnEq8NG7cmPj4eIKCgqhTpw4//fQTlSpV4pZbbsmv+ESkhAsPqUiwn5kT59MxVERXRESk2MhuxsJgfx+if1tK5OKPwGyG2bPhfzOeiYgUVU711StfvjxxcXEAHDp0CIvFki9BiYhkMm/bSvTSNwEwGfYldlVEV0REpGjKnLHw6jpuJ5JTGVwrktUN7oKlS5V0EZFiwakeLw8++CB33XUXwcHBmEwmmjZtitlszrbt33//7ZYARaQE+/pr6NqVyNRUYmtcR8ztPYlPuWR7uFqgL9FRYSqiKyIiUoRca8ZCw2TCZFiIeWg0bdq3I/t/aYiIFC1OJV5mzZpFly5dOHDgAMOGDWPQoEGaOlpE8se8edbx3RkZ0L49kYvfpY1vmazjwNXTRUREpMjIsBjM2xJ3zRkLDZMX8RettV9Uv01EigOnZzWKjIwE4Oeff+bpp59W4kVE3O+NN2D0aOvvvXvDBx9A6dKYQRdgIiIiRVR2NV2uxdGZDUVECjuXp5OeO3euO+MQEQGLxZpwedNa04VRo6zTSGrqSBERkSIts6ZLdsOLcuLozIYiIoWdy4kXERG3unwZBgyAjz+2Lr/+Ojz7rGdjEhERkTy7Vk2X7GjGQhEpbpR4ERHPO38eHn4YVq60Th354YfQp4+noxIRERE32B6X6PDwIs1YKCLFkRIvIuJZiYnQoQP88AOUKQOffgr33+/pqERERMRNnKnVohkLRaQ4UuJFRDzn6FFo2xb27YPy5WHFCmje3NNRiYiIiBs5WqtlXId69L0jRD1dRKTYyVPiZf369axfv56EhAQsFovdY3PmzMlTYCJSzO3bB/fdB//9L1SvDmvWQIMGno5KRERE3Cw8EILTkjnhXQ7DlLVgfmZNFyVdRKS4cnmqkJiYGO677z7Wr1/P6dOn+eeff+x+RERy9MMP0KKFNely002wdauSLiIiIsXR0aOY77qT6JVvAyauTquopouIlAQu93iZOXMm8+bN49FHH3VnPCJS3K1aBQ89BBcuwH/+Yy2oW7myp6MSERERd/v9d4iMhP/+l8gaNYi9K4iYX1LsCu2qpouIlAQuJ14uXbpEc9ViEBFnfPIJ9O0L6enWYUZffAHlynk6KhEREXG3LVusxfLPnoWbb4Y1a4i8/nraRBpsj0skISWVIH/rlNHq6SIixZ3LQ40GDhzIggUL3BmLiBQTGRaDbQfPsGz3MbYdPEOGxYBp0+CRR6xJlx49YPlyJV1ERESKo6++gtatrUmXiAjYvBmuvx4As5eJiNBKPNCoBhGhlZR0EZESweUeL6mpqcyaNYt169Zx6623Urp0abvHp06dmufgRKToWb0nnpjle+26EQeTRvSSz4gEePppmDoVvFzO+4qIiEhh9cEH8PjjYLFYe7wsXgx+fp6OSkTEo1xOvPz66680atQIgD179tg9ZjIpcy1S0mRYDN75dj/T1u3P8tgJozSDO71AbNnDRI4bAvqOEBERKV4MA15+GcaPty737w/vvw+l8jSJqohIseDyN+GGDRvcGYeIFGGr98Qz4au9nEhOzfZxw+SFCYOY0jfTxgCz8i4iIiLFR0YGPPUUxMZal8eOhZde0o0WEZH/UQpaRPJk9Z54Bs/fiZFLOwMT8UmpbI9LJCK0UoHEJiIiIvksNRV69YIvv7QmWt56C4YO9XRUIiKFSp4SL2fPnuXDDz9k3759AISFhTFgwAACAwPdEpyIFG4ZFoOY5XtzTbpcKSEl+14xIiIiUsScPQudOsF334G3N8yfD127ejoqEZFCx+Xqljt27CA0NJRp06aRmJhIYmIi06ZNIzQ0lJ07d7ozRhEppLbHJdoV0XVEkL9vPkUjIiIiBeb4cbjzTmvSxd8fVq9W0kVEJAcu93gZMWIEHTt2ZPbs2ZT6X9Gs9PR0Bg4cyPDhw9m0aZPbghSRwsmZ3ismoFqgL+EhFfMvIBEREXGrDIvB9rhEElJSCfK3nsfNf/0JbdvCkSNQrRqsWgX/m3RDRESycjnxsmPHDrukC0CpUqUYPXo0TZs2dUtwIlK4Odt7JToqDLOXCu2JiIgUBav3xBOzfK9d79ZgXy+iv55O5JEjcMMNsGYNhIR4MEoRkcLP5aFGAQEBHDlyJMv6o0eP4u/vn6egRKRoCA+pSHBpCybDcs121QJ8iH3kNiIbBBdQZCIiIpIXmcXzrx5SfOJiOoPvfYrV7R+FLVuUdBERcYDLiZdu3boxYMAAFi9ezNGjRzl69CiLFi1i4MCB9OjRw50xikghZX73HaI/fRUwYTKyL7E7ovWNbHn+XiVdREREiogMi8GEr37Ptni+YbL+8yHmjt5kVKpcsIGJiBRRLg81mjJlCiaTid69e5Oeno5hGHh7ezN48GBeffVVd8YoIoWNYcD48fDyy0QCsam7iKkaQXxymq1JcKAv0VFhSriIiIgUMe98e4ATV5zTr2aYTMQnp7E9LpGI0EoFGJmISNHkcuLF29ubGTNmMHnyZA4ePAhAaGgofn5+bgtORAqhjAwYMgRmzbIux8QQOe5F2hhkLb6nei4iIiJFyuo98Uxb95dDbZ0psi8iUpI5lXgZOXIkL730EmXLlmXkyJHXbDt16tQ8BSYinpXtLAaX0qBnT1iyBEwmeO89eOIJAMwmdNdLRESkCMuwGMQs3+twe2eL7IuIlFROJV527drF5cuXbb/nxGTSXW6RoizbWQz8vYne8SmRS5eAtzcsWAAPPujBKEVERMSdtsclZimmm5PgQOtNGRERyZ1TiZcNGzZk+7uIFB+ZsxhcXVDvRHIag298gNiGfxM57UVo1coj8YmIiEj+cGboUHRUmIYUi4g4yOVZjY4cOYKRwywm2U0zLSKFX2YX4+xnMTABBjGdR5Fx190FHJmIiIjkt6DkMw61G9H6BhXPFxFxgsuJl5CQEE6dOpVl/ZkzZwgJCclTUCLiGbl1MTZMXsRftLA9LrEAoxIREZF8t2MH4V3bEJx8ClMON1fBOsRo6D03FGBgIiJFn8uJF8Mwsq3lcu7cOXx9VWhLpChytIuxZjEQEREpWjIsBtsOnmHZ7mNsO3iGDMsVyZVvvoG778ackEB03Dowmbj6Kt/0vx8NMRIRcZ7T00lnzmZkMpkYN26c3fTRGRkZ/PjjjzRq1MhtAYpIwXF0dgLNYiAiIlJ0ZFs0P9CX6KgwIn/dAH37wuXLcO+9RH4aS+zhc1naV8tsryFGIiJOczrxkjmbkWEY/Pbbb3h7e9se8/b2pmHDhowaNcrlgN59913eeOMNTpw4QcOGDXn77bcJDw/Psf3Zs2cZO3YsX375JYmJidSqVYvp06fTvn17l2MQKanCQyoSbE7nRLoXhilrhzgT1gsvzWIgIiJSNORYND8plcHzfyZ2yTtEXr4M3bvDvHng40NkA3/ahFVje1wiCSmpBPlbz/3q6SIi4hqnEy+Zsxn169ePGTNmEBAQ4LZgFi9ezMiRI5k5cybNmjVj+vTptG3blj///JOgoKAs7S9dukSbNm0ICgri888/p0aNGhw+fJjy5cu7LSaREsMwML/8EtGfr2ZwpxcwGcb/CupaZf6mLsYiIiJFwzWL5gMmwyDm3sdo074Z5jffBK9/b7qYvUxEhFYqsFhFRIozpxMvmebOnQvA3r17OXLkCJcuXbJ7vGPHjk7vc+rUqQwaNIh+/foBMHPmTFasWMGcOXN4/vnns7SfM2cOiYmJbN26ldKlSwNQu3Ztp59XpMTLyICnn4Z33yUSiC29n5iyt6qLsYiISBHmUNH8gCpsHzSWCC+XSz+KiEguXE68xMXF0alTJ3777TdMJpNtaunMgrsZGRlO7e/SpUv8/PPPjBkzxrbOy8uL1q1bs23btmy3+eqrr4iIiODJJ59k2bJlVKlShZ49e/Lcc89hNpuz3SYtLY20tDTbcnJyslNxihQ7aWnQuzd8+imYTPDWW0QOHUobi6EuxiIiIkWY40Xz03JvJCIiLnM5tT1s2DBCQkJISEjAz8+P33//nU2bNtG0aVM2btzo9P5Onz5NRkYGVatWtVtftWpVTpw4ke02f//9N59//jkZGRmsXLmScePG8eabb/Lyyy/n+DyTJ08mMDDQ9lOzZk2nYxUpNlJSoEMHa9KldGlYuBCGDgX+7WL8QKMaRIRWUtJFRNzq3XffpXbt2vj6+tKsWTO2b99+zfZnz57lySefJDg4GB8fH2688UZWrlxZQNGKFE0qmi8iUji4nHjZtm0bEydOpHLlynh5eeHl5UWLFi2YPHkyw4YNc2eMObJYLAQFBTFr1iyaNGlCt27dGDt2LDNnzsxxmzFjxpCUlGT7OXr0aIHEKlLoJCRAq1awfj2ULQsrVkC3bp6OSkRKgMyabtHR0ezcuZOGDRvStm1bEhISsm2fWdPt0KFDfP755/z555/Mnj2bGjVqFHDkIkVLeEhFggN9s0wNncmEdXYjFc0XEclfLg81ysjIwN/fH4DKlStz/PhxbrrpJmrVqsWff/7p9P4qV66M2Wzm5MmTdutPnjxJtWrVst0mODiY0qVL2w0rqlevHidOnODSpUt2My5l8vHxwcfHx+n4RIqVuDho2xb274fKlWHVKmja1NNRiUgJoZpuIgXD7GUiuoEfgzdfxIRhN2OhiuaLiBQcl3u8NGjQgF9++QWAZs2a8frrr7NlyxYmTpxInTp1nN6ft7c3TZo0Yf369bZ1FouF9evXExERke02d9xxBwcOHMBisdjW/fXXXwQHB2ebdBER4Ndf4Y47rEmXWrVgyxYlXUSkwGTWdGvdurVtnTM13apWrUqDBg2YNGmS0/XkREqcDRuIfCSS2KWTqJZqX9ewWqAvsY/cpqL5IiIFwOUeLy+++CLnz58HYOLEidx///20bNmSSpUqsXjxYpf2OXLkSPr06UPTpk0JDw9n+vTpnD9/3nZHrHfv3tSoUYPJkycDMHjwYN555x2efvppnnrqKfbv38+kSZMKbKiTSJHz/fcQFQVJSdCgAaxZA9WrezoqESlBrlXT7Y8//sh2m7///ptvv/2WXr16sXLlSg4cOMCQIUO4fPky0dHR2W6jYvpS4n32GTzyCFy6RGRjb9pEt2f7PxYVzRcR8QCXEy9t27a1/V63bl3++OMPEhMTqVChgm1mI2d169aNU6dOMX78eE6cOEGjRo1YvXq17eLsyJEjeF0x1V3NmjVZs2YNI0aM4NZbb6VGjRo8/fTTPPfcc66+LJHi66uvrDVcUlOhRQvrcoUKno5KRCRXV9Z0M5vNNGnShGPHjvHGG2/kmHiZPHkyMTExBRypSCHxzjswbBgYBjz4IMyfj9nXlwiVchER8QiXEy/ZqVgx79/mQ4cOZej/ZlW5WnazJUVERPDDDz/k+XlFioOMnKaA/vBDeOwxsFigY0dYtAjKlPF0uCJSAhVUTbcxY8YwcuRI23JycrJmMpTizzBg3Dh45RXr8pAh8NZbcMVnR0RECp5TiZeRI0fy0ksvUbZsWbuLmexMnTo1T4GJiHNW74knZvle4pNSbeuCA32JvvwHkdH/S2b27w/vvw+l3JpzFRFx2JU13Tp16gT8W9Mtpxsvd9xxBwsWLMBisdh6vuZW003F9KXESU+Hxx+HOXOsyy+9BGPHgos90UVExH2c+tfXrl27uHz5su33nLg61EhEXLN6TzyD5+/EuGr9ibMXGUwtYm+MILLLXTBpki7ARMTjVNNNxM0uXLAOJ/76a/Dyst5kGTjQ01GJiMj/OJV42bBhQ7a/i4jnZFgMYpbvzZJ0ATBMJkyGhZgHR9Pm5QcwK+kiIoWAarqJuNGZM9bC+du2ga8vLF5sHVYsIiKFhskwjOz+vXZNly9fJjIykpkzZ3LDDTfkR1wFJjk5mcDAQJKSkggICPB0OCJO23bwDD1m517naOGg24kIrVQAEYlIXunc5H46plIsHTkCkZGwb5+1YP7y5XDHHZ6OSkQcoPNSyeJSoYfSpUvz66+/ujsWEXFBQkpq7o2caCciIiJFwJ491qTLsWNw3XWwejXUr+/pqEREJBteuTfJ3iOPPMKHH37ozlhExAVB/r5ubSciIiKFR4bFYNvBMyzbfYxtB8+QYTHg+++hZUtr0iUsDLZuVdJFRKQQc3lqk/T0dObMmcO6deto0qQJZcuWtXtcsxqJFIzwkIoE+5k5cT4dI5saLiagWqB1amkREREpOrKdsdDbIPrLKUSePWsdVvTVV1BR53gRkcLM5cTLnj17uO222wDrlI5X0qxGIgXH/MM2opdOZXCbYZgMwy75kvlbdFQYZi99LkVERIqKHGcsTDMY3GEUsY0aEjn7VShTxiPxiYiI41xOvGhWI5FCYMUK6NqVyIsXia1RnZhmvYg/d8n2cLVAX6KjwohsEOzBIEVERMQZ156x0AuTYRBTvyNtfHwxF3h0IiLiLJcTLyLiYR99BP37Q0YGtG9P5KJ3aVPGj+1xiSSkpBLkbx1epJ4uIiIiRcv2uES74UVXM0wm4pNS2R6XqBkLRUSKgDwnXvbu3cuRI0e4dOmS3fqOHTvmddcikpMpU+DZZ62/9+4NH3wApUtjBl2AiYiIFHGasVBEpHhxOfHy999/07lzZ3777TdMJhOGYe0MmVnfJSMjwz0Risi/DAOeew7eeMO6PGoUvPYaeLk8QZmIiIgUMpqxUESkeHH5X2tPP/00ISEhJCQk4Ofnx++//86mTZto2rQpGzdudGOIIiVTlukj0y5Bv37/Jl1ef936u5IuIiIiRVK2U0UD4d4XCb54FpNhyXY7ExCsGQtFRIoMl3u8bNu2jW+//ZbKlSvj5eWFl5cXLVq0YPLkyQwbNoxdu3a5M06REiXb6SMvnSN6219Ems3w4YfQp48HIxQREZG8yPZcH+hL9G2BRD72ING+NRjc6QVMYFdkVzMWiogUPS7fKs/IyMDf3x+AypUrc/z4cQBq1arFn3/+6Z7oREqgzOkjry6qd6K0H4M7vcDqD5Yq6SIiIlKE5XiuT0pl8LcnWO1bg0jOENv2eqoF2g8nqhboS+wjt2nGQhGRIsTlHi8NGjTgl19+ISQkhGbNmvH666/j7e3NrFmzqFOnjjtjFCkxcp0+EoiJ96WNxdBdLhERkSLomud6wIRBTLuhtHmhDZFBVWhzt6EZC0VEijiXEy8vvvgi58+fB2DixIncf//9tGzZkkqVKrF48WK3BShSkuQ6fSRo+kgREZEiLPepor2I9w1ke4oXEUFg9jLpnC8iUsS5nHhp27at7fe6devyxx9/kJiYSIUKFWwzG4mIczR9pIiISPGmc72ISMnjco2XgQMHZpm9qGLFikq6iDgou5kMNH2kiIhI8aZzvYhIyeNyj5dTp04RGRlJlSpV6N69O7169aJRo0ZuDE2k+MppJoNxAWcITrnIiXIVMUxZ86ImrEX1NH2kiIhI0RQeUpHgAB9OJKViZHPDUud6EZHix+UeL8uWLSM+Pp5x48bx008/0aRJE+rXr8+kSZM4dOiQG0MUKV5ynsngIk8e8aPj3o2AiasvxTR9pIiISNFnPpdC9M7PADAZFrvHdK4XESmeXE68AFSoUIHHHnuMjRs3cvjwYfr27cvHH39M3bp13RWfSLFy7ZkMTIDBV//pwLs9G2v6SBERkeLmxAm46y4iv5hF7JppVPO1vxTXuV5EpHhyeajRlS5fvsyOHTv48ccfOXToEFWrVnXHbkWKHYdmMjCVoUI5XzY/d4+mjxQRESku9u+Htm0hLg6Cgoic8wZtGjXWuV5EpATIU+Jlw4YNLFiwgC+++AKLxUKXLl34+uuvueeee9wVn0ix4sxMBpo+UkREpJjYsQPat4dTpyA0FNasgdBQzKBzvYhICeBy4qVGjRokJiYSGRnJrFmziIqKwsfHx52xiRQ7mslARESkhFm7Frp0gfPnoUkTWLkSgoI8HZWIiBQglxMvEyZMoGvXrpQvX96N4YgUb+EhFQkuV5oTKZc0k4GIiEhx98kn0LcvpKdDmzbwxRfg7+/pqEREpIC5XFx30KBBSrqIOMl8YD/Rq98FNJOBiIhIsfbmm/DII9akS48e8PXXSrqIiJRQeZrVSEScsGMH3HEHkVu+IvaHuVQr5233sGYyEBERKQYsFhg1yvoDMGIEzJ8P3t7X3k5ERIott8xqJCK5WLcOOneGc+fgttuI/CyWNpWraCYDERGRIirDYmQ9j6dfhv79rUOMAN54498EjIiIlFhOJV5+/fVXGjRogJeXOsqIXC3bCzAvEyxeDI8+Cpcvwz33wJIlEBCgmQxERESKqNV74olZvpf4pH9nKwz29yb6lyVEfvYJlCoFc+ZYz/8iIlLiOZV4ady4MfHx8QQFBVGnTh1++uknKlXSPxxFsr0AC/QlutRhIp8bCIYBXbvCxx+DZv8SEREpslbviWfw/J0YV60/kZzG4JD2xN6yj8jXn4PISI/EJyIihY9TXVfKly9PXFwcAIcOHcJiseSyhUjxl3kBdmXSBeBE0kUGnw5i9Q23w5AhsHChki4iIiJFWIbFIGb53ixJF+B/sxUaxDw4moz72hZ0aCIiUog51ePlwQcf5K677iI4OBiTyUTTpk0xm83Ztv3777/dEqBIYXbNCzBMmLAQ03kUbV7phNmsIXoiIiJF2fa4xCw3Wq5kmLyIv2hhe1yihhOLiIiNU4mXWbNm0aVLFw4cOMCwYcMYNGgQ/poWT0owhy7A8GH7oX90ASYiIlLEXF2/7URyzuf8KyWkONZORERKBqdnNYr833jVn3/+maefflqJFynRHL2w0gWYiIhI0ZJd/baKZUs7tG2Qv29+hSUiIkWQy9NJz507l7Nnz/Lmm2+yb98+AOrXr0///v0JDAx0W4AihZmjF1a6ABMRESk6ciqgm3j+MmCAAZhMWbYzAdUCrTMbioiIZHK56MSOHTsIDQ1l2rRpJCYmkpiYyNSpUwkNDWXnzp3ujFGk0AoPqUhw2VKYjOyqvFgvwIJ1ASYiIlJkXKt+G2CdqRCynPsz0zDRUWGYvbImZUREpORyOfEyYsQIOnbsyKFDh/jyyy/58ssviYuL4/7772f48OFuDFGk8DL/spvo5dMBXYCJiIgUB7nVb8PkBSYTFcrZz1RYLdCX2EduI7JBcD5HKCIiRY3LQ4127NjB7NmzKVXq312UKlWK0aNH07RpU7cEJ1IYXF1YLzykojWRsmEDPPAAkSkpxFaoQEzLvsSfu2zbrlqgL9FRYboAExERKUIcrcs2rkM9qgWWyXp9ICIichWXEy8BAQEcOXKEm2++2W790aNHVXBXio3sCusFB/oSXTmZyKHd4dIluOsuIj+NpY1/QPYJGhERESkyHK3LVi2wjGYsFBERh7iceOnWrRsDBgxgypQpNG/eHIAtW7bw7LPP0qNHD7cFKOIpORXWO5F0kcFnSxNbuwmR9avBggXg64sZdAEmIiJSxIWHVCQ40JcTSanZ1nlRAV0REXGWy4mXKVOmYDKZ6N27N+np6QCULl2awYMH8+qrr7otQBFPuFZhPQMTJizEdBxBm0mdMZd2+WMkIiIihYzZy0T0reUYvOkiJgwM078lEVW/TUREXOFycV1vb29mzJjBP//8w+7du9m9ezeJiYlMmzYNHx+f3HcgUojlVljPMHkRb/Zj+5GkAoxKRERE8t2mTUT2akvs0klUS022e0gFdEVExBUuJ14y+fn5ccstt3DLLbfg5+fnjph49913qV27Nr6+vjRr1ozt27c7tN2iRYswmUx06tTJLXFIyeVoYT1H24mIiEgR8OWXcN99kJREZJCZzePbsXDQ7czo3oiFg25n83P3KOkiIiJOy3Pixd0WL17MyJEjiY6OZufOnTRs2JC2bduSkJBwze0OHTrEqFGjaNmyZQFFKsWZo4X1HG0nIiIihVxsLDz0EKSlQadOsHYt5koViQitxAONahARWknDi0RExCWFLvEydepUBg0aRL9+/QgLC2PmzJn4+fkxZ86cHLfJyMigV69exMTEUKdOnQKMVoqr8JCKBJcrjcnIrsqLdYx3sArriYiIFH2GAePHw5Ah1t8feww++wzKlPF0ZCIiUkwUqsTLpUuX+Pnnn2ndurVtnZeXF61bt2bbtm05bjdx4kSCgoIYMGBArs+RlpZGcnKy3Y/I1cyHDxG97n0ATIbF7jEV1hMRyTsNK5ZCIT0dHn8cXnrJuhwdDTNnQikVzhcREfdxOfFy5MgRjGx6AxiGwZEjR1za5+nTp8nIyKBq1ap266tWrcqJEyey3Wbz5s18+OGHzJ4926HnmDx5MoGBgbafmjVruhSrFGO//gp33EHkd18Su2U21cp62z2swnoiInmjYcVS0DIsBtsOnmHZ7mNsO3iGDIsBFy/Cgw/C7Nng5WUdajRhAph0U0VERNzL5XR+SEgI8fHxBAUF2a1PTEwkJCSEjIyMPAeXm5SUFB599FFmz55N5cqVHdpmzJgxjBw50racnJys5Iv86/vvISoKkpKgQQMiP42lTbVgtsclkpCSSpC/dXiRerqIiLjuymHFADNnzmTFihXMmTOH559/PtttrhxW/P3333P27NkCjFiKstV74olZvtdutsJgf2+ity8k8quvwMcHFi6Ezp09GKWIiBRnLideDMPAlM0dgXPnzuHr61rB0cqVK2M2mzl58qTd+pMnT1KtWrUs7Q8ePMihQ4eIioqyrbNYrMNCSpUqxZ9//kloaKjdNj4+PpruWrL31VfQrRukpkKLFtblChUwAxGhlTwdnYhIsZA5rHjMmDG2dc4OK/7+++9zfZ60tDTS0tJsyxpaXDKt3hPP4Pk7ubqP9onkNAbf3IXYI0eInDEe7rzTI/GJiEjJ4HTiJbO3iMlkYty4cXZTSGdkZPDjjz/SqFEjl4Lx9vamSZMmrF+/3jZ222KxsH79eoYOHZql/c0338xvv/1mt+7FF18kJSWFGTNmqCeLOG7OHBg0CCwWa4+XxYtVVE9EJB9ca1jxH3/8ke02mcOKd+/e7fDzTJ48mZiYmLyEKkVchsUgZvneLEkXAMNkwmQYxHQeRZsWLTEXeHQiIlKSOJ142bVrF2Dt8fLbb7/h7f1v/Qtvb28aNmzIqFGjXA5o5MiR9OnTh6ZNmxIeHs706dM5f/68rTty7969qVGjBpMnT8bX15cGDRrYbV++fHmALOtFMixG1iFDJuC11yDzzmu/fjBrlorqiYgUEq4MKwYNLRbYHpdoN7zoaobJRPyFDLbHJapnq4iI5Cun/3W5YcMGAPr168eMGTMICAhwa0DdunXj1KlTjB8/nhMnTtCoUSNWr15tuzN25MgRvLwK1WRMUgRkO747wJfoMz8SOXWsdcVzz8HkySqqJyKSjwpiWDFoaLFAQkrOSRdX2omIiLjK5dv6c+fOdWccdoYOHZrt0CKAjRs3XnPbefPmuT8gKdJyHN+ddJHBpW4l9sYIIp/oCiNGeCQ+EZGSRMOKpaAE+TtWc9DRdiIiIq7K03iK9evXs379ehISEmx3nzLNmTMnT4GJuEPu47stxDw8hjZP36/x3SIiBUTDiqUghNeuQLDpEicspTBMWXtLm4BqgdahxyIiIvnJ5cRLTEwMEydOpGnTpgQHB2c7w5GIp+U+vtuL+MtofLeISAHSsGJxl2zrt3mZICMD87BhRK/bxeBOL2DCwODfa9XM36KjwqztRURE8pHLiZeZM2cyb948Hn30UXfGI+JWGt8tIlI4aVix5FW29dsCfYluewORk5+Bzz8n0mQittJJYjJq27WrFuhLdFQYkQ2CPRG6iIiUMC4nXi5dukTz5s3dGYuI22l8t4iISPGTc/22VAYv/pXYX48R6e0NH39M5MMP0yannjEiIiIFwOV+vAMHDmTBggXujEXE7cJDKhLsa63lkh0T1rtjGt8tIiJSNFyzftv//hvT+nEyVq2Chx8GwOxlIiK0Eg80qkFEaCUlXUREpEC53OMlNTWVWbNmsW7dOm699VZKly5t9/jUqVPzHJyIo3Ia421etZLoL95gcPtRmAwDw6Tx3SIiIkWZQ/Xb/CuzvVZDIgowLhERkZy4nHj59ddfadSoEQB79uyxe0yFdqUg5TjG2/8UkcMfITIjg9j6DYi5pRPxKWm2NhrfLSIiUvSofpuIiBQ1LideNmzY4M44RFyS8xjviww+W47Y0HAim9Ul8sNptDGX0vhuERGRIk7120REpKhxOfEi4mnXHuNtwoSFmE7P0OaVTphLmTGDpowWEREp4sJDKhIc6MuJpIt2U0RnMmHt1ar6bSIiUli4XFwX4Pvvv+eRRx4hIiKCY8eOAfDxxx+zefNmtwQnci0OjfE2+bL98NmCC0pERETyldkE0Rl/gUGW4vmq3yYiIv/f3r3HRV3nexx/DyMXL4CictG1vJahlldc1LJNCbZy7bLlmpaV2aZWFnnNlMi8ZK5dCTdbyy3NtutWGmaubmlulOjpornrLdsCrwmoCch8zx8sFMLAzDAzzDCv5+PBeSy/+c6Pz/cnh8/0+d58kcuFlzfeeEPJyclq3Lixtm3bpqKisr0z8vPzNW/ePLcFCNjDGm8AAAKMzSalpipl1gRlvj1PsSqu9HJsZJgyR/dm/zYAgE9xeanRI488oiVLlujmm2/WqlWrKq4PHDhQjzzyiFuCA2rCGm8AABoeeycVqqhIuuUW6X+fO1P++Hsl3Xst+7cBAHyey4WXXbt26ZJLLqlyPTIyUsePH69LTIBDEjpEKa5ZsPIKiysdE12ONd4AAPgXuycVDu2olAfukD78UGrUSHrxRWnUKPZvAwD4BZeXGsXGxmr37t1Vrm/atEkdO3asU1CAI6z/3qW09zMkSRZTeYtd1ngDAOBfyk8qPHv/trz80xr/+tfKOnBSatpUWr1aGjWqnqIEAMB5Lhdexo0bp0mTJunTTz+VxWLRDz/8oBUrVmjy5MkaP368O2MEqvr0U2nQIKV88o4ys5crtllwpZdZ4w0AgP+o+aTCsv+bnnSnSjdskC6/3LvBAQBQRy4vNZo+fbpsNpuGDBmiU6dO6ZJLLlFoaKgmT56su+++250xIgDZXd8tSWvXStdeK506JfXrp5TXMpUU1ZI13gAA+CmHTips1lLZUR2V6MW4AABwB5cLLxaLRTNnztSUKVO0e/dunThxQvHx8WrWrJk740MAsru+e1i8Ur7YII0ZI505Uzbi9cYbUrNmrPEGAMCPcVIhAKAhc7nwUi4kJETx8fHuiAWoWN999lTjvPzTGv/yVmW+9YxSzpyRRo4s21gvJKQ+wgQAAHX0y9mtRwqLHHoPJxUCAPyRU4WX1NRUzZkzR02bNlVqamqNbRcvXlynwBB4alvfbTFG6UPuUFJKP1kff1wKcnmLIgAAUI+qm90aZJFsxujnLfJ/xkmFAAB/5lThZdu2bSopKan434A7ObS+O6K1ssfNUiJFFwAA/JK92a02W/kVI1l+Lr5wUiEAwN85VXjZsGFDtf8bcAfH13c7Nh0ZAAD4lppmt8pikYxNQRaLbL+4HFu+zxsnFQIA/JTLe7zMnz9fMTExuu222ypdX7ZsmQ4fPqxp06bVOTgEFkfXbbO+GwAA/1Tb7FZZgmSTNOvKC9QqPJSTCgEADYLL6zX+/Oc/q2vXrlWud+vWTUuWLKlTUAhMCR2iFBcZVs3K7jIWlZ1uxPpuAAD8k6OzW1uFh2p4z7ZK7NSSogsAwO+5XHjJy8tTXFzVKZ+tW7dWbm5unYJCYLIGWZTWp4VkjCzGVuk11ncDAOD/mN0KAAhELhde2rVrp82bN1e5vnnzZrVp06ZOQSFAbd2qlNEpynx7nmJ/yq/0UmxkmDJH92Z9NwAAfiyhQ5TiGlurDLCUY3YrAKAhcnmPl3Hjxunee+9VSUmJLrvsMknS+vXrNXXqVN1///1uCxANR6nNKHvfMR0qPF11zfaHH0rXXCOdOKGUX/1KSTOGKvtUcPVtAQCAX7J+9E+lvbVI45PvlcUYGU4vAgAEAJcLL1OmTNHRo0c1YcIEFRcXS5LCwsI0bdo0zZgxw20BomHI+ipX6e/uqLShXlz5KQU7PpZGj5ZKSqTLLpPeekvWiAgl1mO8AADAzV5/XRo1SinFxcrs0F7pfUcot7C44mVOLwIANFQWY0y1J/o56sSJE9q5c6caN26sLl26KDQ01F2xeUVBQYEiIyOVn5+viIiI+g6nQcr6KlfjX86pcnRk2ViWUeZb85Xy70+k66+XXnpJ8rPfIQBwN3KT+/FM69mzz0p33SUZI117rbRihUpDQu3PhAWABo68FFhcnvFSrlmzZurXr587YkEDVGozSn93R5WiiyQZSRZjlD5knJKG9pT1qackq9XbIQIAgDqyu5zYGGnWLGnu3LKGd94pPfOMZLXKKimxU8t6jRsAAG9wqvCSmpqqOXPmqGnTpkpNTa2x7eLFi+sUGBqG7H3HKi0vOpuxBCk3orWyx6UrkaILAAB+x+5y4iu6KuXpNOkvfym7+PDD0oMPShZmtQAAAotThZdt27appKREkpSTkyOLncRp7zoCz6FC+0WXyu2KPBwJAABwN3vLifPyT2v8ym3K/HiHUoKCpCVLpHHj6iVGAADqm1OFlyeffLJi/dnGjRs9EQ8amOjwMLe2AwAAvqHW5cQySh/6RyU9Ok3Wq4d7OzwAAHxGkDONe/XqpSNHjkiSOnbsqKNHj3okKDQcCR2iFBcZJntzoCwqm46c0CHKm2EBAIA6cmg5cXgrZfcY5MWoAADwPU4VXpo3b659+/ZJkvbv3y+bzeaRoNBwWIMsSktoKRkji6n8+1JejEkbFs8pBgAA+BnHlxM71g4AgIbKqaVG1113nQYPHqy4uDhZLBb17dtXVjsbou7du9ctAcLPbd+ulFEpyozsqPTkCcpt0qLipdjIMKUNi1dK97h6DBAAALiC5cQAADjGqcLLc889p2uvvVa7d+/WPffco3Hjxik8PNxTscHfbdwoDR8uFRQoJTZWSdOHKPunkKpHTQIAAL9Tvpw4L/8nmWoWFVtUNsjCcmIAQKBzqvDyxRdf6PLLL1dKSoq2bt2qSZMmUXgJYKU2o+x9x6ovpLz5pnTjjVJRkTR4sPT3v8saGanE+g0ZAAC4iTXIorSw7zX+eJQssslYfl7BznJiAAB+5lThpVevXsrNzVV0dLT++c9/qri42FNxwcdlfZWr9Hd3VNpUL6586dCW96Q775RsNumaa6SVK6UwphkDAOCPqh1osUiaM0cpaWnKPC9R6b+7T7nWJhXvYTkxAAA/c6rwUr65bnR0NJvrBrCsr3I1/uWcKsdH5uWf1viXtyrzrReUYrNJ48ZJmZmSnX2AAACAb6t2oCUiVGm5m5XyzEOSpJQbhijpoeuUvf9HlhMDAFANNteFU0ptRunv7qhSdJEkI8lijNKH3KGk64fIOudhycKHLgAA/FGNAy1N+ijzvAFKmTRKmjBBVkmJnVrWR5gAAPg8NteFU7L3Has06nU2YwlSbkRrZd86TIkUXQAA8Es1DrRYLLIYm9JvmK6kO68S81oBAKiZU4UXSUpJSZEkNtcNUIcK7RddXGkHAAB8j0MDLSVl7ZjpAgBAzYJqb1K9F154Qdu3b9fo0aM1YMAAff/995Kkl156SZs2bXJbgPAt0eGObZLraDsAAOB7GGgBAMB9XC68vPHGG0pOTlbjxo2Vk5OjoqIiSVJ+fr7mzZtXp6AyMjLUvn17hYWFqX///srOzrbbdunSpbr44ovVokULtWjRQkOHDq2xPeomoUOU4iLDZG8RkUVlpxsldIjyZlgAAMCNGGgBAMB9XC68PPLII1qyZImWLl2q4ODgiusDBw5UTk6OywG9+uqrSk1NVVpamnJycnTRRRcpOTlZhw4dqrb9xo0bNXLkSG3YsEFbtmxRu3btdPnll1fMwIF7WYMsSruwmWSMLKbyqVblxZi0YfGcZAAAqBGDLL4toUOU4kJUJdeXY6AFAADHuVx42bVrly655JIq1yMjI3X8+HGXA1q8eLHGjRunW2+9VfHx8VqyZImaNGmiZcuWVdt+xYoVmjBhgnr27KmuXbvq+eefl81m0/r1612OIdCV2oy27Dmqv2//Xlv2HFWp7Rdb623apJTRKcp8e55iTxdUel9sZJgyR/dWSvc4L0cMAPAnDLLUvxpzvSTr8heV9tp8SRZZTOXXGGgBAMA5Tm+uWy42Nla7d+9W+/btK13ftGmTOnbs6NI9i4uLtXXrVs2YMaPiWlBQkIYOHaotW7Y4dI9Tp06ppKREUVHVj8AUFRVVLIuSpIKCgmrbBaqsr3KV/u6OShvqxUWGKW1YvFL2fiaNGCGdPq2UbkFKmv1bZR83OlR4WtHhZaNefAADANTml4MskrRkyRKtXr1ay5Yt0/Tp06u0X7FiRaXvn3/+eb3xxhtav369br75Zq/E3JDUmOu7xUoLFkgPPKAUSZmXfKL0cy9TbsHPn51iy9sy0AIAgENcLryMGzdOkyZN0rJly2SxWPTDDz9oy5Ytmjx5smbNmuXSPY8cOaLS0lLFxMRUuh4TE6NvvvnGoXtMmzZNbdq00dChQ6t9ff78+UpPT3cpvoYu66tcjX85p8rRkXn5pzX+5a3K/PtCpZw+LQ0bJr36qqyNGyuRgwwAAE7wxiCLxECLPTXn+hxlFm1XyhMPll2cOlUpC+YqyZSdXsRACwAArnG58DJ9+nTZbDYNGTJEp06d0iWXXKLQ0FBNnjxZd999tztjdNiCBQu0atUqbdy4UWFh1W/2NmPGDKWmplZ8X1BQoHbt2nkrRJ9VajNKf3dHlQ9ikmQkWYxR+m9uV1LiebI+95zUyOVfHQBAAPPGIIvEQEt1HMr1RW2VZAmS9U+LpPvukyRZLeLIaAAA6sDl/3q2WCyaOXOmpkyZot27d+vEiROKj49Xs2bNXA6mVatWslqtOnjwYKXrBw8eVGxsbI3vXbRokRYsWKAPP/xQF154od12oaGhCg0NdTnGhip737FKU47PZixByo1orez7FyqRogsAoJ44MsgiMdBSndpzvaUs1//5FSWOu8GLkQEA0LC5vLluuZCQEMXHxyshIaFORZfye/Xp06fSxrjlG+UmJibafd/ChQs1Z84cZWVlqW/fvnWKIVAdKrT/Qaxyu6LaGwEAYIc7Blk++OCDGgdZpLKBloiIiEpfgc7hXN9voIcjAQAgsNRp6sLx48f1l7/8RTt37pQkxcfHa+zYsYqMjHT5nqmpqRozZoz69u2rhIQEPfHEEzp58mTFBnw333yz2rZtq/nz50uSHn30Uc2ePVsrV65U+/btlZeXJ0lq1qxZnQtBgSQ63P6ooSvtAACozi8HWa6++mpJPw+y3HXXXXbft3DhQs2dO1dr165lkMVF5HoAAOqHyzNePv/8c3Xq1EmPP/64jh07pmPHjunxxx9Xp06dlJOT43JAI0aM0KJFizR79mz17NlT27dvV1ZWVsVa8AMHDig3N7eifWZmpoqLi/X73/9ecXFxFV+LFi1yOYaGqqajIxM6RCkuMkz2tsqzqOzEg4QO9jcyBADAEampqVq6dKmWL1+unTt3avz48VUGWX65+e6jjz6qWbNmadmyZRWDLHl5eTpx4kR9dcEvkesBAKgfFmNMdXus1eriiy9W586dtXTpUjX6354fZ86c0e233669e/fqo48+cmugnlJQUKDIyEjl5+c36GnINR4d+b/jILM2fKnxWd9KMjKWn2ty5R/QMkf35uhIAPCCQMhNzzzzjB577DHl5eWpZ8+eeuqpp9S/f39J0qWXXqr27dvrxRdflCS1b99e3377bZV7pKWl6aGHHnLo5wXCM3VE+alGMjZyPQDUI/JSYHG58NK4cWNt27ZNXbt2rXR9x44d6tu3r06dOuWWAD0tEH7h7R0dWelDluWYlJysrKbnKP3yCcpt2qKi3dkFGgCAZwVCbvK2QHmmpTZT89HPK1Yo65ElSv/NWOVGtK64TK4HAO8KlLyEMi7v8RIREaEDBw5UKbx89913Cg8Pr3NgcI9aj46UlP76NiU9fZOsx44p5YIIJU2+RNlnmtr/0AYAAHxOrbNbFy+W7r9fKZKSerZT9qTFOvRTKbkeAAAPc7nwMmLECI0dO1aLFi3SgAEDJEmbN2/WlClTNHLkSLcFiLqp9ehISbmnjbKbtlXieedJ770na8uWsn+GFAAA8DX2Zrfm5Z/W+JdzlFn6pVIW/W/fnHvvlfVPf1JiUJ0PtwQAAA5wufCyaNEiWSwW3XzzzTpz5owkKTg4WOPHj9eCBQvcFiDqxuGjIwf9Rlo6T2ra1MMRAQAAd6p1dqsxSj8ZqyRLkKwL5ktTpkgWZrcAAOAtLhdeQkJC9OSTT2r+/Pnas2ePJKlTp05q0qSJ24JD3Tl8dORDD1B0AQDAD9U6u9ViUW5Ea2VnvKTE8Td6MTIAACC5cJz0P/7xD8XHx6ugoECS1KRJE/Xo0UM9evRQSUmJunXrpo8//tjtgcI1tR4daUzZ0ZGdo70aFwAAcA+HZ7cmDvZwJAAAoDpOF16eeOIJjRs3rtqdlyMjI/XHP/5RixcvdktwqDtrkEVpw+IlqUrxxSIjWcpeZ0M9AAD8k8OzWx1sBwAA3Mvpwsv//d//KSUlxe7rl19+ubZu3VqnoOBeKd3jlHl9d8UWn6h0PTaycdlR0hwdCQCA36p1dqvKTjdK6BDlzbAAAMD/OL3Hy8GDBxUcHGz/ho0a6fDhw3UKCs4ptRll7ztm//jnY8eUcs+NStryL2V37KVDD6QpevAAjo4EAKABKJ/dOv7lHFmMTcby87haeZZndisAAPXH6cJL27Zt9dVXX6lz587Vvv7FF18oLo4ZFN6S9VWu0t/dUWlTvbjIMKUNiy+byfLf/0opKdLXX8vavLkSX3xCGjSo/gIGAABOqXWARVLKjo+V+e4zSh98m3IjWldcj/3lZwIAAFAvnC68XHHFFZo1a5ZSUlIUFlZ5rfBPP/2ktLQ0XXXVVW4LEPZlfZWr8S/nVDk+Mi//tMa/nKPM38Qo5Y7rpAMHpDZtpKwsqUePeokVAAA4r9YBFkl6+mlp0iSlGKOk+Fhl3/2kDhXZ7BZpAACAd1mMMWf/d3uNDh48qN69e8tqtequu+7S+eefL0n65ptvlJGRodLSUuXk5CgmJsYjAbtbQUGBIiMjlZ+fX+2Gwb6q1GY06NF/2D0+0iIp9sRRbXr2Vlm7dJY++EA691zvBgkAcIm/5iZf5o/P1N4AS3kZJXNUb6W88rQ0f37ZhYkTpSeflKxWb4YJAHCBP+YluM7pGS8xMTH65JNPNH78eM2YMUPldRuLxaLk5GRlZGT4TdHFn2XvO2a36CJJRlJus5bKHnqtElc8K7VubbctAADwLaU2o/R3d1QpukhlOd4iKf2vm5T0p0dllaS5c6UZMyQLs1sAAPA1ThdeJOncc8/VmjVr9OOPP2r37t0yxqhLly5q0aKFu+ODHYcK7RddKrV7+FGKLgAA+BmHBlisTZR9TnclzrpHGjvWe8EBAACnuFR4KdeiRQv169fPXbHACdHhYbU3khTdOtLDkQAAAHdzeIBl9iPSbcM8HA0AAKiLoNqbwBcldIhSXGSY7E0otqhs872EDlHeDAsAALiBwwMsgwd4OBIAAFBXFF58VKnNaMueo/r79u+1Zc9Rldoqr/K2BlmUNixekmQ5a3/k8mJM2rB4TjIAAMAPMcACAEDDUaelRvAMh46OlJTSqbky/7tO6RE9lRvx8z4usdW0BQAAvqXUZpS975gOFZ6ucvRz+QDL+JdzZJEqbbLLAAsAAP6FwouPsXd0ZF7+aY1/OUeZo3uXFVSOH5d+9zulfPyxksIaK3vJKzp0Ud8qH9wAAIDvcWSQJaV7nDK7lCg9J1+54a0q2jHAAgCAf6Hw4kMcOjry3R1KamFkveK30hdfSBERsr7zjhIHD/ZytAAAwBUOD7IsWaKUiROVZKTsP9yhQ/dOVXTLCAZYAADwMxRefIhDR0fmn1b2Nbco8YsvpNhYKStLuugi7wUJAABc5vAgy2t/lvXhdEmS9Y47lJjxtNSIj20AAPgjNtf1IQ4fHXmiSOrcWdq8maILAAB+xOFBlhfeLLswe7a0ZAlFFwAA/BhZvB7Y20zP4aMj41pKK/8mxcR4OFIAAOBODg+yhEdJmZnSnXd6OCIAAOBpFF68rKbN9JLiYxUXGaa8/NPVTkG2GJtii08o4Y0XpOaR3gsaAAA4pc6DLFMmSbdc4+EoAQCAN1B48SJHNtOze3SksUmyKO3mQbJSdAEAwGfVeZClsVUJN1/ttXgBAIBnsceLl9S2mZ70v8304mOVObq3YiMrj4jFmiJljuqllF7tPB4rAABwTfkgy9n7uJQPsqzbkae0YfGSyjbS/SWLMZIlSGm/78WpRQAANCAUXtyk1Ga0Zc9R/X3799qy56hKbZVLLA5vprfvmFIuiNamA6/rlZUz9OQ7C/VKyC5tmn+tUi5s6+FeAAAAVzk9yBJWubgSGx7y81HSAACgwWCpkRvUNKW4/MOTw5vp/XhCmn6nrK+/rkSLRXr2WTbWAwDAR9jbu0VycpBl/1YlPfYHZbfsqEM9+yn6oZlK6NmBmS4AADRAFF7qyJF9W1K6xzm+md6cWdI7r0shIdKKFdLvf+/+oAEAgNNqG2hxeJDl3bXS5JtlLS1V4qXtpFeekpo29VTYAACgnrHUqA4cnVJcajNK6BCluMiwKuu5y1kkxf10XAnvrpDCw6X336foAgCAj6ht75asr3IdH2RZvEAqLZVuuUV6+22KLgAANHAUXurAmSnF1iCL/c30JMkYpWVlyNq6lbRxo3TZZR6KGgAAOMPRgZY+57aoeZDFGMUVHFbCf7+WZsyQli2TgoM9FDUAAPAVFF7qwOEpxf9rl9I9rvoTi04cVebb85RSkidt3iz17u32WAEAgGscHWjZ+u2PNZ9YJClt/VJZn3hcmjdPsrCfCwAAgYA9XurA4SnFv2iX0j1OSfGxZRvzfbpN0XMeVMKuz2S9sIe0cbMUx0kGAAD4EmcGWob3bKvM0b2r7AUTW3hEaRuXKeXhe6QRIzwVKgAA8EEUXuqgfN+WvPzT1U4/tkiKjSw78eCXrEEWJf7fP6XbbpSKiqRLLpHeeUeKjPRK3AAAwHHODrRUDLJs/Y8OzX5E0V9vV0L+t7K+9RZLiQEACEAsNaqDWvdtkZQ2LL7q0ZBLl0rXX19WdLn6amntWoouAAD4KIc2yD9roMW6+z9KvCFZw7NeUmLxIVnZvw0AgIBF4aWO7O7bEhlWcZR0BWOkRx6R7rhDstmk22+XXntNCnNsJA0AAHif0wMt2dnSwIHS/v1S587SJ59IvXp5K1wAAOBjWGrkBpX2bSk8rejwslGvSjNdbDZp0iTpmWfKvp85U5ozh431AADwA+UDLVX2bokMU9qw+J8HWrKypOuuk06dkvr0kdaskaKj6ylqAADgCyi8uIk1yKLETi2rf7GoSBozRnr11bLvn3pKuvtu7wUHAADqrNaBlpdekm67TTpzRrr8cumNN6Rmzeo3aAAAUO8ovHhaYaF07bXShx9KwcHS8uXSyJH1HRUAAHBBtQMtxkiLFklTp5Z9P2qUtGyZFBLi/QABAIDPofDiSYcPS1dcIX3+udS0qfTmm2UjYAAAoGGw2aTJk6XHHy/7PjVVeuwxKYht9AAAQBkKL56yf39ZkeU//5Fatixb452QUN9RAQAAdykulm69VVq5suz7RYuk+++v35gAAIDPofDiCV9+KSUnS7m50jnnSB98IJ1/fn1HBQAA3KWwsGwT3XXrpEaNpBdekEaPru+oAACAD6Lw4m6bNknDhknHj0vduklr10pt29Z3VAAAwF0OHpSuvFLaurVsKfHrr0spKfUdFQAA8FE+uQA5IyND7du3V1hYmPr376/s7Owa27/22mvq2rWrwsLC1KNHD61Zs8ZLkZ7lnXekpKSyosuAAdJHH1F0AQCgGn6b6/fskQYOLCu6tGolbdhA0QUAANTI5wovr776qlJTU5WWlqacnBxddNFFSk5O1qFDh6pt/8knn2jkyJEaO3astm3bpquvvlpXX321vvrqKy9HrrLjok+flq66qmzqcVSU92MAAMDH+XWu37SprPjSvr20ebPUr5/3YwAAAH7FYowx9R3EL/Xv31/9+vXTM888I0my2Wxq166d7r77bk2fPr1K+xEjRujkyZN67733Kq79+te/Vs+ePbVkyZJaf15BQYEiIyOVn5+viIiIugVfVCRlZEh33112dDQAAC5wa27yQd7O9ZKbn+nzz5ctNYqLq9t9AAABq6HnelTmUzNeiouLtXXrVg0dOrTiWlBQkIYOHaotW7ZU+54tW7ZUai9JycnJdtsXFRWpoKCg0pfbhIaWHSNJ0QUAgGp5I9dLHs73t99O0QUAADjMpwovR44cUWlpqWJiYipdj4mJUV5eXrXvycvLc6r9/PnzFRkZWfHVrl079wQPAABq5Y1cL5HvAQCA7/Cpwos3zJgxQ/n5+RVf3333XX2HBAAA3Ix8DwAAfIVPHSfdqlUrWa1WHTx4sNL1gwcPKjY2ttr3xMbGOtU+NDRUoaGh7gkYAAA4xRu5XiLfAwAA3+FTM15CQkLUp08frV+/vuKazWbT+vXrlZiYWO17EhMTK7WXpHXr1tltDwAA6g+5HgAABBqfmvEiSampqRozZoz69u2rhIQEPfHEEzp58qRuvfVWSdLNN9+stm3bav78+ZKkSZMmafDgwfrTn/6kK6+8UqtWrdLnn3+u5557rj67AQAA7CDXAwCAQOJzhZcRI0bo8OHDmj17tvLy8tSzZ09lZWVVbKp34MABBQX9PFFnwIABWrlypR588EE98MAD6tKli95++2117969vroAAABqQK4HAACBxGKMMfUdRH3i/HQAgK8hN7kfzxQA4EvIS4HFp/Z4AQAAAAAAaEgovAAAAAAAAHgIhRcAAAAAAAAPofACAAAAAADgIRReAAAAAAAAPITCCwAAAAAAgIdQeAEAAAAAAPCQRvUdQH0zxkgqO0cdAABfUJ6TynMU6o58DwDwJeT6wBLwhZfCwkJJUrt27eo5EgAAKissLFRkZGR9h9EgkO8BAL6IXB8YLCbAS2w2m00//PCDwsPDZbFYXLpHQUGB2rVrp++++04RERFujtC30NeGKZD6KgVWf+mrfzLGqLCwUG3atFFQEKuC3aGu+b4h/X7VhH42LPSzYaGfDQu5PrAE/IyXoKAg/epXv3LLvSIiIhr0H4dfoq8NUyD1VQqs/tJX/8Pol3u5K983lN+v2tDPhoV+Niz0s+Eg1wcOSmsAAAAAAAAeQuEFAAAAAADAQyi8uEFoaKjS0tIUGhpa36F4HH1tmAKpr1Jg9Ze+Au4RKL9f9LNhoZ8NC/0E/FfAb64LAAAAAADgKcx4AQAAAAAA8BAKLwAAAAAAAB5C4QUAAAAAAMBDKLwAAAAAAAB4CIUXB2RkZKh9+/YKCwtT//79lZ2dXWP71157TV27dlVYWJh69OihNWvWeClS93Cmv0uXLtXFF1+sFi1aqEWLFho6dGitz8eXOPtvW27VqlWyWCy6+uqrPRugGznb1+PHj2vixImKi4tTaGiozjvvPL/5XXa2r0888YTOP/98NW7cWO3atdN9992n06dPeyla13300UcaNmyY2rRpI4vForfffrvW92zcuFG9e/dWaGioOnfurBdffNHjcbqLs/198803lZSUpNatWysiIkKJiYlau3atd4KFXwqUfB8oeT5Qcnyg5PdAyO2BktfJ5whIBjVatWqVCQkJMcuWLTNff/21GTdunGnevLk5ePBgte03b95srFarWbhwodmxY4d58MEHTXBwsPnyyy+9HLlrnO3vjTfeaDIyMsy2bdvMzp07zS233GIiIyPNf//7Xy9H7jxn+1pu3759pm3btubiiy82w4cP906wdeRsX4uKikzfvn3NFVdcYTZt2mT27dtnNm7caLZv3+7lyJ3nbF9XrFhhQkNDzYoVK8y+ffvM2rVrTVxcnLnvvvu8HLnz1qxZY2bOnGnefPNNI8m89dZbNbbfu3evadKkiUlNTTU7duwwTz/9tLFarSYrK8s7AdeRs/2dNGmSefTRR012drb597//bWbMmGGCg4NNTk6OdwKGXwmUfB8oeT5Qcnyg5PdAye2BktfJ5whEFF5qkZCQYCZOnFjxfWlpqWnTpo2ZP39+te1vuOEGc+WVV1a61r9/f/PHP/7Ro3G6i7P9PduZM2dMeHi4Wb58uadCdBtX+nrmzBkzYMAA8/zzz5sxY8b4xYcyY5zva2ZmpunYsaMpLi72Vohu42xfJ06caC677LJK11JTU83AgQM9Gqe7OfLBZerUqaZbt26Vro0YMcIkJyd7MDLPcKS/1YmPjzfp6enuDwh+L1DyfaDk+UDJ8YGS3wMxtwdKXiefI1Cw1KgGxcXF2rp1q4YOHVpxLSgoSEOHDtWWLVuqfc+WLVsqtZek5ORku+19iSv9PdupU6dUUlKiqKgoT4XpFq729eGHH1Z0dLTGjh3rjTDdwpW+vvPOO0pMTNTEiRMVExOj7t27a968eSotLfVW2C5xpa8DBgzQ1q1bK6Ys7927V2vWrNEVV1zhlZi9yZ//PrmDzWZTYWGhz/99gvcFSr4PlDwfKDk+UPI7ud0+f/w75A7kc/ijRvUdgC87cuSISktLFRMTU+l6TEyMvvnmm2rfk5eXV237vLw8j8XpLq7092zTpk1TmzZtqiQBX+NKXzdt2qS//OUv2r59uxcidB9X+rp371794x//0KhRo7RmzRrt3r1bEyZMUElJidLS0rwRtktc6euNN96oI0eOaNCgQTLG6MyZM7rzzjv1wAMPeCNkr7L396mgoEA//fSTGjduXE+ReceiRYt04sQJ3XDDDfUdCnxMoOT7QMnzgZLjAyW/k9vtC9S8Tj6HP2LGC9xmwYIFWrVqld566y2FhYXVdzhuVVhYqJtuuklLly5Vq1at6jscj7PZbIqOjtZzzz2nPn36aMSIEZo5c6aWLFlS36G53caNGzVv3jw9++yzysnJ0ZtvvqnVq1drzpw59R0a3GjlypVKT0/X3/72N0VHR9d3OIBfaqh5PpByfKDkd3J7w0U+h79ixksNWrVqJavVqoMHD1a6fvDgQcXGxlb7ntjYWKfa+xJX+ltu0aJFWrBggT788ENdeOGFngzTLZzt6549e7R//34NGzas4prNZpMkNWrUSLt27VKnTp08G7SLXPl3jYuLU3BwsKxWa8W1Cy64QHl5eSouLlZISIhHY3aVK32dNWuWbrrpJt1+++2SpB49eujkyZO64447NHPmTAUFNZz6tL2/TxEREQ12VEwqO6Hk9ttv12uvvebTo/SoP4GS7wMlzwdKjg+U/E5uty/Q8jr5HP6sYfzV8ZCQkBD16dNH69evr7hms9m0fv16JSYmVvuexMTESu0lad26dXbb+xJX+itJCxcu1Jw5c5SVlaW+fft6I9Q6c7avXbt21Zdffqnt27dXfP3ud7/Tb37zG23fvl3t2rXzZvhOceXfdeDAgdq9e3fFB09J+ve//624uDif/FBWzpW+njp1qsoHsPIPpMYYzwVbD/z575OrXnnlFd1666165ZVXdOWVV9Z3OPBRgZLvAyXPB0qOD5T8Tm63zx//DrmKfA6/V797+/q+VatWmdDQUPPiiy+aHTt2mDvuuMM0b97c5OXlGWOMuemmm8z06dMr2m/evNk0atTILFq0yOzcudOkpaX5xfGS5Zzt74IFC0xISIh5/fXXTW5ubsVXYWFhfXXBYc729Wz+cuKBMc739cCBAyY8PNzcddddZteuXea9994z0dHR5pFHHqmvLjjM2b6mpaWZ8PBw88orr5i9e/eaDz74wHTq1MnccMMN9dUFhxUWFppt27aZbdu2GUlm8eLFZtu2bebbb781xhgzffp0c9NNN1W0Lz92csqUKWbnzp0mIyPDL46dLOdsf1esWGEaNWpkMjIyKv19On78eH11AT4sUPJ9oOT5QMnxgZLfAyW3B0peJ58jEFF4ccDTTz9tzjnnHBMSEmISEhLMv/71r4rXBg8ebMaMGVOp/d/+9jdz3nnnmZCQENOtWzezevVqL0dcN87099xzzzWSqnylpaV5P3AXOPtv+0v+8qGsnLN9/eSTT0z//v1NaGio6dixo5k7d645c+aMl6N2jTN9LSkpMQ899JDp1KmTCQsLM+3atTMTJkwwP/74o/cDd9KGDRuq/f+/8v6NGTPGDB48uMp7evbsaUJCQkzHjh3NCy+84PW4XeVsfwcPHlxje+BsgZLvAyXPB0qOD5T8Hgi5PVDyOvkcgchiTAOabwcAAAAAAOBD2OMFAAAAAADAQyi8AAAAAAAAeAiFFwAAAAAAAA+h8AIAAAAAAOAhFF4AAAAAAAA8hMILAAAAAACAh1B4AQAAAAAA8BAKLwAAAAAAAB5C4QUAAACohjFGd9xxh6KiomSxWLR9+/Zqr1166aW69957HbqnM23rQ3X98yZ3PR9vPOf6flYA/IfFGGPqOwgAAADAGXl5eZo7d65Wr16t77//XtHR0erZs6fuvfdeDRkyxC0/4/3339fw4cO1ceNGdezYUa1atdK6deuqXCsoKFBwcLDCw8NrveexY8ccbuuMSy+9VD179tQTTzxRp/tU1+dGjRq5J0gHOPt87PXbU8/5l+r7WQHwH/xlAAAAgF/Zv3+/Bg4cqObNm+uxxx5Tjx49VFJSorVr12rixIn65ptv3PJz9uzZo7i4OA0YMKDGa1FRUQ7f05m29aG6/nlDcXGxQkJC3PZ8vPGc3fGsyvsNoGFjqREAAAD8yoQJE2SxWJSdna3rrrtO5513nrp166bU1FT961//kiQVFRXpnnvuUXR0tMLCwjRo0CB99tlnle5js9k0f/58dejQQY0bN9ZFF12k119/XZJ0yy236O6779aBAwdksVjUvn37aq9JVZe12Gw2LVy4UJ07d1ZoaKjOOecczZ07125bezGUu/TSS3XPPfdo6tSpioqKUmxsrB566KGK12+55Rb985//1JNPPimLxSKLxaL9+/dX++xqei72+vdLzz33nNq0aSObzVbp+vDhw3XbbbdJkrKysjRo0CA1b95cLVu21FVXXaU9e/ZU6dNdd92le++9V61atVJycnK1z6eme9XU71/ex5Hfhdqe8dnsPavafpa9fttz4MABjRkzRjExMRW/H5s2barxPQB8D4UXAAAA+I1jx44pKytLEydOVNOmTau83rx5c0nS1KlT9cYbb2j58uXKyclR586dlZycrGPHjlW0nT9/vv76179qyZIl+vrrr3Xfffdp9OjRFf8x//DDD+tXv/qVcnNz9dlnn1V7rTozZszQggULNGvWLO3YsUMrV65UTExMtW1riuGXli9frqZNm+rTTz/VwoUL9fDDD2vdunWSpCeffFKJiYkaN26ccnNzlZubq3bt2lX782p6Lo707/rrr9fRo0e1YcOGKv8mo0aNkiSdPHlSqamp+vzzz7V+/XoFBQXpmmuuqVKsWb58uUJCQrR582YtWbKk2nhrupej/Xbkd6G2Z3w2e8/KkZ/lSL8l6dtvv1VCQoJ++uknvfPOO/riiy901113KSIiwu57APgoAwAAAPiJTz/91Egyb775pt02J06cMMHBwWbFihUV14qLi02bNm3MwoULjTHGnD592jRp0sR88sknld47duxYM3LkSGOMMY8//rg599xzK71e3bXBgwebSZMmGWOMKSgoMKGhoWbp0qXVxvbLto7EUP6eQYMGVWrTr18/M23atGrva48jz6W6/p1t+PDh5rbbbqv4/s9//rNp06aNKS0trbb94cOHjSTz5ZdfVoq3V69eVdrW1o+z72Wvffl1R/pc3r62Z3y2s5+VIz/LXr+r89vf/tYMHz7cobYAfBt7vAAAAMBvGAfOhdizZ49KSko0cODAimvBwcFKSEjQzp07JUm7d+/WqVOnlJSUVOm9xcXF6tWrl8vx7dy5U0VFRQ5t8OtMDBdeeGGl7+Pi4nTo0CGnYnPkuThi1KhRGjdunJ599lmFhoZqxYoV+sMf/qCgoLLJ9P/5z380e/Zsffrppzpy5EjFTJcDBw6oe/fuFffp06dPrT/L0Xu5o891fcaO/ixH+v3tt9/q/fff17Zt2xz++QB8F4UXAAAA+I0uXbrIYrHUeQPdEydOSJJWr16ttm3bVnotNDTU5fs2btzYIzEEBwdX+t5isVRZuuMtw4YNkzFGq1evVr9+/fTxxx/r8ccfr/T6ueeeq6VLl1bsB9O9e3cVFxdXuk91S8Wq+1mO3MsdvPWMHen39u3bFRISop49e7r95wPwPvZ4AQAAgN+IiopScnKyMjIydPLkySqvHz9+XJ06darYQ6NcSUmJPvvsM8XHx0uS4uPjFRoaqgMHDqhz586Vvuztj+KILl26qHHjxlq/fn2tbd0ZQ0hIiEpLS2ts48hzcURYWJiuvfZarVixQq+88orOP/989e7dW5J09OhR7dq1Sw8++KCGDBmiCy64QD/++KNTfSnnyL1q67e7+uwId/6s4OBgnTlzRqdOnXJrjADqBzNeAAAA4FcyMjI0cOBAJSQk6OGHH9aFF16oM2fOaN26dcrMzNTOnTs1fvx4TZkyRVFRUTrnnHO0cOFCnTp1SmPHjpUkhYeHa/Lkybrvvvtks9k0aNAg5efna/PmzYqIiNCYMWNcii0sLEzTpk3T1KlTFRISooEDB+rw4cP6+uuvK352OXfG0L59e3366afav3+/mjVrpqioqIqlP+WaNm1a63Nx1KhRo3TVVVfp66+/1ujRoyuut2jRQi1bttRzzz2nuLg4HThwQNOnT3fq3s7cq7Z+u7PPtXHnz+rfv78iIyM1fvx4TZ8+XcYYffTRRxoyZIi6dOni1rgBeB6FFwAAAPiVjh07KicnR3PnztX999+v3NxctW7dWn369FFmZqYkacGCBbLZbLrppptUWFiovn37au3atWrRokXFfebMmaPWrVtr/vz52rt3r5o3b67evXvrgQceqFN8s2bNUqNGjTR79mz98MMPiouL05133lltW3fFMHnyZI0ZM0bx8fH66aeftG/fvmqPg3bkuTjisssuU1RUlHbt2qUbb7yx4npQUJBWrVqle+65R927d9f555+vp556SpdeeqlT93f0Xo702119doS7flbLli317rvvasqUKerXr59CQkL061//WiNHjnR7zAA8z2Ic2aEMAAAAAAAATmOPFwAAAAAAAA+h8AIAAAAAAOAhFF4AAAAAAAA8hMILAAAAAACAh1B4AQAAAAAA8BAKLwAAAAAAAB5C4QUAAAAAAMBDKLwAAAAAAAB4CIUXAAAAAAAAD6HwAgAAAAAA4CEUXgAAAAAAADyEwgsAAAAAAICH/D+L5m53hM+QCQAAAABJRU5ErkJggg==", "text/plain": [ "
    " ] @@ -4080,7 +4096,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 11, "id": "71ded42c", "metadata": {}, "outputs": [], @@ -4145,7 +4161,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 12, "id": "04c2cb74", "metadata": {}, "outputs": [], @@ -4185,7 +4201,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 13, "id": "c047b4c5", "metadata": {}, "outputs": [], @@ -4200,13 +4216,13 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 14, "id": "7bc5d351", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAHACAYAAACoF1lmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6x0lEQVR4nO3deVhV1f4/8PcBmUdR4UAK4gwKSqhIWqGQiOTV5HtzIEUjLYPKcORmzoqaqWmkt5s5pKR5SzNUHFAxFScSZ1ERRZMDpgKCMa/fH/7Y1yPjQeCcA+/X8+xH9t5r7/1ZcljnfM5ae22ZEEKAiIiIiIiIqk1H3QEQERERERFpGyZSREREREREKmIiRUREREREpCImUkRERERERCpiIkVERERERKQiJlJEREREREQqYiJFRERERESkIiZSREREREREKmqi7gA0QUlJCe7duwczMzPIZDJ1h0PUqAkh8PjxY9jZ2UFHRzu+62EbQqQ5tLENAdiOEGmS6rYjTKQA3Lt3D61atVJ3GET0jDt37qBly5bqDqNa2IYQaR5takMAtiNEmqiqdoSJFAAzMzMAT/+zzM3N1RwNqSQvDxg9+unPGzcChobqjYdeWHZ2Nlq1aiX9XWoDjWtDCgqAL798+vOkSYC+vnrjIapH2tiGABrYjhCVaoSftarbjjCRAqQudHNzczZe2kZfH9DTe/qzuXmj+ONuLLRpaIvGtSEFBYCBwdOfzc2ZSFGjpE1tCKCB7QhRqUb8WauqdkR7Bg8TERERERFpCCZSREREREREKmIiRURERI3W6tWr4erqKg2p8/T0xJ49e6T9Xl5ekMlkSssHH3ygdI7U1FT4+/vD2NgY1tbWmDJlCoqKiuq7KkRUz3iPFBERETVaLVu2xKJFi9C+fXsIIbBhwwYMHjwYZ8+eRefOnQEA48aNw9y5c6VjjI2NpZ+Li4vh7+8PuVyO48ePIy0tDaNHj4aenh4WLlxYq7EWFxejsLCwVs9JdU9XVxdNmjTRuvv2qGpMpIiIiKjRGjRokNL6ggULsHr1apw4cUJKpIyNjSGXy8s9ft++fbh8+TIOHDgAGxsbdOvWDfPmzcO0adMwe/Zs6NfSZC85OTm4e/cuhBC1cj6qX8bGxrC1ta211wNpBiZSRERERHja47Nt2zbk5ubC09NT2r5582Zs2rQJcrkcgwYNwueffy71SsXHx8PFxQU2NjZSeV9fX0yYMAGXLl2Cm5tbudfKz89Hfn6+tJ6dnV1pXHfv3oWxsTFatGjBng0tIoRAQUEB7t+/j5SUFLRv316rHhRNlWMiRURERI3ahQsX4Onpiby8PJiammL79u1wdnYGAIwcORIODg6ws7PD+fPnMW3aNCQlJeGXX34BACgUCqUkCoC0rlAoKrxmREQE5syZU634CgsLIYRAixYtYGRkVJMqkhoZGRlBT08Pt2/fRkFBAQwb0fThDR0TKSIiImrUOnbsiMTERGRlZeG///0vgoKCEBcXB2dnZ4wfP14q5+LiAltbW3h7eyM5ORlt27at8TXDw8MRFhYmrZc+ALQy7InSXuyFapj4WyUiIqJGTV9fH+3atYO7uzsiIiLQtWtXfPXVV+WW9fDwAADcuHEDACCXy5Genq5UpnS9ovuqAMDAwECaKZAP4SXSTmpNpCIiItCjRw+YmZnB2toaQ4YMQVJSklIZTjtKRERE9amkpETp/qVnJSYmAgBsbW0BAJ6enrhw4QIyMjKkMvv374e5ubk0PJCIGia1Du2Li4tDSEgIevTogaKiIvzrX/9C//79cfnyZZiYmEjlNGXaUSIiImpYwsPD4efnB3t7ezx+/BhRUVE4fPgw9u7di+TkZERFRWHgwIFo1qwZzp8/j08//RSvvfYaXF1dAQD9+/eHs7MzRo0ahSVLlkChUGDGjBkICQmBgYGBmmtHRHVJrT1SMTExGDNmDDp37oyuXbti/fr1SE1NRUJCglK50mlHS5dnu79Lpx3dtGkTunXrBj8/P8ybNw+RkZEoKCio7yoRERGRFsnIyMDo0aPRsWNHeHt74/Tp09i7dy/eeOMN6Ovr48CBA+jfvz86deqESZMmISAgAL/99pt0vK6uLqKjo6GrqwtPT0+88847GD16tNIXwKQ+kZGRaN26NQwNDeHh4YFTp05Vecyff/6Jd955B82aNYORkRFcXFxw5swZaf/jx48xceJEODg4wMjICK+88gpOnz5dl9UgDaVRk01kZWUBAKysrJS218W0o0RERERr166tcF+rVq0QFxdX5TkcHBywe/fu2gyrWlpP31Wv17u1yL9er/eitm7dirCwMKxZswYeHh5YsWIFfH19kZSUBGtr63KPefToEXr37o2+fftiz549aNGiBa5fv46mTZtKZd577z1cvHgRP/zwA+zs7LBp0yb4+Pjg8uXLeOmll+qreqQBNGayiZKSEkycOBG9e/dGly5dpO0jR47Epk2bcOjQIYSHh+OHH37AO++8I+2vybSj+fn5yM7OVlqIiIiIqPadOHEC3t7eaNasWZn73uvyM9iyZcswbtw4jB07Fs7OzlizZg2MjY3x/fffV3jM4sWL0apVK6xbtw49e/aEo6Mj+vfvL83Q+Pfff+Pnn3/GkiVL8Nprr6Fdu3aYPXs22rVrh9WrV9dZXUgzaUwiFRISgosXL2LLli1K28ePHw9fX1+4uLggMDAQGzduxPbt25GcnFzja0VERMDCwkJaqppulIiIiIhUd+7cOXh5ecHNzQ2///47YmJiYGVlBW9vb2zdurVasxUuXLgQpqamlS6pqalKxxQUFCAhIQE+Pj7SNh0dHfj4+CA+Pr7Ca+3cuRPdu3fHP//5T1hbW8PNzQ3/+c9/pP1FRUUoLi4u8ywoIyMjHD16tLr/LdRAaMTQvtDQUERHR+PIkSNo2bJlpWWfnXa0bdu2kMvlZca7VjXtaE2e3UAaZLbF//83S71xEKnJ88N5tG24DRE1Hh9//DGGDh2KpUuXAgCcnZ0xYsQIJCQk4O23367WOT744IMqy9rZ2Smt//XXXyguLi531NLVq1crPM/NmzexevVqhIWF4V//+hdOnz6Njz/+GPr6+ggKCoKZmRk8PT0xb948ODk5wcbGBj/++CPi4+PRrl27atWHnmoI72VqTaSEEPjoo4+wfft2HD58GI6OjlUeU960owsWLEBGRoY03rWqaUcNDAw4kw4RERFRHUpPT8fRo0fL3GdmYmKi0sOFraysytw/X1dKSkrQvXt3aeZnNzc3XLx4EWvWrEFQUBAA4IcffsC7776Ll156Cbq6unj55Zel5JAaF7UO7QsJCcGmTZsQFRUFMzMzKBQKKBQK/P333wCA5ORkzJs3DwkJCbh16xZ27tyJ0aNHVzjt6Llz57B3715OO0pERESkZgkJCSgpKUHXrl3LbO/evTsA4Pbt2xg0aBDc3NzQpUuXMkP0gJoN7WvevDl0dXXLfVhyZQ9KtrW1LfNFvJOTk9L527Zti7i4OOTk5ODOnTs4deoUCgsL0aZNm+r9x1CDodYeqdKb8ry8vJS2r1u3DmPGjJGmHV2xYgVyc3PRqlUrBAQEYMaMGVLZ0mlHJ0yYAE9PT5iYmCAoKIjTjhIRERGpUUlJCQAgNzcXZmZmAIDz58/jyJEjmD9/PgoKCjBw4EBERkbCy8sLjx49gqmpaZnz1GRon76+Ptzd3REbG4shQ4ZI8cTGxiI0NLTC8/Tu3RtJSUlK265duwYHB4cyZU1MTGBiYoJHjx5h7969WLJkSaUxUsOj9qF9ldH0aUeJiIiIqHweHh4wMjLClClT8NlnnyE5ORkhISEICQlBr169sHXrVvTq1Uv6Qv3ZKcafVdOhfWFhYQgKCkL37t3Rs2dP6Yv5sWPHSmW+/vprbN++HbGxsQCATz/9FK+88goWLlyIt99+G6dOncK3336Lb7/9Vjpm7969EEKgY8eOuHHjBqZMmYJOnTopnZcaB42YbIKIiIiIGpYWLVrgp59+wqRJk+Dq6gp7e3uEhoZKE35duHABPXv2rLPrDxs2DPfv38fMmTOhUCjQrVs3xMTEKE1A8ddffynNBN2jRw9s374d4eHhmDt3LhwdHbFixQoEBgZKZbKyshAeHo67d+/CysoKAQEBWLBgAfT09OqsLqSZmEgRERERaSFtmOXszTffxJtvvlnuPhsbG1y8eBEAUFxcjKysrFqfVCI0NLTSoXyzZ8/G7NmzlbZVFjMAvP3229WecZAaNo15jhQRERERNR5jxoxBcnIyunTpgu7du+PatWvqDolIJeyRIiIiIqJ6Z2ZmxnvcSauxR4qIiIiIiEhFTKSIiIiIiIhUxESKiIiIiIhIRUykiIiIiIiIVMREioiIiIiISEWctY+IiIiIiGpV6+m7lNa14blnqmKPFBERERERkYqYSBEREREREamIiRQREREREZGKmEgRERERERGpiIkUERERETVIkZGRaN26NQwNDeHh4YFTp05VWn716tVwdXWFubk5zM3N4enpiT179iiVmT17NmQymdLSqVOnuqwGaSjO2kdERESkjWZb1PP1sur3ei9o69atCAsLw5o1a+Dh4YEVK1bA19cXSUlJsLa2LveYli1bYtGiRWjfvj2EENiwYQMGDx6Ms2fPonPnzlK5zp0748CBA9J6kyb8SN0YsUeKiIiIiOrMiRMn4O3tjWbNmpXpycnOzq6z6y5btgzjxo3D2LFj4ezsjDVr1sDY2Bjff/99hccMGjQIAwcORPv27dGhQwcsWLAApqamOHHihFK5Jk2aQC6XS0vz5s3rrB6kuZhIEREREVGdOHfuHLy8vODm5obff/8dMTExsLKygre3N7Zu3Qpzc/Mqz7Fw4UKYmppWuqSmpiodU1BQgISEBPj4+EjbdHR04OPjg/j4+GrFXlxcjC1btiA3Nxeenp5K+65fvw47Ozu0adMGgYGBZa5PjQP7IYmIiIioTnz88ccYOnQoli5dCgBwdnbGiBEjkJCQgLfffrta5/jggw+qLGtnZ6e0/tdff6G4uBg2NjZK221sbHD16tVKz3XhwgV4enoiLy8Ppqam2L59O5ydnaX9Hh4eWL9+PTp27Ii0tDTMmTMHr776Ki5evAgzM7Nq1YkaBiZSpL1mWwBFArj2N9BhgLqjIVKbMk+Pn/uGmiIhIvqf9PR0HD16FHFxcUrbTUxMIJPJqn0eKysrWFlZ1XZ4FerYsSMSExORlZWF//73vwgKCkJcXJyUTPn5+UllXV1d4eHhAQcHB/z0008IDg6utzhJ/Ti0j4iIiIhqXUJCAkpKStC1a9cy27t37w4AuH37NgYNGgQ3Nzd06dKl3CFyNRna17x5c+jq6iI9PV1pe3p6OuRyeaVx6+vro127dnB3d0dERAS6du2Kr776qsLylpaW6NChA27cuFHpeanhYY8UEREREdW6kpISAEBubq405O38+fM4cuQI5s+fj4KCAgwcOBCRkZHw8vLCo0ePYGpqWuY8NRnap6+vD3d3d8TGxmLIkCFSPLGxsQgNDVW5Hvn5+RXuz8nJQXJyMkaNGqXSeUn7MZEiIiIiolrn4eEBIyMjTJkyBZ999hmSk5MREhKCkJAQ9OrVC1u3bkWvXr3g5eUFAGjatGm556np0L6wsDAEBQWhe/fu6NmzJ1asWIHc3FyMHTtWKvP1119j+/btiI2NBQCEh4fDz88P9vb2ePz4MaKionD48GHs3btXOmby5MkYNGgQHBwccO/ePcyaNQu6uroYMWKEyjE2Js8PQ28ImEgRERERUa1r0aIFfvrpJ0yaNAmurq6wt7dHaGgowsLCADyd1KFnz551dv1hw4bh/v37mDlzJhQKBbp164aYmBilCSj++usvJCcnS+sZGRkYPXo00tLSYGFhAVdXV+zduxdvvPG/e0/v3r2LESNG4MGDB2jRogX69OmDEydOoEWLFnVWF9JMTKSIiIiIqE68+eabePPNN8vdZ2Njg4sXLwJ4OtV4VlZWrU8qERoaWulQvtmzZ2P27NnS+tq1a6s855YtW2ojNGoAmEgRERERaaPZWeqO4IWMGTMGw4YNQ5cuXaCnp4fVq1ejV69e6g6LqNqYSFHDcC0GmG8NzK+7J6QTERFR7TEzM8Pu3bvVHQZRjXH6cyIiIiIiIhUxkSIiIiIiIlIRh/aR1iidNvOWoZoDISIiIqJGjz1SREREREREKmIiRUQa68iRIxg0aBDs7Owgk8mwY8cOpf1CCMycORO2trYwMjKCj48Prl+/rlTm4cOHCAwMhLm5OSwtLREcHIycnBylMufPn8err74KQ0NDtGrVCkuWLKnrqhEREZGWYyJFRBorNzcXXbt2RWRkZLn7lyxZgpUrV2LNmjU4efIkTExM4Ovri7y8PKlMYGAgLl26hP379yM6OhpHjhzB+PHjpf3Z2dno378/HBwckJCQgC+++AKzZ8/Gt99+W+f1IyIiIu3Fe6RIM822eOZn7X5OBtWcn58f/Pz8yt0nhMCKFSswY8YMDB48GACwceNG2NjYYMeOHRg+fDiuXLmCmJgYnD59Gt27dwcArFq1CgMHDsTSpUthZ2eHzZs3o6CgAN9//z309fXRuXNnJCYmYtmyZUoJFxEREdGz2CNFRFopJSUFCoUCPj4+0jYLCwt4eHggPj4eABAfHw9LS0spiQIAHx8f6Ojo4OTJk1KZ1157Dfr6+lIZX19fJCUl4dGjR/VUGyIiItI27JEiIq2kUCgAADY2NkrbbWxspH0KhQLW1tZK+5s0aQIrKyulMo6OjmXOUbqvadOmZa6dn5+P/Px8aT07mw+CJiIiamzYI0Wab7aF8lA/VY5R9TiiaoiIiICFhYW0tGrVSt0hEVENrV69Gq6urjA3N4e5uTk8PT2xZ88eaX9eXh5CQkLQrFkzmJqaIiAgAOnp6UrnSE1Nhb+/P4yNjWFtbY0pU6agqKiovqtCRPWMiRQRaSW5XA4AZT7QpKenS/vkcjkyMjKU9hcVFeHhw4dKZco7x7PXeF54eDiysrKk5c6dOy9eISJSi5YtW2LRokVISEjAmTNn0K9fPwwePBiXLl0CAHz66af47bffsG3bNsTFxeHevXsYOnSodHxxcTH8/f1RUFCA48ePY8OGDVi/fj1mzpyprioRUT3h0D5qUPjQ3sbD0dERcrkcsbGx6NatG4CnQ+xOnjyJCRMmAAA8PT2RmZmJhIQEuLu7AwAOHjyIkpISeHh4SGU+++wzFBYWQk9PDwCwf/9+dOzYsdxhfQBgYGAAAwODOq4hEdWHQYMGKa0vWLAAq1evxokTJ9CyZUusXbsWUVFR6NevHwBg3bp1cHJywokTJ9CrVy/s27cPly9fxoEDB2BjY4Nu3bph3rx5mDZtGmbPnq10/2Vtc9ngUmfnLs+FoAv1er3aEBkZiS+++AIKhQJdu3bFqlWr0LNnzxc65siRI/jiiy+QkJCAtLQ0bN++HUOGDKnjmpAmYo8UEWmsnJwcJCYmIjExEcDTCSYSExORmpoKmUyGiRMnYv78+di5cycuXLiA0aNHw87OTnpDc3JywoABAzBu3DicOnUKx44dQ2hoKIYPHw47OzsAwMiRI6Gvr4/g4GBcunQJW7duxVdffYWwsDA11ZqI1KW4uBhbtmxBbm4uPD09kZCQgMLCQqVJbTp16gR7e3ulSW1cXFyU7tf09fVFdna21KtVnvz8fGRnZystVLu2bt2KsLAwzJo1C3/88Qe6du0KX1/fMiMVVD2mqkdzUOPBRIqINNaZM2fg5uYGNzc3AEBYWBjc3NykITNTp07FRx99hPHjx6NHjx7IyclBTEwMDA3/1yW5efNmdOrUCd7e3hg4cCD69Omj9IwoCwsL7Nu3DykpKXB3d8ekSZMwc+ZMTn1O1IhcuHABpqamMDAwwAcffIDt27fD2dkZCoUC+vr6sLS0VCr//KQ25U16U7qvIo3pXssTJ07A29sbzZo1g0wmU1rqMoFctmwZxo0bh7Fjx8LZ2Rlr1qyBsbExvv/++xc6xs/PD/Pnz8dbb71VZ7GTduDQPtJaLo72uHD9trrDoDrk5eUFIUSF+2UyGebOnYu5c+dWWMbKygpRUVGVXsfV1RW///57jeMkIu3WsWNHJCYmIisrC//9738RFBSEuLi4Or1meHi4Us93dnZ2g0ymzp07By8vL4SGhmLVqlW4c+cORo4cCTc3N4wfPx7m5uZVnmPhwoVYuHBhpWUuX74Me3t7ab2goAAJCQkIDw+Xtuno6MDHx0fqTXxeTY6hxo2JFDUotwxHqjsEIiLSMvr6+mjXrh0AwN3dHadPn8ZXX32FYcOGoaCgAJmZmUq9Us9PanPq1Cml81U1YQ3QeO61/PjjjzF06FAsXboUAODs7IwRI0YgISEBb7/9drXO8cEHH1RZtnS4dqm//voLxcXF5fYWXr16tdxz1OQYatyYSBERERE9o6SkBPn5+XB3d4eenh5iY2MREBAAAEhKSkJqaio8PT0BPJ2wZsGCBcjIyJCeW7d//36Ym5vD2dlZbXXQBOnp6Th69GiZ3j0TExPIZLJqn8fKygpWVla1HR7RC2MiRURERI1WeHg4/Pz8YG9vj8ePHyMqKgqHDx/G3r17YWFhgeDgYISFhcHKygrm5ub46KOP4OnpiV69egEA+vfvD2dnZ4waNQpLliyBQqHAjBkzEBIS0ih6nCqTkJCAkpISdO3atcz27t27AwBu376N0NBQ3L17F4WFhdi9e7fSED2gZkP7mjdvDl1d3UofkfG8mhxDjRsTKSIiImq0MjIyMHr0aKSlpcHCwgKurq7Yu3cv3njjDQDA8uXLoaOjg4CAAOTn58PX1xfffPONdLyuri6io6MxYcIEeHp6wsTEBEFBQZXeu9lYlJSUAHg6y52ZmRkA4Pz58zhy5Ajmz5+PgoICDBw4EJGRkfDy8sKjR49gampa5jw1Gdqnr68Pd3d3xMbGSjO5lpSUIDY2FqGhoeWeoybHUOPGRIqIiIgarbVr11a639DQEJGRkZVOde3g4IDdu3fXdmhaz8PDA0ZGRpgyZQo+++wzJCcnIyQkBCEhIejVqxe2bt2KXr16wcvLCwAqfHZfTYf2hYWFISgoCN27d0fPnj2xYsUK5ObmYuzYsVKZr7/+Gtu3b0dsbGy1j8nJycGNGzek9dJHc1hZWZXpTaOGjYkUEREREdW6Fi1a4KeffsKkSZPg6uoKe3t7hIaGSrMVXrhwocqH476IYcOG4f79+5g5cyYUCgW6deuGmJgYpckk/vrrLyQnJ6t0zJkzZ9C3b19pvbQ+QUFBWL9+fZ3VhzQPEykiIiIiLXQh6IK6Q6jSm2++iTfffLPcfTY2Nrh48SKApw9DzsrKqvVJJUJDQysdljd79mzMnj1bpWOqejQH1Uzr6bvKbLu1yF8NkVQfEykiIiIiqndjxozBsGHD0KVLF+jp6WH16tXSJB6kfcpLhBo6JlJEREREVO/MzMx4bxlpNSZSpDX4sF0iIiIi0hRMpEhtnu8C1vRxsEREREREpXTUHQAREREREZG2YSJFRERERESkIiZS1PDNtni6EBERaTFOua29+LtrmJhIEREREWkwXV1dAEBBQYGaI6GaevLkCQBAT09PzZFQbeJkE0REREQarEmTJjA2Nsb9+/ehp6cHHR1+D64thBB48uQJMjIyYGlpKSXF1DAwkSIiIiLSYDKZDLa2tkhJScHt27fVHQ7VgKWlJeRyubrDoFrGRIqIiIhIw+nr66N9+/Yc3qeF9PT02BPVQDGRIiIiItICOjo6MDQ0VHcYRPT/cZAtERERERGRiphIERERERERqUitiVRERAR69OgBMzMzWFtbY8iQIUhKSlIqk5eXh5CQEDRr1gympqYICAhAenq6UpnU1FT4+/vD2NgY1tbWmDJlCoqKiuqzKkRERERE1IioNZGKi4tDSEgITpw4gf3796OwsBD9+/dHbm6uVObTTz/Fb7/9hm3btiEuLg737t3D0KFDpf3FxcXw9/dHQUEBjh8/jg0bNmD9+vWYOXOmOqpERERERESNgFonm4iJiVFaX79+PaytrZGQkIDXXnsNWVlZWLt2LaKiotCvXz8AwLp16+Dk5IQTJ06gV69e2LdvHy5fvowDBw7AxsYG3bp1w7x58zBt2jTMnj0b+vr66qgaERERERG9gNbTdymt31rkr6ZIyqdR90hlZWUBAKysrAAACQkJKCwshI+Pj1SmU6dOsLe3R3x8PAAgPj4eLi4usLGxkcr4+voiOzsbly5dKvc6+fn5yM7OVlqIiIiIiIiqS2MSqZKSEkycOBG9e/dGly5dAAAKhQL6+vqwtLRUKmtjYwOFQiGVeTaJKt1fuq88ERERsLCwkJZWrVrVcm2IiIiIiKgh05hEKiQkBBcvXsSWLVvq/Frh4eHIysqSljt37tT5NYmIiIiIqOHQiAfyhoaGIjo6GkeOHEHLli2l7XK5HAUFBcjMzFTqlUpPT4dcLpfKnDp1Sul8pbP6lZZ5noGBAQwMDGq5FkRERERE1FiotUdKCIHQ0FBs374dBw8ehKOjo9J+d3d36OnpITY2VtqWlJSE1NRUeHp6AgA8PT1x4cIFZGRkSGX2798Pc3NzODs7109FiIiIiIioUVFrj1RISAiioqLw66+/wszMTLqnycLCAkZGRrCwsEBwcDDCwsJgZWUFc3NzfPTRR/D09ESvXr0AAP3794ezszNGjRqFJUuWQKFQYMaMGQgJCWGvExERERER1Qm1JlKrV68GAHh5eSltX7duHcaMGQMAWL58OXR0dBAQEID8/Hz4+vrim2++kcrq6uoiOjoaEyZMgKenJ0xMTBAUFIS5c+fWVzWIiIiIiKiRUWsiJYSosoyhoSEiIyMRGRlZYRkHBwfs3r27NkMjNXj2WQG3DNUYCBERERFRFTRm1j4iIiIiIiJtoRGz9hHVF01/QjYRERERaQf2SBEREREREamIiRQREREREZGKmEgRERERERGpiIkUERERERGRiphIERERERERqYiJFBERERERkYqYSBEREREREamIiRRpNXeHVuoOgYiIiIgaISZSREREREREKmIiRUREREREpCImUtR4zLbALcOR6o6CiIiIiBoAJlJEREREREQqYiJFRERERESkIiZSRERE1GhFRESgR48eMDMzg7W1NYYMGYKkpCSlMl5eXpDJZErLBx98oFQmNTUV/v7+MDY2hrW1NaZMmYKioqL6rAoR1bMm6g6AiIiISF3i4uIQEhKCHj16oKioCP/617/Qv39/XL58GSYmJlK5cePGYe7cudK6sbGx9HNxcTH8/f0hl8tx/PhxpKWlYfTo0dDT08PChQvrtT5EVH+YSBEREVGjFRMTo7S+fv16WFtbIyEhAa+99pq03djYGHK5vNxz7Nu3D5cvX8aBAwdgY2ODbt26Yd68eZg2bRpmz54NfX39Oq0DEakHh/YRERER/X9ZWVkAACsrK6XtmzdvRvPmzdGlSxeEh4fjyZMn0r74+Hi4uLjAxsZG2ubr64vs7GxcunSpfgInonrHHikiIiIiACUlJZg4cSJ69+6NLl26SNtHjhwJBwcH2NnZ4fz585g2bRqSkpLwyy+/AAAUCoVSEgVAWlcoFOVeKz8/H/n5+dJ6dnZ2bVeHiOoYEykiIiIiACEhIbh48SKOHj2qtH38+PHSzy4uLrC1tYW3tzeSk5PRtm3bGl0rIiICc+bMeaF4iUi9OLSPiIiIGr3Q0FBER0fj0KFDaNmyZaVlPTw8AAA3btwAAMjlcqSnpyuVKV2v6L6q8PBwZGVlScudO3detApEVM+YSBEREVGjJYRAaGgotm/fjoMHD8LR0bHKYxITEwEAtra2AABPT09cuHABGRkZUpn9+/fD3Nwczs7O5Z7DwMAA5ubmSgsRaRcmUkSktYqLi/H555/D0dERRkZGaNu2LebNmwchhFRGCIGZM2fC1tYWRkZG8PHxwfXr15XO8/DhQwQGBsLc3ByWlpYIDg5GTk5OfVeHiNQgJCQEmzZtQlRUFMzMzKBQKKBQKPD3338DAJKTkzFv3jwkJCTg1q1b2LlzJ0aPHo3XXnsNrq6uAID+/fvD2dkZo0aNwrlz57B3717MmDEDISEhMDAwUGf1iKgOMZEiIq21ePFirF69Gl9//TWuXLmCxYsXY8mSJVi1apVUZsmSJVi5ciXWrFmDkydPwsTEBL6+vsjLy5PKBAYG4tKlS9i/fz+io6Nx5MgRpXsiiKjhWr16NbKysuDl5QVbW1tp2bp1KwBAX18fBw4cQP/+/dGpUydMmjQJAQEB+O2336Rz6OrqIjo6Grq6uvD09MQ777yD0aNHKz13iogaHk42QURa6/jx4xg8eDD8/f0BAK1bt8aPP/6IU6dOAXjaG7VixQrMmDEDgwcPBgBs3LgRNjY22LFjB4YPH44rV64gJiYGp0+fRvfu3QEAq1atwsCBA7F06VLY2dmpp3JEVC+e7cEuT6tWrRAXF1fleRwcHLB79+7aCouItAB7pIhIa73yyiuIjY3FtWvXAADnzp3D0aNH4efnBwBISUmBQqGAj4+PdIyFhQU8PDwQHx8P4OnzXywtLaUkCgB8fHygo6ODkydPlnvd/Px8ZGdnKy1ERETUuLBHioi01vTp05GdnY1OnTpBV1cXxcXFWLBgAQIDAwH87/kt5T3fpXSfQqGAtbW10v4mTZrAysqqwue/cNpiIiIiYo8UEWmtn376CZs3b0ZUVBT++OMPbNiwAUuXLsWGDRvq9LqctpiIiIjYI0VEWmvKlCmYPn06hg8fDuDpgzJv376NiIgIBAUFSc9vSU9Pl6YpLl3v1q0bgKfPeHl2ymIAKCoqwsOHDyt8/ouBgQFn4iIiImrkmEgRPaP19F1K67cW+aspEqqOJ0+eQEdHuWNdV1cXJSUlAABHR0fI5XLExsZKiVN2djZOnjyJCRMmAHj6/JfMzEwkJCTA3d0dAHDw4EGUlJRID90kIiIieh4TKSLSWoMGDcKCBQtgb2+Pzp074+zZs1i2bBneffddAIBMJsPEiRMxf/58tG/fHo6Ojvj8889hZ2eHIUOGAACcnJwwYMAAjBs3DmvWrEFhYSFCQ0MxfPhwzthHREREFWIiRURaa9WqVfj888/x4YcfIiMjA3Z2dnj//fcxc+ZMqczUqVORm5uL8ePHIzMzE3369EFMTAwMDQ2lMps3b0ZoaCi8vb2ho6ODgIAArFy5Uh1VIiIiIi3BRIqItJaZmRlWrFiBFStWVFhGJpNh7ty5lT4Y08rKClFRUXUQIRERETVUnLWPiIiIiIhIRUykiIiIiIiIVMREioiIiIiISEW8R4q0koujfa2c5/npzomIiIiIqoM9UkRERERERCpijxQREREREVXqwJV0hMzYg/wm+uoORWOwR4qIiIiIiEhFTKSIiIiIiIhUxKF9VGeen8jh1iJ/NUVCRERERFS72CNFWu+wkZG6QyAiIiKiRoaJFBERERERkYqYSBERERER0Qu5ZTgStwxHqjuMesV7pEijNLY/QCIiIiLSTuyRIiIiIiIiUhF7pEhtnu19ap0XpcZIiIiIiIhUwx4pIiIiIiIiFTGRIiIiIiIiUhETKSIiIiIiIhUxkSIiIiIiIlIREykiIiIiIiIVcdY+0gh8fhQRERERaRMmUkREREREJGk9fZf0s0FRASKvpKsxGs3FoX1EREREREQqYo8U1Ztnv90AgFuGagqEiIiIiLROmc+Si/zVFMlT7JEiIiIiIiJSERMpIiIiIiIiFTGRIiIiIiIiUhETKSIiIiIiIhXVKJG6efNmbcdBVG9uGY7kc6uIiIiI6IXUKJFq164d+vbti02bNiEvL6/GFz9y5AgGDRoEOzs7yGQy7NixQ2n/mDFjIJPJlJYBAwYolXn48CECAwNhbm4OS0tLBAcHIycnp8YxERERERERVaVGidQff/wBV1dXhIWFQS6X4/3338epU6dUPk9ubi66du2KyMjICssMGDAAaWlp0vLjjz8q7Q8MDMSlS5ewf/9+REdH48iRIxg/frzKsRAREREREVVXjRKpbt264auvvsK9e/fw/fffIy0tDX369EGXLl2wbNky3L9/v1rn8fPzw/z58/HWW29VWMbAwAByuVxamjZtKu27cuUKYmJi8N1338HDwwN9+vTBqlWrsGXLFty7d68mVSMiIiIiIqrSC0020aRJEwwdOhTbtm3D4sWLcePGDUyePBmtWrXC6NGjkZaW9sIBHj58GNbW1ujYsSMmTJiABw8eSPvi4+NhaWmJ7t27S9t8fHygo6ODkydPVnjO/Px8ZGdnKy1ERERERETV9UKJ1JkzZ/Dhhx/C1tYWy5Ytw+TJk5GcnIz9+/fj3r17GDx48AsFN2DAAGzcuBGxsbFYvHgx4uLi4Ofnh+LiYgCAQqGAtbW10jFNmjSBlZUVFApFheeNiIiAhYWFtLRq1eqF4iQiIiIiasiamF5Vdwgap0lNDlq2bBnWrVuHpKQkDBw4EBs3bsTAgQOho/M0L3N0dMT69evRunXrFwpu+PDh0s8uLi5wdXVF27ZtcfjwYXh7e9f4vOHh4QgLC5PWs7OzmUwREREREVWhdObj1nlRao5E/WrUI7V69WqMHDkSt2/fxo4dO/Dmm29KSVQpa2trrF27tlaCLNWmTRs0b94cN27cAADI5XJkZGQolSkqKsLDhw8hl8srPI+BgQHMzc2VFiKihqL9Z7ux4sA1rDhwDe0/243W03epOyQijRUREYEePXrAzMwM1tbWGDJkCJKSkpTK5OXlISQkBM2aNYOpqSkCAgKQnp6uVCY1NRX+/v4wNjaGtbU1pkyZgqKiovqsChHVsxolUtevX0d4eDhsbW0rLKOvr4+goKAaB1aeu3fv4sGDB9J1PT09kZmZiYSEBKnMwYMHUVJSAg8Pj1q9NhERETU8cXFxCAkJwYkTJ7B//34UFhaif//+yM3Nlcp8+umn+O2337Bt2zbExcXh3r17GDp0qLS/uLgY/v7+KCgowPHjx7FhwwasX78eM2fOVEeViOoFn8tZw6F969atg6mpKf75z38qbd+2bRuePHlS7QQqJydH6l0CgJSUFCQmJsLKygpWVlaYM2cOAgICIJfLkZycjKlTp6Jdu3bw9fUFADg5OWHAgAEYN24c1qxZg8LCQoSGhmL48OGws7OrSdWIiIioEYmJiVFaX79+PaytrZGQkIDXXnsNWVlZWLt2LaKiotCvXz8ATz8HOTk54cSJE+jVqxf27duHy5cv48CBA7CxsUG3bt0wb948TJs2DbNnz4a+vr46qkZEdaxGPVIRERFo3rx5me3W1tZYuHBhtc9z5swZuLm5wc3NDQAQFhYGNzc3zJw5E7q6ujh//jz+8Y9/oEOHDggODoa7uzt+//13GBgYSOfYvHkzOnXqBG9vbwwcOBB9+vTBt99+W5NqERERUSOXlZUFALCysgIAJCQkoLCwED4+PlKZTp06wd7eHvHx8QCeziLs4uICGxsbqYyvry+ys7Nx6dKlcq/DGYSpoWjMPVM16pFKTU2Fo6Njme0ODg5ITU2t9nm8vLwghKhw/969e6s8h5WVFaKieLMbERERvZiSkhJMnDgRvXv3RpcuXQA8nSFYX18flpaWSmVtbGykGYIVCoVSElW6v3RfeSIiIjBnzpxargER1aca9UhZW1vj/PnzZbafO3cOzZo1e+GgiIiIiOpbSEgILl68iC1bttT5tcLDw5GVlSUtd+7cqfNrElHtqlGP1IgRI/Dxxx/DzMwMr732GoCnN2t+8sknSlOWExEREWmD0NBQREdH48iRI2jZsqW0XS6Xo6CgAJmZmUq9Uunp6dIMwXK5HKdOnVI6X+msfhXNImxgYKB0qwIRaZ8a9UjNmzcPHh4e8Pb2hpGREYyMjNC/f3/069dPpXukiIiIiNRJCIHQ0FBs374dBw8eLHPrgru7O/T09BAbGyttS0pKQmpqKjw9PQE8nUX4woULSo9k2b9/P8zNzeHs7Fw/FSGielejHil9fX1s3boV8+bNw7lz52BkZAQXFxc4ODjUdnxEREREdSYkJARRUVH49ddfYWZmJt3TZGFhASMjI1hYWCA4OBhhYWGwsrKCubk5PvroI3h6eqJXr14AgP79+8PZ2RmjRo3CkiVLoFAoMGPGDISEhLDXiagBq1EiVapDhw7o0KFDbcVCREREVK9Wr14N4OkEWM9at24dxowZAwBYvnw5dHR0EBAQgPz8fPj6+uKbb76Ryurq6iI6OhoTJkyAp6cnTExMEBQUhLlz59ZXNYhqXelMfB1z1qs3EA1Wo0SquLgY69evR2xsLDIyMlBSUqK0/+DBg7USHBEREVFdqmz24FKGhoaIjIxEZGRkhWUcHBywe/fu2gyNiDRcjRKpTz75BOvXr4e/vz+6dOkCmUxW23EREREREZGWuWU4Eq3zGsejiWqUSG3ZsgU//fQTBg4cWNvxEBERERERabwaTzbRrl272o6FiIiIiIg0SJJhEKD7Nw7DSN2haJwaJVKTJk3CV199ha+//prD+ggA0Hr6LnWHUCeqU69bi/zrIRIiIiIi0iQ1SqSOHj2KQ4cOYc+ePejcuTP09PSU9v/yyy+1EhwREREREZEmqlEiZWlpibfeequ2YyEiIiIiItIKNUqk1q1bV9txEBERERGRBksyDALA23pK6dT0wKKiIhw4cAD//ve/8fjxYwDAvXv3kJOTU2vBERERERERaaIaJVK3b9+Gi4sLBg8ejJCQENy/fx8AsHjxYkyePLlWAyQiqsyff/6Jd955B82aNYORkRFcXFxw5swZab8QAjNnzoStrS2MjIzg4+OD69evK53j4cOHCAwMhLm5OSwtLREcHMwvhYiIiKhSNUqkPvnkE3Tv3h2PHj2CkdH/pkJ86623EBsbW2vBERFV5tGjR+jduzf09PSwZ88eXL58GV9++SWaNm0qlVmyZAlWrlyJNWvW4OTJkzAxMYGvry/y8vKkMoGBgbh06RL279+P6OhoHDlyBOPHj1dHlYiIiEhL1Ogeqd9//x3Hjx+Hvr6+0vbWrVvjzz//rJXAiIiqsnjxYrRq1Urpvk1HR0fpZyEEVqxYgRkzZmDw4MEAgI0bN8LGxgY7duzA8OHDceXKFcTExOD06dPo3r07AGDVqlUYOHAgli5dCjs7u/qtFBEREWmFGvVIlZSUoLi4uMz2u3fvwszM7IWDIiKqjp07d6J79+745z//CWtra7i5ueE///mPtD8lJQUKhQI+Pj7SNgsLC3h4eCA+Ph4AEB8fD0tLSymJAgAfHx/o6Ojg5MmT5V43Pz8f2dnZSgsRERE1LjVKpPr3748VK1ZI6zKZDDk5OZg1axYGDhxYW7EREVXq5s2bWL16Ndq3b4+9e/diwoQJ+Pjjj7FhwwYAgEKhAADY2NgoHWdjYyPtUygUsLa2VtrfpEkTWFlZSWWeFxERAQsLC2lp1apVbVeNiIhIbW4ZjlR3CFqhRonUl19+iWPHjsHZ2Rl5eXkYOXKkNKxv8eLFtR0jkRIXR3t1h0AaoqSkBC+//DIWLlwINzc3jB8/HuPGjcOaNWvq9Lrh4eHIysqSljt37tTp9YiIiEjz1OgeqZYtW+LcuXPYsmULzp8/j5ycHAQHByMwMFBp8gkiorpka2sLZ2dnpW1OTk74+eefAQByuRwAkJ6eDltbW6lMeno6unXrJpXJyMhQOkdRUREePnwoHf88AwMDGBgY1FY1iIiISAvVKJECng59eeedd2ozFiIilfTu3RtJSUlK265duwYHBwcATyeekMvliI2NlRKn7OxsnDx5EhMmTAAAeHp6IjMzEwkJCXB3dwcAHDx4ECUlJfDw8Ki/yhAREZFWqVEitXHjxkr3jx49ukbBEBGp4tNPP8Urr7yChQsX4u2338apU6fw7bff4ttvvwXw9P7NiRMnYv78+Wjfvj0cHR3x+eefw87ODkOGDAHwtAdrwIAB0pDAwsJChIaGYvjw4Zyxj4iI6AWU3mvVOi9KzZHUjRolUp988onSemFhIZ48eQJ9fX0YGxszkSKietGjRw9s374d4eHhmDt3LhwdHbFixQoEBgZKZaZOnYrc3FyMHz8emZmZ6NOnD2JiYmBoaCiV2bx5M0JDQ+Ht7Q0dHR0EBARg5cqV6qgSERERaYkaJVKPHj0qs+369euYMGECpkyZ8sJBERFV15tvvok333yzwv0ymQxz587F3LlzKyxjZWWFqKiG+W0ZERFRfWsss/7VaNa+8rRv3x6LFi0q01tFRERERETU0NRaIgU8nYDi3r17tXlKIiIiIiIijVOjoX07d+5UWhdCIC0tDV9//TV69+5dK4EREREREVHdaz19l9L6LcMKCpKSGiVSpbNdlZLJZGjRogX69euHL7/8sjbiIiIiIiIi0lg1SqRKSkpqOw4iIiIiIiKtUav3SBERERERETUGNeqRCgsLq3bZZcuW1eQSREREREREGqtGidTZs2dx9uxZFBYWomPHjgCAa9euQVdXFy+//LJUTiaT1U6UREREREREGqRGidSgQYNgZmaGDRs2oGnTpgCePqR37NixePXVVzFp0qRaDZKIiIiIiEiT1CiR+vLLL7Fv3z4piQKApk2bYv78+ejfvz8TKapUY3naNRERERH977Nf67woNUdSu2qUSGVnZ+P+/ftltt+/fx+PHz9+4aCIiIiIiKh+8ctu1dRo1r633noLY8eOxS+//IK7d+/i7t27+PnnnxEcHIyhQ4fWdoxEREREREQapUY9UmvWrMHkyZMxcuRIFBYWPj1RkyYIDg7GF198UasBEhERERERaZoaJVLGxsb45ptv8MUXXyA5ORkA0LZtW5iYmNRqcERERERERJrohR7Im5aWhrS0NLRv3x4mJiYQQtRWXERERERERBqrRj1SDx48wNtvv41Dhw5BJpPh+vXraNOmDYKDg9G0aVN8+eWXtR0naZjW03epOwQiIiIiIrWpUY/Up59+Cj09PaSmpsLY2FjaPmzYMMTExNRacER16ZbhSGkhIiIiIlJFjXqk9u3bh71796Jly5ZK29u3b4/bt2/XSmBERERERKR+h42M1B2CRqpRIpWbm6vUE1Xq4cOHMDAweOGgiIiIiIiobvAWjdpRo6F9r776KjZu3City2QylJSUYMmSJejbt2+tBUdERERERKSJatQjtWTJEnh7e+PMmTMoKCjA1KlTcenSJTx8+BDHjh2r7RiJiIiIiIg0So16pLp06YJr166hT58+GDx4MHJzczF06FCcPXsWbdu2re0YiarEsbtEREREVJ9U7pEqLCzEgAEDsGbNGnz22Wd1ERNRvSudua91XpSaIyEiIiIibaByj5Senh7Onz9fF7EQERERERFphRoN7XvnnXewdu3a2o6FiIiIqF4dOXIEgwYNgp2dHWQyGXbs2KG0f8yYMZDJZErLgAEDlMo8fPgQgYGBMDc3h6WlJYKDg5GTk1OPtSAidajRZBNFRUX4/vvvceDAAbi7u8PExERp/7Jly2olOCIiIqK6lJubi65du+Ldd9/F0KFDyy0zYMAArFu3Tlp//lEvgYGBSEtLw/79+1FYWIixY8di/PjxiIricHGihkylROrmzZto3bo1Ll68iJdffhkAcO3aNaUyMpms9qIjIiIiqkN+fn7w8/OrtIyBgQHkcnm5+65cuYKYmBicPn0a3bt3BwCsWrUKAwcOxNKlS2FnZ1frMRORZlApkWrfvj3S0tJw6NAhAMCwYcOwcuVK2NjY1ElwREREROp2+PBhWFtbo2nTpujXrx/mz5+PZs2aAQDi4+NhaWkpJVEA4OPjAx0dHZw8eRJvvfVWuefMz89Hfn6+tJ6dnV23lSBqgJ5/sPCtRf71en2VEikhhNL6nj17kJubW6sBkXqo+4VIRESkiQYMGIChQ4fC0dERycnJ+Ne//gU/Pz/Ex8dDV1cXCoUC1tbWSsc0adIEVlZWUCgUFZ43IiICc+bMqevwiagO1egeqVLPJ1ZEREREDcnw4cOln11cXODq6oq2bdvi8OHD8Pb2rvF5w8PDERYWJq1nZ2ejVatWLxQrEdUvlRKp0tlqnt9GDd/zPVZERESNUZs2bdC8eXPcuHED3t7ekMvlyMjIUCpTVFSEhw8fVnhfFfD0vqvnJ60gIu2i8tC+MWPGSH/4eXl5+OCDD8rM2vfLL7/UXoREREREGuLu3bt48OABbG1tAQCenp7IzMxEQkIC3N3dAQAHDx5ESUkJPDw81BkqEdUxlRKpoKAgpfV33nmnVoMhIiIiqk85OTm4ceOGtJ6SkoLExERYWVnBysoKc+bMQUBAAORyOZKTkzF16lS0a9cOvr6+AAAnJycMGDAA48aNw5o1a1BYWIjQ0FAMHz6cM/YRNXAqJVLPPkOBiIiISNudOXMGffv2ldZL71sKCgrC6tWrcf78eWzYsAGZmZmws7ND//79MW/ePKVheZs3b0ZoaCi8vb2ho6ODgIAArFy5st7rQlTX3B1aIeHPu+oOQ2O80GQTRKq4ZThS3SEQEREp8fLyqnTyrL1791Z5DisrKz58l6gR0lF3AERERERERNqGPVJEL4jP4CIiIiJqfNTaI3XkyBEMGjQIdnZ2kMlk2LFjh9J+IQRmzpwJW1tbGBkZwcfHB9evX1cq8/DhQwQGBsLc3ByWlpYIDg5GTk5OPdaCiIiIiIgaG7UmUrm5uejatSsiIyPL3b9kyRKsXLkSa9aswcmTJ2FiYgJfX1/k5eVJZQIDA3Hp0iXs378f0dHROHLkCMaPH19fVSAiIiIiokZIrUP7/Pz84OfnV+4+IQRWrFiBGTNmYPDgwQCAjRs3wsbGBjt27MDw4cNx5coVxMTE4PTp0+jevTsAYNWqVRg4cCCWLl3KaUeJiIiIiKhOaOw9UikpKVAoFPDx8ZG2WVhYwMPDA/Hx8Rg+fDji4+NhaWkpJVEA4OPjAx0dHZw8eRJvvfVWuefOz89Hfn6+tJ6dnV13FaFGh/dMERERETV8GptIKRQKAICNjY3SdhsbG2mfQqGAtbW10v4mTZrAyspKKlOeiIgIzJkzp5YjJiofEysiIiKihqdRTn8eHh6OrKwsablz5466QyIiIiIiIi2isYmUXC4HAKSnpyttT09Pl/bJ5XJkZGQo7S8qKsLDhw+lMuUxMDCAubm50kJERERERFRdGptIOTo6Qi6XIzY2VtqWnZ2NkydPwtPTEwDg6emJzMxMJCQkSGUOHjyIkpISeHh41HvMRERERERUvluGI3HLcKS6w6g1ar1HKicnBzdu3JDWU1JSkJiYCCsrK9jb22PixImYP38+2rdvD0dHR3z++eews7PDkCFDAABOTk4YMGAAxo0bhzVr1qCwsBChoaEYPnw4Z+wjIiIiIqI6o9ZE6syZM+jbt6+0HhYWBgAICgrC+vXrMXXqVOTm5mL8+PHIzMxEnz59EBMTA0NDQ+mYzZs3IzQ0FN7e3tDR0UFAQABWrlxZ73VpaJ6fIIGIiIiIiP5HrYmUl5cXhBAV7pfJZJg7dy7mzp1bYRkrKytERUXVRXhERERERETl0tjpz4mIiIiIqO41pPuW6pPGTjZBRERERESkqZhIERERERERqYiJFBERERERkYqYSBEREREREamIiRQREREREZGKmEgRUYOxaNEiyGQyTJw4UdqWl5eHkJAQNGvWDKampggICEB6errScampqfD394exsTGsra0xZcoUFBUV1XP0REREdaP19F1KC9UOTn9ORA3C6dOn8e9//xuurq5K2z/99FPs2rUL27Ztg4WFBUJDQzF06FAcO3YMAFBcXAx/f3/I5XIcP34caWlpGD16NPT09LBw4UJ1VKVOPP/GeWuRv5oiISIiahjYI0VEWi8nJweBgYH4z3/+g6ZNm0rbs7KysHbtWixbtgz9+vWDu7s71q1bh+PHj+PEiRMAgH379uHy5cvYtGkTunXrBj8/P8ybNw+RkZEoKChQV5WIiIhIwzGRIiKtFxISAn9/f/j4+ChtT0hIQGFhodL2Tp06wd7eHvHx8QCA+Ph4uLi4wMbGRirj6+uL7OxsXLp0qdzr5efnIzs7W2khIiKixoVD+6hO8UnZVNe2bNmCP/74A6dPny6zT6FQQF9fH5aWlkrbbWxsoFAopDLPJlGl+0v3lSciIgJz5sypheiJiIhIW7FHioi01p07d/DJJ59g8+bNMDQ0rLfrhoeHIysrS1ru3LlTb9cmIiIizcBEioi0VkJCAjIyMvDyyy+jSZMmaNKkCeLi4rBy5Uo0adIENjY2KCgoQGZmptJx6enpkMvlAAC5XF5mFr/S9dIyzzMwMIC5ubnSQkRERI0LEymiZ9wyHMnhiFrE29sbFy5cQGJiorR0794dgYGB0s96enqIjY2VjklKSkJqaio8PT0BAJ6enrhw4QIyMjKkMvv374e5uTmcnZ3rvU5ERESkHXiPFBFpLTMzM3Tp0kVpm4mJCZo1ayZtDw4ORlhYGKysrGBubo6PPvoInp6e6NWrFwCgf//+cHZ2xqhRo7BkyRIoFArMmDEDISEhMDAwqPc6ERER1Rd+efximEgRUYO2fPly6OjoICAgAPn5+fD19cU333wj7dfV1UV0dDQmTJgAT09PmJiYICgoCHPnzlVj1ERERKTpmEgRUYNy+PBhpXVDQ0NERkYiMjKywmMcHBywe/fuOo6MiIhIM7AnqnbwHikiIiIiIiIVMZEiIiIiIiJSERMpIiIiIiIiFTGRIiIiIiIiUhETKSIiIiIiqjcN5bmdTKSIiIiIiIhUxESKiIiIiIhIRUykiIiIiIiIVMREioiIiIiISEVMpIiIiIiIiFTURN0BEDU2rafvUlq/tchfTZEQERERUU2xR4qIqAFpCNPJEhERaQMmUkRERNRoHTlyBIMGDYKdnR1kMhl27NihtF8IgZkzZ8LW1hZGRkbw8fHB9evXlco8fPgQgYGBMDc3h6WlJYKDg5GTk1OPtSAidWAiRURERI1Wbm4uunbtisjIyHL3L1myBCtXrsSaNWtw8uRJmJiYwNfXF3l5eVKZwMBAXLp0Cfv370d0dDSOHDmC8ePH11cViEhNeI8UERERNVp+fn7w8/Mrd58QAitWrMCMGTMwePBgAMDGjRthY2ODHTt2YPjw4bhy5QpiYmJw+vRpdO/eHQCwatUqDBw4EEuXLoWdnV291YWI6hd7pIiIGpjrhqPVHQJRg5CSkgKFQgEfHx9pm4WFBTw8PBAfHw8AiI+Ph6WlpZREAYCPjw90dHRw8uTJeo+ZiOoPe6SIiIiIyqFQKAAANjY2StttbGykfQqFAtbW1kr7mzRpAisrK6lMefLz85Gfny+tZ2dn11bYRFRP2CNFREREVM8iIiJgYWEhLa1atVJ3SESkIvZIEREREZVDLpcDANLT02FrayttT09PR7du3aQyGRkZSscVFRXh4cOH0vHlCQ8PR1hYmLSenZ3NZIpqzfPPrKS6wR4pIqIGgs+QIqpdjo6OkMvliI2NlbZlZ2fj5MmT8PT0BAB4enoiMzMTCQkJUpmDBw+ipKQEHh4eFZ7bwMAA5ubmSgsRaRf2SBEREVGjlZOTgxs3bkjrKSkpSExMhJWVFezt7TFx4kTMnz8f7du3h6OjIz7//HPY2dlhyJAhAAAnJycMGDAA48aNw5o1a1BYWIjQ0FAMHz6cM/YRNXBMpIiIGqiJTX5GJN5WdxhEGu3MmTPo27evtF463C4oKAjr16/H1KlTkZubi/HjxyMzMxN9+vRBTEwMDA0NpWM2b96M0NBQeHt7Q0dHBwEBAVi5cmW914WoIqUjFlrnRak5koaFiRQRERE1Wl5eXhBCVLhfJpNh7ty5mDt3boVlrKysEBXFD6hEjQ3vkSIiIiIiIlIREykiIiIiIiIVcWhfI8VpMYmIiIiIao6JFBERERFRI8DHZNQuDu0jIiIiIiJSEXukiMrx7Dc2nCqUtNHEJj+rOwQiIqIGjYkU1Ql2HRMRERFRQ8ahfUREREREVO9uGY7U6i/fmUgRERERERGpiIkUERERERGRiphIERERERERqYiJFBERERERkYo4ax9pFRdHe3WHQERERKRRWk/fpe4QGiX2SBEREREREamIiRRRNWn7FJ1EREREVHs4tI+IiIiIqAHiF8B1iz1SREREREREKmIiRUREREREpCImUkRERERERCpiIkVERERERKQiJlJERA0AbygmIiKqX0ykqMFwd2il7hCIiIiISEXa+mUgEykiIiIiIiIVaXQiNXv2bMhkMqWlU6dO0v68vDyEhISgWbNmMDU1RUBAANLT09UYMRERERERNQYa/0Dezp0748CBA9J6kyb/C/nTTz/Frl27sG3bNlhYWCA0NBRDhw7FsWPH1BEqEZHWaD19l9L6rUX+aoqEiIhIO2l8ItWkSRPI5fIy27OysrB27VpERUWhX79+AIB169bByckJJ06cQK9eveo7VCIiIiIiaiQ0emgfAFy/fh12dnZo06YNAgMDkZqaCgBISEhAYWEhfHx8pLKdOnWCvb094uPjKz1nfn4+srOzlRYiIiIiIqLq0uhEysPDA+vXr0dMTAxWr16NlJQUvPrqq3j8+DEUCgX09fVhaWmpdIyNjQ0UCkWl542IiICFhYW0tGrF2d6IqGG6bjha3SEQERE1SBo9tM/Pz0/62dXVFR4eHnBwcMBPP/0EIyOjGp83PDwcYWFh0np2djaTKSIiIiIiqjaNTqSeZ2lpiQ4dOuDGjRt44403UFBQgMzMTKVeqfT09HLvqXqWgYEBDAwM6jhaaii09dkGRERERFR3tCqRysnJQXJyMkaNGgV3d3fo6ekhNjYWAQEBAICkpCSkpqbC09NTzZFqnudn6CIiIiIizVfeZzjOtKoZNPoeqcmTJyMuLg63bt3C8ePH8dZbb0FXVxcjRoyAhYUFgoODERYWhkOHDiEhIQFjx46Fp6cnZ+wjaiQiIiLQo0cPmJmZwdraGkOGDEFSUpJSmeo8by41NRX+/v4wNjaGtbU1pkyZgqKiovqsChEREWkZje6Runv3LkaMGIEHDx6gRYsW6NOnD06cOIEWLVoAAJYvXw4dHR0EBAQgPz8fvr6++Oabb9QcNdGL4TdP1RcXF4eQkBD06NEDRUVF+Ne//oX+/fvj8uXLMDExAVD18+aKi4vh7+8PuVyO48ePIy0tDaNHj4aenh4WLlyozuoRERGRBtPoRGrLli2V7jc0NERkZCQiIyPrKSIi0iQxMTFK6+vXr4e1tTUSEhLw2muvVet5c/v27cPly5dx4MAB2NjYoFu3bpg3bx6mTZuG2bNnQ19fXx1VIyIiIg2n0YkUEZEqsrKyAABWVlYAqn7eXK9evRAfHw8XFxfY2NhIZXx9fTFhwgRcunQJbm5uZa6Tn5+P/Px8aZ3PoiMiovrEe981g0bfI0VEVF0lJSWYOHEievfujS5dugBAtZ43p1AolJKo0v2l+8qjbc+i48yTREREtY89Ug2QOr+l4Ac2UpeQkBBcvHgRR48erfNr8Vl0RESk6fiZrO4xkSIirRcaGoro6GgcOXIELVu2lLbL5fIqnzcnl8tx6tQppfOVzupX0TPp+Cw6IiIizfN8Z0JdT9bFoX1EpLWEEAgNDcX27dtx8OBBODo6Ku1/9nlzpZ5/3pynpycuXLiAjIwMqcz+/fthbm4OZ2fn+qkIERERaR32SBGR1goJCUFUVBR+/fVXmJmZSfc0WVhYwMjISOl5c1ZWVjA3N8dHH32k9Ly5/v37w9nZGaNGjcKSJUugUCgwY8YMhISEsNeJiIiIKsREioi01urVqwEAXl5eStvXrVuHMWPGAKj6eXO6urqIjo7GhAkT4OnpCRMTEwQFBWHu3Ln1VQ0iIiLSQkykiEhrCSGqLFOd5805ODhg9+7dtRkaERERNXC8R4qIiIiIiEhFTKSI1Kz19F1KCxERaZbZs2dDJpMpLZ06dZL25+XlISQkBM2aNYOpqSkCAgKk2T+JqOFiIkVERERUhc6dOyMtLU1ann1m3aefforffvsN27ZtQ1xcHO7du4ehQ4eqMVoi7XPLcKTWPfuK90gRERERVaFJkyblPlsuKysLa9euRVRUFPr16wfg6YQ3Tk5OOHHihDRDKBE1PEykiIiIiKpw/fp12NnZwdDQEJ6enoiIiIC9vT0SEhJQWFgIHx8fqWynTp1gb2+P+Pj4ChOp/Px85OfnS+vZ2dl1XgfSDhzmrz2YSBERUb0/DZ5Im3h4eGD9+vXo2LEj0tLSMGfOHLz66qu4ePEiFAoF9PX1YWlpqXSMjY2N9Gy78kRERGDOnDl1HDkR1SUmUkRERESV8PPzk352dXWFh4cHHBwc8NNPP8HIyKhG5wwPD0dYWJi0np2djVatWr1wrERUfzjZBBGRltO2m3OJtJ2lpSU6dOiAGzduQC6Xo6CgAJmZmUpl0tPTy72nqpSBgQHMzc2VFiLSLkykiIgaASZbRLUnJycHycnJsLW1hbu7O/T09BAbGyvtT0pKQmpqKjw9PdUYJRHVNQ7tIyIiIqrE5MmTMWjQIDg4OODevXuYNWsWdHV1MWLECFhYWCA4OBhhYWGwsrKCubk5PvroI3h6enLGPlILfnFWf5hIEamotIFqnRel5kiIiKg+3L17FyNGjMCDBw/QokUL9OnTBydOnECLFi0AAMuXL4eOjg4CAgKQn58PX19ffPPNN2qOmojqGhMpIiIiokps2bKl0v2GhoaIjIxEZGRkPUVERJqA90gRERERERGpiD1SVGP1PQbXxdG+Xq9HRERERFQR9kgRERERERGpiIkUERERERGRiji0rwFoPX2XukMgIiIiImpUmEhRg+LiaI8LKanqDoOIiIioWviFuPZiIkVE1EjcMhzJ558REalZXSVOfBBv/WMiRSrjHyoRERERNXZMpIiItBi/2CAiatz4PqA+nLWPiIiIiIg0wi3DkVqTHDKRIiIiIiIiUhETKaIaKv3GRFu+NSECOASEiIiotjCRIiIiIiIiUhEnmyDSAs9PlXprkb+aIiEiIiIigD1SREREREREKmMiRUREREREpCIO7dMCHNZFz+NrguoaX2NERESVY48UNTgujvb1fk3O3kdERET1gZ85NAd7pIiIiIiI6sjzPfy1hcmU+rFHioiIiIiIyuXu0ErdIWgsJlJEREREREQq4tA+IiIiIiIN19iG8pXWt3VelJojqRgTKS1UV2NtiYiIiIioeji0j6gWcSYd0gZ8nRIREb04JlJERERERKSRNPnLPyZSRERERERULep4XqemYiJFRERERESkIk42QUSkpTR1qAMRUWPGScEaDyZSGoh/gKSq518ztxb5qykSIiKihqu8z2h8z228mEhRpTTlG2+OxyUiIiIiTcJ7pIiIiIiIiFTEHikiIqoSh48SEREpYyJF1ADxQy9Vxy3DkWidF6XuMIiIiOpEXX8eYiKlBvyQS0Taju0YEVH90JT71aksJlJERPTCOJMVETVE1ZlJuTZnWy5NmjhaoCxN/L9hIkXUCLE3gZ7FIX5E1FjxkTP0IphIEVG5mGxpjrp8o+eQESIi9amql4VttGZjIkVEREREpEGYQGkHJlJEdaC8BlCdQ6c4dIGIiIiodjGR0gCa8CH3+a5lfhNCREREmoyT3JC6MZEiIqI6mXCC99kREVFDxkSqlvGDA1VEE6ftJKpPbB+JiJ56fuQPRwJpJx11B1BbIiMj0bp1axgaGsLDwwOnTp2qk+u0nr5LaVG1vKYM46voD7ayferi4mhfo2Nqcpy6aOL/e2NUX+2IpuJrkOjFNPY2hKixaRCJ1NatWxEWFoZZs2bhjz/+QNeuXeHr64uMjAx1h0ZEWkLb2pG6Sno0KanXtC+hiCqjbW0IEb24BjG0b9myZRg3bhzGjh0LAFizZg127dqF77//HtOnT1dzdETKnv2QqinD/Pghle1Ieer7Qb1VvQ6rMzSQwwdJXdiG1L3aeK+qz/e757+U0pT3fFW4ONpDv6BE3WEo0aRbJbQ+kSooKEBCQgLCw8OlbTo6OvDx8UF8fLwaI1Ov8l5kHI+rearzO9GEhgJ48TcfTf5Ay3akrNLXoia9YRFpKrYhmkOdXwyyvaxfmvD/rfWJ1F9//YXi4mLY2NgobbexscHVq1fLPSY/Px/5+fnSelZWFgAgOzu7yuuV5D9RWn/+mOf3q0u2TABQjqd0m7Yp/ru44n0FJcgtFlK54mLlOmbna2edn6Upr6kXVZ2/r2fLCVF/vztV25EXaUMAoMusvUrrF+f4Vrq/PJX+PRcL/MfEDOOysoF8AehWK6xKnZeN+F98eWtx0TBY6ecueWul/aXrz29/nv2n214opuoc/6LXqA3P/361VVWvW025pja0IcCLtSM1aUOqKlPV/21NfhfVacsq8/w1NP398PnPXs+309r4maz47+JyP2s5y1/Cidt31RzdU6q8Lmr9s4jQcn/++acAII4fP660fcqUKaJnz57lHjNr1iwBgAsXLhq83Llzpz6aECGE6u0I2xAuXDR/0eQ2RAi2I1y4aMNSVTui9T1SzZs3h66uLtLT05W2p6enQy6Xl3tMeHg4wsLCpPWSkhI8fPgQzZo1g0wmq/Ba2dnZaNWqFe7cuQNzc/PaqYCasC6aiXUBhBB4/Pgx7Ozs6jA6Zaq2IzVtQ15UQ3p91ERjrn9jrjugWv21oQ0B1NeO1KeG/LptyHUDGnb9qlO36rYjWp9I6evrw93dHbGxsRgyZAiAp41RbGwsQkNDyz3GwMAABgYGStssLS2rfU1zc/MG86JiXTRTY6+LhYVFHUVTPlXbkRdtQ15UQ3p91ERjrn9jrjtQ/fprehsCqL8dqU8N+XXbkOsGNOz6VVW36rQjWp9IAUBYWBiCgoLQvXt39OzZEytWrEBubq40cw4RUVXYjhDRi2AbQtT4NIhEatiwYbh//z5mzpwJhUKBbt26ISYmpsxNn0REFWE7QkQvgm0IUePTIBIpAAgNDa2w+7y2GBgYYNasWWW64rUR66KZWBf1qo925EVo4/9pbWrM9W/MdQe0p/6a3obUN235vdVEQ64b0LDrV5t1kwlRj/ODEhERERERNQA66g6AiIiIiIhI2zCRIiIiIiIiUhETKSIiIiIiIhUxkSIiIiIiIlJRo0qkIiMj0bp1axgaGsLDwwOnTp2qtPy2bdvQqVMnGBoawsXFBbt371baP2bMGMhkMqVlwIABSmUePnyIwMBAmJubw9LSEsHBwcjJydG4ujxfj9Lliy++kMq0bt26zP5FixbVa10uXbqEgIAAKZYVK1bU6Jx5eXkICQlBs2bNYGpqioCAgDJPpNeEukRERKBHjx4wMzODtbU1hgwZgqSkJKUyXl5eZX4vH3zwgcbVZfbs2WXi7NSpk1KZuvq9NBSq/t03FNV57TQUR44cwaBBg2BnZweZTIYdO3Yo7RdCYObMmbC1tYWRkRF8fHxw/fp19QRbB6qqf3Xed0lz7dq1Cx4eHjAyMkLTpk2lhxc3JPn5+ejWrRtkMhkSExPVHc4Lu3XrFoKDg+Ho6AgjIyO0bdsWs2bNQkFBgbpDq5Hafh9tNInU1q1bERYWhlmzZuGPP/5A165d4evri4yMjHLLHz9+HCNGjEBwcDDOnj2LIUOGYMiQIbh48aJSuQEDBiAtLU1afvzxR6X9gYGBuHTpEvbv34/o6GgcOXIE48eP17i6PFuHtLQ0fP/995DJZAgICFA619y5c5XKffTRR/ValydPnqBNmzZYtGgR5HJ5jc/56aef4rfffsO2bdsQFxeHe/fuYejQoRpXl7i4OISEhODEiRPYv38/CgsL0b9/f+Tm5iqVGzdunNLvZcmSJRpXFwDo3LmzUpxHjx5V2l8Xv5eGQtXfSUNT1WunocjNzUXXrl0RGRlZ7v4lS5Zg5cqVWLNmDU6ePAkTExP4+voiLy+vniOtG1XVH6j6fZc0088//4xRo0Zh7NixOHfuHI4dO4aRI0eqO6xaN3XqVNjZ2ak7jFpz9epVlJSU4N///jcuXbqE5cuXY82aNfjXv/6l7tBUVifvo6KR6NmzpwgJCZHWi4uLhZ2dnYiIiCi3/Ntvvy38/f2Vtnl4eIj3339fWg8KChKDBw+u8JqXL18WAMTp06elbXv27BEymUz8+eefNaxJ3dTleYMHDxb9+vVT2ubg4CCWL19e47jLo2pdqhNPVefMzMwUenp6Ytu2bVKZK1euCAAiPj5eo+ryvIyMDAFAxMXFSdtef/118cknn9Qk5ArVRV1mzZolunbtWuFxdfV7aShe5Hei7ap67TRUAMT27dul9ZKSEiGXy8UXX3whbcvMzBQGBgbixx9/VEOEdev5+gtR9fsuaabCwkLx0ksvie+++07dodSp3bt3i06dOolLly4JAOLs2bPqDqlOLFmyRDg6Oqo7DJXVxftoo+iRKigoQEJCAnx8fKRtOjo68PHxQXx8fLnHxMfHK5UHAF9f3zLlDx8+DGtra3Ts2BETJkzAgwcPlM5haWmJ7t27S9t8fHygo6ODkydPalxdSqWnp2PXrl0IDg4us2/RokVo1qwZ3Nzc8MUXX6CoqKhG9ahpXWrjnAkJCSgsLFQq06lTJ9jb29fpdWtDVlYWAMDKykpp++bNm9G8eXN06dIF4eHhePLkSY2vUZd1uX79Ouzs7NCmTRsEBgYiNTVV2lcXv5eGor5eX5qsstdOY5GSkgKFQqH0OrCwsICHh0ejeR0Alb/vkmb6448/8Oeff0JHRwdubm6wtbWFn59fmVE+2iw9PR3jxo3DDz/8AGNjY3WHU6eysrLKfA7RdHX1PtooEqm//voLxcXFsLGxUdpuY2MDhUJR7jEKhaLK8gMGDMDGjRsRGxuLxYsXIy4uDn5+figuLpbOYW1trXSOJk2awMrKqsLrqqsuz9qwYQPMzMzKDKn6+OOPsWXLFhw6dAjvv/8+Fi5ciKlTp9aoHjWtS22cU6FQQF9fH5aWlvV63RdVUlKCiRMnonfv3ujSpYu0feTIkdi0aRMOHTqE8PBw/PDDD3jnnXdqfJ26qouHhwfWr1+PmJgYrF69GikpKXj11Vfx+PFjAHXze2ko6uP1pcmqeu00FqW/68b6OgCqft8lzXTz5k0AT+93nDFjBqKjo9G0aVN4eXnh4cOHao7uxQkhMGbMGHzwwQdKX543RDdu3MCqVavw/vvvqzsUldTV+2iTFw2sMRs+fLj0s4uLC1xdXdG2bVscPnwY3t7eaozsxXz//fcIDAyEoaGh0vawsDDpZ1dXV+jr6+P9999HREQEDAwM6jvMRickJAQXL14sc2/Is/fcubi4wNbWFt7e3khOTkbbtm3rO8wK+fn5ST+7urrCw8MDDg4O+Omnn8rt/SQqxdcOlWqo77vaavr06Vi8eHGlZa5cuYKSkhIAwGeffSbde71u3Tq0bNkS27Zt09gP5dWt3759+/D48WOEh4fXU2Qvrrp1e3Zinz///BMDBgzAP//5T4wbN66uQ9QKjSKRat68OXR1dcvM/pWenl7hjfFyuVyl8gDQpk0bNG/eHDdu3IC3tzfkcnmZG9iKiorw8OHDSs+jzrr8/vvvSEpKwtatW6uMxcPDA0VFRbh16xY6duyoQi2eqkldauOccrkcBQUFyMzMVOr9qOvrvojQ0FBpspKWLVtWWtbDwwPA02+NapJI1XVdSllaWqJDhw64ceMGgLr5vTQU9fU70RbPv3Yai9LfdXp6OmxtbaXt6enp6Natm5qiUq/n33epfk2aNAljxoyptEybNm2QlpYGAHB2dpa2GxgYoE2bNho9TLe69Tt48CDi4+PLfKncvXt3BAYGYsOGDXUYZc1Ut26l7t27h759++KVV17Bt99+W8fR1b66eh9tFEP79PX14e7ujtjYWGlbSUkJYmNj4enpWe4xnp6eSuUBYP/+/RWWB4C7d+/iwYMH0hucp6cnMjMzkZCQIJU5ePAgSkpKpA+7mlaXtWvXwt3dHV27dq0ylsTEROjo6JQZvlhdNalLbZzT3d0denp6SmWSkpKQmppap9etCSEEQkNDsX37dhw8eBCOjo5VHlM63eqzH7RUUVd1eV5OTg6Sk5OlOOvi99JQ1NfvRFs8/9ppLBwdHSGXy5VeB9nZ2Th58mSjfB0AZd93qX61aNECnTp1qnQpbb8MDAyUHt9RWFiIW7duwcHBQY01qFx167dy5UqcO3cOiYmJSExMlB4xs3XrVixYsEDNtShfdesGPO2J8vLygru7O9atWwcdHe1LH+rsffTF58DQDlu2bBEGBgZi/fr14vLly2L8+PHC0tJSKBQKIYQQo0aNEtOnT5fKHzt2TDRp0kQsXbpUXLlyRcyaNUvo6emJCxcuCCGEePz4sZg8ebKIj48XKSkp4sCBA+Lll18W7du3F3l5edJ5BgwYINzc3MTJkyfF0aNHRfv27cWIESM0qi6lsrKyhLGxsVi9enWZax4/flwsX75cJCYmiuTkZLFp0ybRokULMXr06HqtS35+vjh79qw4e/assLW1FZMnTxZnz54V169fr/Y5hRDigw8+EPb29uLgwYPizJkzwtPTU3h6empcXSZMmCAsLCzE4cOHRVpamrQ8efJECCHEjRs3xNy5c8WZM2dESkqK+PXXX0WbNm3Ea6+9pnF1mTRpkjh8+LBISUkRx44dEz4+PqJ58+YiIyNDKlMXv5eGojqv64aqOq+dhuLx48fS3xIAsWzZMnH27Flx+/ZtIYQQixYtEpaWluLXX38V58+fF4MHDxaOjo7i77//VnPktaOy+lf3fZc00yeffCJeeuklsXfvXnH16lURHBwsrK2txcOHD9UdWq1LSUlpMLP23b17V7Rr1054e3uLu3fvKn0W0TZ18T7aaBIpIYRYtWqVsLe3F/r6+qJnz57ixIkT0r7XX39dBAUFKZX/6aefRIcOHYS+vr7o3Lmz2LVrl7TvyZMnon///qJFixZCT09PODg4iHHjxpX5ZTx48ECMGDFCmJqaCnNzczF27Fjx+PFjjapLqX//+9/CyMhIZGZmltmXkJAgPDw8hIWFhTA0NBROTk5i4cKFtfLmpUpdShun55fXX3+92ucUQoi///5bfPjhh6Jp06bC2NhYvPXWW7XSKNR2XcrbD0CsW7dOCCFEamqqeO2114SVlZUwMDAQ7dq1E1OmTBFZWVkaV5dhw4YJW1tboa+vL1566SUxbNgwcePGDaVr1tXvpaGo6nXdUFXntdNQHDp0qNy/pdK/t5KSEvH5558LGxsbYWBgILy9vUVSUpJ6g65FldW/uu+7pJkKCgrEpEmThLW1tTAzMxM+Pj7i4sWL6g6rTjSkRGrdunUVfhbRRrX9PioTQoia92cRERERERE1Pto3yJGIiIiIiEjNmEgRERERERGpiIkUERERERGRiphIERERERERqYiJFBERERERkYqYSBEREREREamIiRQREREREZGKmEgREZHajBkzBkOGDFF3GGUcPnwYMpkMmZmZ1T6mdevWWLFiRaVlZDIZduzYUWmZBw8ewNraGrdu3ar2tWuqV69e+Pnnn+v8OkTlqcnfWUPh5eWFiRMnVrv8+vXrYWlpWWmZ2bNno1u3blWe6/PPP8f48eOrfe2aiomJQbdu3VBSUlLn11IXJlKkdrdu3YJMJkNiYqK6Q6mR2miQqvNmsmbNGgwaNOiFrkNUHWPGjIFMJoNMJoO+vj7atWuHuXPnoqioSN2hVak6Hzaq45VXXkFaWhosLCxePCgVLViwAIMHD0br1q1VPjYuLg6tWrWqdvkZM2Zg+vTpDfqDDtWN+/fvY8KECbC3t4eBgQHkcjl8fX1x7NixeouhthOx2mo/quOXX37BvHnz6uVaz1IoFPjqq6/w2Wef1ej4vn374rvvvqtW2QEDBkBPTw+bN2+u0bW0AROpRkChUOCTTz5Bu3btYGhoCBsbG/Tu3RurV6/GkydP6jUWTfj2uTZjKK9BOnLkCAYNGgQ7O7sqv31WpUF699138ccff+D3339/0bCJqjRgwACkpaXh+vXrmDRpEmbPno0vvvii3LIFBQX1HF3d09fXh1wuh0wmq9frPnnyBGvXrkVwcHCNjv/1119V+sLFz88Pjx8/xp49e2p0PWq8AgICcPbsWWzYsAHXrl3Dzp074eXlhQcPHqg7tDI0sY2ysrKCmZlZvV/3u+++wyuvvAIHBweVj3348CGOHTumUhszZswYrFy5UuVraQsmUg3czZs34ebmhn379mHhwoU4e/Ys4uPjMXXqVERHR+PAgQMVHltYWFiPkb44dcRbXoOUm5uLrl27IjIystJjVW2Q9PX1MXLkyAbdIJHmKP2G2cHBARMmTICPjw927twJ4H9fRixYsAB2dnbo2LEjAODChQvo168fjIyM0KxZM4wfPx45OTnSOYuLixEWFgZLS0s0a9YMU6dOhRBC6brlDY/r1q0bZs+eLa1nZmbi/fffh42NDQwNDdGlSxdER0fj8OHDGDt2LLKysqQetWePK3Xr1i3o6OjgzJkzSttXrFgBBwcHlJSUlPtN99GjR/Hqq6/CyMgIrVq1wscff4zc3NwK/w+vX7+O1157DYaGhnB2dsb+/fsr+y8HAOzevRsGBgbo1auX0vadO3eiffv2MDQ0RN++fbFhw4Zyv4nfuXMn/vGPfwAAHj9+jMDAQJiYmMDW1hbLly8vM5xIV1cXAwcOxJYtW6qMjahUZmYmfv/9dyxevBh9+/aFg4MDevbsifDwcOn1V95ok8zMTMhkMhw+fFjpfMeOHYOrqysMDQ3Rq1cvXLx4Udp3+/ZtDBo0CE2bNoWJiQk6d+6M3bt349atW+jbty8AoGnTppDJZBgzZgyAp8PmQkNDMXHiRDRv3hy+vr4AgGXLlsHFxQUmJiZo1aoVPvzwQ6mNqqz9yM/Px+TJk/HSSy/BxMQEHh4eZerwrHfffRdvvvmm0rbCwkJYW1tj7dq1UozP/i2qeg0AWLRoEWxsbGBmZobg4GDk5eVVWh4AtmzZUuZzR3XaCgDYtWsXXn75ZdjY2ACoXrs0aNAgnDlzBsnJyVXGppUENWi+vr6iZcuWIicnp9z9JSUl0s8AxDfffCMGDRokjI2NxaxZs4QQQnzzzTeiTZs2Qk9PT3To0EFs3LhROmbSpEnC399fWl++fLkAIPbs2SNta9u2rfjPf/4jZs2aJQAoLYcOHRIpKSkCgPj555+Fl5eXMDIyEq6uruL48eOV1q28eIuKisS7774rWrduLQwNDUWHDh3EihUrpGMqikEIIVJTU8U///lPYWFhIZo2bSr+8Y9/iJSUlEpj6Ny5s/j6668rjXH79u3l7tu4caPw8PAQQghx6NAhAUAcOHBAuLu7CyMjI+Hp6SmuXr2qdExcXJzQ19cXT548qTQuohcRFBQkBg8erLTtH//4h3j55Zel/aampmLUqFHi4sWL4uLFiyInJ0fY2tqKoUOHigsXLojY2Fjh6OgogoKCpHMsXrxYNG3aVPz888/i8uXLIjg4WJiZmSldy8HBQSxfvlzp2l27dpXao+LiYtGrVy/RuXNnsW/fPpGcnCx+++03sXv3bpGfny9WrFghzM3NRVpamkhLSxOPHz8ut45vvPGG+PDDD5W2ubq6ipkzZwoh/vc3+ejRIyGEEDdu3BAmJiZi+fLl4tq1a+LYsWPCzc1NjBkzptzYi4uLRZcuXYS3t7dITEwUcXFxws3NrdI2QQghPv74YzFgwAClbTdv3hR6enpi8uTJ4urVq+LHH38UL730klJ8Qghx8eJFYWZmJvLz84UQQrz33nvCwcFBHDhwQFy4cEG89dZbwszMTHzyySdK51+9erVwcHCoMCai5xUWFgpTU1MxceJEkZeXV26Z0vf2s2fPStsePXqk9L5b+nfm5OQk9u3bJ86fPy/efPNN0bp1a1FQUCCEEMLf31+88cYb4vz589Lfe1xcnCgqKhI///yzACCSkpJEWlqayMzMFEII8frrrwtTU1MxZcoUcfXqVem9dPny5eLgwYMiJSVFxMbGio4dO4oJEyYIIUSl7cd7770nXnnlFXHkyBFx48YN8cUXXwgDAwNx7dq1cut+7NgxoaurK+7duydt++WXX4SJiYl0ztdff13pb7Gqa6xbt05YWFhI5bdu3SoMDAzEd999J65evSo+++wzYWZmJrp27Vrh7+3BgwdCJpOJEydOKG2vblvxf//3f2LhwoVCiOq3S0IIYWNjI9atW1dhXNqMiVQD9tdffwmZTCYiIiKqVR6AsLa2Ft9//71ITk4Wt2/fFr/88ovQ09MTkZGRIikpSXz55ZdCV1dXHDx4UAghxM6dO4WFhYUoKioSQggxZMgQ0bx5czFt2jQhhBB3794VAMT169fF48ePxdtvvy0GDBggNVL5+flSY9upUycRHR0tkpKSxP/93/8JBwcHUVhYqFK8BQUFYubMmeL06dPi5s2bYtOmTcLY2Fhs3bpVCCEqjKGgoEA4OTmJd999V5w/f15cvnxZjBw5UnTs2FH6UPK8ihqk52Os6EPTsw1S6ZuJh4eHOHz4sLh06ZJ49dVXxSuvvKJ0TG5urtDR0ZHehIjqwrOJVElJidi/f78wMDAQkydPlvbb2Ngo/W18++23omnTpkpf2uzatUvo6OgIhUIhhBDC1tZWLFmyRNpfWFgoWrZsqVIitXfvXqGjoyOSkpLKjf35DxsV2bp1q2jatKn0ITAhIUHIZDLpy5PnE6ng4GAxfvx4pXP8/vvvQkdHR/z9999lYt+7d69o0qSJ+PPPP6Xye/bsqTKRGjx4sHj33XeVtk2bNk106dJFadtnn31W5gPLggULxP/93/8JIYTIzs4Wenp6Ytu2bdL+zMxMYWxsXObD0a+//ip0dHREcXFxhXERPe+///2vaNq0qTA0NBSvvPKKCA8PF+fOnZP2q5JIbdmyRSrz4MEDYWRkJL1vu7i4iNmzZ5cbw/N/p6Vef/114ebmVmUdtm3bJpo1ayatl9d+3L59W+jq6ir9LQshhLe3twgPD6/w3M7OzmLx4sXS+qBBg5S+eHk2karONZ6PzdPTs8yXQR4eHpUmUmfPnhUARGpqqrStum1FXl6eMDU1FRcvXhRCVL9dEkIINze3Cn+H2o5D+xqwGzduQAghDbsp1bx5c5iamsLU1BTTpk1T2jdy5EiMHTsWbdq0gb29PZYuXYoxY8bgww8/RIcOHRAWFoahQ4di6dKlAIBXX30Vjx8/xtmzZyGEwJEjRzBp0iSpO/rw4cN46aWX0K5dO5iamsLIyEgaMiSXy6Gvry9de/LkyfD390eHDh0wZ84c3L59Gzdu3Ki0js/Hq6enhzlz5qB79+5wdHREYGAgxo4di59++gkAKoxh69atKCkpwXfffQcXFxc4OTlh3bp1SE1NrbBrPTU1FUII2NnZqfJrAfC0Cz8mJkYaAlFqwYIFeP311+Hs7Izp06fj+PHjSl31xsbGsLCwwO3bt1W+JpEqoqOjYWpqCkNDQ/j5+WHYsGFKw+RcXFyU/n6vXLmCrl27wsTERNrWu3dvlJSUICkpCVlZWUhLS4OHh4e0v0mTJujevbtKcSUmJqJly5bo0KFDzSsHYMiQIdDV1cX27dsBPL3JvG/fvhVO8HDu3DmsX79eajtNTU3h6+uLkpISpKSklCl/5coVtGrVSql98PT0rDKuv//+G4aGhkrbkpKS0KNHD6VtPXv2LHPsr7/+KrUpN2/eRGFhoVI5CwuLMu8HAGBkZISSkhLk5+dXGR9RqYCAANy7dw87d+7EgAEDcPjwYbz88stYv369yud69m/DysoKHTt2xJUrVwAAH3/8MebPn4/evXtj1qxZOH/+fLXO6e7uXmbbgQMH4O3tjZdeeglmZmYYNWoUHjx4UOn94hcuXEBxcTE6dOig9PcfFxdX6XC19957D+vWrQMApKenY8+ePXj33Xdr7RpXrlxRak+BqtuYv//+GwCU2pjqthUHDx6EtbU1OnfuDKD67RLwtI2p73vy6wsTqUbo1KlTSExMROfOncu8cT7/oebKlSvo3bu30rbevXtLDZylpSW6du2Kw4cP48KFC9DX18f48eNx9uxZ5OTkIC4uDq+//nq14nJ1dZV+trW1BQBkZGRUekx5H8IiIyPh7u6OFi1awNTUFN9++y1SU1MrPc+5c+dw48YNmJmZSQ2YlZUV8vLyKmzEymuQquv5BqlUdf4PGnKDRJqjb9++SExMxPXr1/H3339jw4YNSknSsz/XJh0dnTL3TT17/6ORkVGtXEdfXx+jR4/GunXrUFBQgKioqAo/5ABATk4O3n//fSQmJkrLuXPncP36dbRt27ZWYgKeftH16NEjlY9LS0vD2bNn4e/vr/KxDx8+hImJSa3931LjYWhoiDfeeAOff/45jh8/jjFjxmDWrFkAnv4tA1D6e67Jvczvvfcebt68iVGjRuHChQvo3r07Vq1aVeVxz7dRt27dwptvvglXV1f8/PPPSEhIkO5lrmwyipycHOjq6iIhIUHp7//KlSv46quvKjxu9OjRuHnzJuLj47Fp0yY4Ojri1VdfrdVrqKp58+YAUKM25tn7L1X18OFDtGjRokbHajomUg1Yu3btIJPJkJSUpLS9TZs2aNeuXblvmjX5cOTl5YXDhw9LSZOVlRWcnJxw9OhRlRIpPT096efSmbKqmpL3+Xi3bNmCyZMnIzg4GPv27UNiYiLGjh1b5Yw9OTk5cHd3V2rAEhMTce3aNYwcObLcY+qiQarO/0FDbpBIc5iYmKBdu3awt7dHkyZNqizv5OSEc+fOKU2+cOzYMejo6KBjx46wsLCAra0tTp48Ke0vKipCQkKC0nlatGiBtLQ0aT07O1upx8fV1RV3797FtWvXyo1DX18fxcXF1arje++9hwMHDuCbb75BUVERhg4dWmHZl19+GZcvX0a7du3KLM/2zJVycnLCnTt3lOpy4sSJKmNyc3PD5cuXlbZ17NixzMQYp0+fVlr/7bff8Morr8DKygrA03ZeT09PqVxWVla5/28XL16Em5tblbERVcXZ2VlqA0rfp579G6joMSfP/m08evQI165dg5OTk7StVatW+OCDD/DLL79g0qRJ+M9//gMA0t9edf7mExISUFJSgi+//BK9evVChw4dcO/ePaUy5bUfbm5uKC4uRkZGRpm/fblcXuH1mjVrhiFDhmDdunVYv349xo4dW2HZmlzDyclJqT0Fqm5j2rZtC3Nzc6U2pjpthRACv/32GwYPHixtq067BED6QrqhtjFMpBqwZs2a4Y033sDXX39d6cxSlXFycirzTIhjx47B2dlZWn/99ddx9OhRxMbGwsvLC8DT5OrHH3/EtWvXpG2Aah9yauLYsWN45ZVX8OGHH8LNzQ3t2rUr06NUXgwvv/wyrl+/Dmtr6zKNWEXPkSmvQaqO8hqk6kpOTkZeXl6DbZBIewUGBsLQ0BBBQUG4ePEiDh06hI8++gijRo2SZnj65JNPsGjRIuzYsQNXr17Fhx9+WGbWuX79+uGHH37A77//jgsXLiAoKAi6urrS/tdffx2vvfYaAgICsH//fqSkpGDPnj2IiYkB8HTWv5ycHMTGxuKvv/6qtPfWyckJvXr1wrRp0zBixIhKe2SmTZuG48ePIzQ0VOqp+/XXXxEaGlpueR8fH3To0AFBQUE4d+4cfv/992o9t8XX1xeXLl1S+oLm/fffx9WrVzFt2jRcu3YNP/30kzR8qvQLl+e/nDEzM0NQUBCmTJmCQ4cO4dKlSwgODoaOjk6ZKd1///139O/fv8rYiEo9ePAA/fr1w6ZNm3D+/HmkpKRg27ZtWLJkifTeZmRkhF69emHRokW4cuUK4uLiMGPGjHLPN3fuXMTGxuLixYsYM2YMmjdvLj2mZOLEidi7dy9SUlLwxx9/4NChQ1KS5eDgAJlMhujoaNy/f19pltDntWvXDoWFhVi1ahVu3ryJH374AWvWrFEqU1770aFDBwQGBmL06NH45ZdfkJKSglOnTiEiIgK7du2q9P/pvffew4YNG3DlyhUEBQVVWK4m1/jkk0/w/fffY926dbh27RpmzZqFS5cuVRqPjo4OfHx8cPToUWlbddqKhIQEPHnyBH369JGOq067BDxN7gwMDKo1tFkrqfH+LKoHN27cEDY2NqJTp05iy5Yt4vLly+Lq1avihx9+EDY2NiIsLEwqi3Jugt6+fbvQ09MT33zzjbh27Zo02cSzkx08fPhQ6OjoCF1dXXHlyhXpOF1dXWFra6t0vgULFgh7e3tx9epVcf/+fVFQUFCtG1LLU168X331lTA3NxcxMTEiKSlJzJgxQ5ibmyvdfFleDLm5uaJ9+/bCy8tLHDlyRNy8eVMcOnRIfPTRR+LOnTsVxjB06FAxadIkpW2PHz8WZ8+elW7qXLZsmTh79qy4ffu2EEKI06dPi6ZNmypNpFHeDbOlxz87c+C6detEmzZtKoyHqDaUN2tfdfafP39e9O3bVxgaGgorKysxbtw4pVnzCgsLxSeffCLMzc2FpaWlCAsLE6NHj1Y6V1ZWlhg2bJgwNzcXrVq1EuvXr1eabEKIpzejjx07VjRr1kwYGhqKLl26iOjoaGn/Bx98IJo1ayYAKB1XnrVr1woA4tSpU0rby/ubPHXqlHjjjTeEqampMDExEa6urmLBggXS/ucnykhKShJ9+vQR+vr6okOHDiImJqbKySaEEKJnz55izZo1Stt+/fVX0a5dO2FgYCC8vLzE6tWrBQDx999/i5ycHGFoaCiuX7+udEx2drYYOXKkMDY2FnK5XCxbtkz07NlTTJ8+XSpz9+5doaenV2k7R/S8vLw8MX36dPHyyy8LCwsLYWxsLDp27ChmzJihNKvs5cuXhaenpzAyMhLdunUT+/btK3eyid9++0107txZ6Ovri549eypNWhEaGiratm0rDAwMRIsWLcSoUaPEX3/9Je2fO3eukMvlQiaTSbOEPj8jXqlly5YJW1tbYWRkJHx9fcXGjRvL/J2X136UTmTVunVroaenJ2xtbcVbb70lzp8/X+n/U0lJiXBwcBADBw4ss+/5GKu6RnkTYSxYsEA0b95cmJqaiqCgIDF16tRKJ5sQQojdu3eLl156SWlymaraihkzZojAwMAy56qsXSo1fvx48f7771cakzZjItUI3Lt3T4SGhgpHR0ehp6cnTE1NRc+ePcUXX3whcnNzpXIVvcFXNv15qa5duwq5XC6tl85oN3z4cKVyGRkZ0geR0sa0NhOpvLw8MWbMGGFhYSEsLS3FhAkTxPTp05UalvJiEEKItLQ0MXr0aNG8eXNhYGAg2rRpI8aNGyeysrIqjKG8Bqn0jeH5pbSBL69Bqm4i1b9//2rPwkhEVZs7d65wcXFRdxhKoqOjhZOTU6Wz6M2fP1+0bNlSCCHEzz//LJycnKo8b05OjrCwsBDfffedtG3q1Kli3LhxLx40EZXx+PFjYW5uLn7++Wd1hyIpKSkRPXr0EFFRURWWeb6tcHFxkWZRrMyz7ZIQQty/f19YWVmJmzdvvnjgGoqJFNELqE6D9LzqNkjPu3jxorC2tpaek0FENff48WNx4cIFYW1tLb799lt1h1PG8uXLlaYojoyMFKdOnRLJycli48aNwsLCQnz22WdCiKdTre/cubPMOf744w8RFRUlbty4IRISEsTgwYOFhYWFuH//vlRm6dKl0vT0RFQ7iouLRXp6upg6daqwt7ev9FEu6nD27FmlL8Urayvy8/PF7NmzRXZ2dpnzVNYuCfF0BM6zU9s3RDIhnpseiYhUkpiYiAsXLmDUqFFVli0oKEBERATCwsJgZmam0nUOHDiA4uJi6QntRFRzY8aMwY8//oghQ4YgKipK6T4sTfTpp59i69atePjwIezt7TFq1CiEh4dXOhHI2bNn8d577yEpKQn6+vpwd3fHsmXL4OLiUo+REzU+t27dgqOjI1q2bIn169fD29tb3SFVqqZtRU3apYaGiRQREREREZGKOGsfERERERGRiphIERERERERqYiJFBERERERkYqYSBEREREREamIiRQREREREZGKmEgRERERERGpiIkUERERERGRiphIERERERERqYiJFBERERERkYr+H4rJ138vDOTRAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAHACAYAAACoF1lmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7XUlEQVR4nO3deVhV1f4/8Dcg8ygoUwLiDAqKmHDSCoVEJK8m9+ZACkaaBpaippRXUVPMTG1Avd0MbCDNWzY44IBjihOJigMqamhywDRBMOb1+8Mf++uR8eCBcw68X8+zHzl7r733ZwlnnfPZa+21dYQQAkRERERERNRguuoOgIiIiIiISNswkSIiIiIiIlISEykiIiIiIiIlMZEiIiIiIiJSEhMpIiIiIiIiJTGRIiIiIiIiUhITKSIiIiIiIiUxkSIiIiIiIlJSG3UHoAkqKytx69YtmJubQ0dHR93hELVqQgjcv38fjo6O0NXVjms9bEOINIc2tiEA2xEiTdLQdoSJFIBbt27ByclJ3WEQ0SNu3LiBDh06qDuMBmEbQqR5tKkNAdiOEGmi+toRJlIAzM3NATz8z7KwsFBzNKS04mJgwoSHP3/5JWBkpN546IkUFBTAyclJel9qA41pQ0pLgQ8/fPjzzJmAgYH6YiFSE21sQwANakeIGqoFf/9qaDvCRAqQutAtLCzYeGkjAwNAX//hzxYWLeqN3Jpp09AWjWlDSksBQ0P8/2CYSFGrpk1tCKBB7QhRQ7WC71/1tSPaM3iYiIiIiIhIQzCRIiIiIiIiUhITKSIiIiIiIiXxHikiIiIiLVBRUYGysjJ1h0FK0tPTQ5s2bbTuvj2qHxMpIiIiIg1XWFiImzdvQgih7lCoEUxMTODg4AADTgLUojCRIiIiItJgFRUVuHnzJkxMTNC+fXv2bGgRIQRKS0tx+/ZtXLt2DV27dtWqB0VT3ZhIEREREWmwsrIyCCHQvn17GBsbqzscUpKxsTH09fXx+++/o7S0FEYtcJrw1oopMREREZEWYE+U9mIvVMvE3yoRabU//vgDr7zyCmxsbGBsbAwPDw+cPHlS2i6EwPz58+Hg4ABjY2MEBATg8uXLCse4e/cuQkNDYWFhASsrK0RERKCwsLC5q0JERERahIkUEWmtv/76CwMGDIC+vj527NiB8+fP48MPP0Tbtm2lMsuXL8fHH3+MdevW4dixYzA1NUVgYCCKi4ulMqGhoTh37hx2796NrVu34uDBg5g8ebI6qkRERERagvdIEZHWev/99+Hk5ISEhARpnaurq/SzEAKrV6/GvHnzMGLECADAl19+CTs7O/z4448YM2YMLly4gOTkZJw4cQL9+vUDAHzyyScYNmwYVqxYAUdHx+atFBEREWkF9kgRkdb6+eef0a9fP/zrX/+Cra0tvLy88N///lfafu3aNcjlcgQEBEjrLC0t4ePjg9TUVABAamoqrKyspCQKAAICAqCrq4tjx47VeN6SkhIUFBQoLEREpHni4+PRsWNHGBkZwcfHB8ePH693n/qGjN+/fx/Tp0+Hi4sLjI2N8cwzz+DEiRNNWQ3SUOyRIiKtdfXqVaxduxbR0dF45513cOLECbz55pswMDBAWFgY5HI5AMDOzk5hPzs7O2mbXC6Hra2twvY2bdrA2tpaKvO4uLg4LFy4sAlqRETUcB3nbmvW811fFtys53tSmzZtQnR0NNatWwcfHx+sXr0agYGByMzMrNbuV6kaMj5o0CDs2LED7du3x+XLlxWGjL/22mvIyMjAV199BUdHR3z99dcICAjA+fPn8dRTTzVX9UgDsEeKiLRWZWUl+vbti6VLl8LLywuTJ0/GpEmTsG7duiY9b0xMDPLz86Xlxo0bTXo+IiJtdvToUfj7+8PGxgY6OjoKS1P26K9cuRKTJk3CxIkT4e7ujnXr1sHExARffPFFrfs8OmS8f//+cHV1xZAhQ9C5c2cAwN9//43vv/8ey5cvx3PPPYcuXbogNjYWXbp0wdq1a5usLqSZmEgRkdZycHCAu7u7wjo3NzdkZ2cDAOzt7QEAubm5CmVyc3Olbfb29sjLy1PYXl5ejrt370plHmdoaAgLCwuFhYiIqjt9+jT8/Pzg5eWFQ4cOITk5GdbW1vD398emTZsa1H4uXboUZmZmdS5V7X6V0tJSpKWlKQzt1tXVRUBAgDS0uyb1DRkvLy9HRUVFtWdBGRsb49dff23ofwu1EBzaR9or1vLhv3Nz6y5HLdaAAQOQmZmpsO7SpUtwcXEB8HDiCXt7e6SkpKBPnz4AgIKCAhw7dgxTp04FAMhkMty7dw9paWnw9vYGAOzduxeVlZXw8fFpvso84vHhOto2nIaIqMqbb76JUaNGYcWKFQAAd3d3jB07FmlpaXj55ZcbdIwpU6bUW/bxiYH+/PNPVFRU1Di0++LFi7Uep74h4+bm5pDJZFi8eDHc3NxgZ2eHb7/9FqmpqejSpUuD6kMPtYTPOiZSRKS1ZsyYgWeeeQZLly7Fyy+/jOPHj+Ozzz7DZ599BuDhwyunT5+O9957D127doWrqyv+/e9/w9HRESNHjgTwsAdr6NCh0pDAsrIyREVFYcyYMZyxj4joCeTm5uLXX3/FgQMHFNabmpoq9XBha2trWFtbqzq8GlVWVqJfv35YunQpAMDLywsZGRlYt24dwsLCAABfffUVXn31VTz11FPQ09ND3759peSQWhcO7SMirfX0009jy5Yt+Pbbb9GrVy8sXrwYq1evRmhoqFTm7bffxrRp0zB58mQ8/fTTKCwsRHJyssKwjG+++QY9evSAv78/hg0bhoEDB0rJGBERNU5aWhoqKyvRu3fvauurZkr9/fffMXz4cHh5eaFXr17VhugBjRva165dO+jp6dU5tLsm9Q0ZB4DOnTvjwIEDKCwsxI0bN3D8+HGUlZWhU6dODfuPoRaDPVJEpNVefPFFvPjii7Vu19HRwaJFi7Bo0aJay1hbWyMpKakpwiMiarUqKysBAEVFRTA3NwcAnDlzBgcPHsR7772H0tJSDBs2DPHx8fDz88Nff/0FMzOzasdpzNA+AwMDeHt7IyUlRRqBUFlZiZSUFERFRdV6nPqGjD/K1NQUpqam+Ouvv7Bz504sX768zhip5WEiRUREREQq5+PjA2NjY8yePRvvvvsusrKyEBkZicjISPj6+mLTpk3w9fWFn58fAChMMf6oxg7ti46ORlhYGPr164f+/ftj9erVKCoqwsSJE6Uyn376KbZs2YKUlBQA9Q8ZB4CdO3dCCIHu3bvjypUrmD17Nnr06KFwXGodmEgRERERkcq1b98e3333HWbOnAlPT084OzsjKioK0dHRAICzZ8+if//+TXb+0aNH4/bt25g/fz7kcjn69OmD5ORkhQko/vzzT2RlZUmvq4aMx8TEYNGiRXB1da02ZDw/Px8xMTG4efMmrK2tERISgiVLlkBfX7/J6kKaiYkUERERkRbShlnO6hp+bWdnh4yMDABARUUF8vPzVT6pRFRUVJ1D+WJjYxEbG6uwrr4h4y+//HKDZxyklo2TTRARERFRswsPD0dWVhZ69eqFfv364dKlS+oOiUgp7JEiIiIiomZnbm6O7du3qzsMokZjIkVERERERGr1+AN6Ac0fvsqhfUREREREREpiIkVERERERKQkJlJERERERERKYiJFRERERESkJCZSRERERERESmIiRUREREREpCQmUkREREREREric6SoRek+bwdK2hhIrzX9+QNEREREpJ3YI0VERESt1tq1a+Hp6QkLCwtYWFhAJpNhx44d0nY/Pz/o6OgoLFOmTFE4RnZ2NoKDg2FiYgJbW1vMnj0b5eXlzV0VImpmTKRI63WftwN7LuRiz4VcdYdCRERapkOHDli2bBnS0tJw8uRJDB48GCNGjMC5c+ekMpMmTUJOTo60LF++XNpWUVGB4OBglJaW4siRI9iwYQMSExMxf/58dVSHHhMfH4+OHTvCyMgIPj4+OH78eJ3l60usASA2NrZact2jR4+mrAZpKA7tI63Rce42hdfXjdQUCBERtRjDhw9XeL1kyRKsXbsWR48eRc+ePQEAJiYmsLe3r3H/Xbt24fz589izZw/s7OzQp08fLF68GHPmzEFsbCwMDAxq3E8lYi2b7tg1ni+/ec/3hDZt2oTo6GisW7cOPj4+WL16NQIDA5GZmQlbW9sa96lKrLt27QohBDZs2IARI0bg1KlT0t8DAPTs2RN79uyRXrdpw6/UrRF7pIiIiIjwsHdp48aNKCoqgkwmk9Z/8803aNeuHXr16oWYmBg8ePBA2paamgoPDw/Y2dlJ6wIDA1FQUKDQq9WaHT16FP7+/rCxsanWk1NQUNBk5125ciUmTZqEiRMnwt3dHevWrYOJiQm++OKLWvcZPnw4hg0bhq5du6Jbt25YsmQJzMzMcPToUYVybdq0gb29vbS0a9euyepBmouJFGm9TKMwBOidQoDeKXWHQkREWujs2bMwMzODoaEhpkyZgi1btsDd3R0AMG7cOHz99dfYt28fYmJi8NVXX+GVV16R9pXL5QpJFADptVwur/WcJSUlKCgoUFhaotOnT8PPzw9eXl44dOgQkpOTYW1tDX9/f2zatAkWFhb1HmPp0qUwMzOrc8nOzlbYp7S0FGlpaQgICJDW6erqIiAgAKmpqQ2KvbbEGgAuX74MR0dHdOrUCaGhodXOT60D+yGJiIioVevevTvS09ORn5+P//3vfwgLC8OBAwfg7u6OyZMnS+U8PDzg4OAAf39/ZGVloXPnzo0+Z1xcHBYuXKiK8DXam2++iVGjRmHFihUAAHd3d4wdOxZpaWl4+eWXG3SMKVOm1FvW0dFR4fWff/6JioqKGpPcixcv1nmss2fPQiaTobi4GGZmZgqJNQD4+PggMTER3bt3R05ODhYuXIhnn30WGRkZMDc3b1CdqGVgIkUtwn5jY/j9/be6wyAiIi1kYGCALl26AAC8vb1x4sQJfPTRR/jPf/5TrayPjw8A4MqVK+jcuTPs7e2rTWCQm/tw8qPa7qsCgJiYGERHR0uvCwoK4OTk9MR10SS5ubn49ddfceDAAYX1pqam0NHRafBxrK2tYW1trerwalVXYg0AQUFBUllPT0/4+PjAxcUF3333HSIiIpotTlI/Du0jIiIiekRlZSVKSkpq3Jaeng4AcHBwAADIZDKcPXsWeXl5Upndu3fDwsJCoRfjcYaGhtLMcFVLS5OWlobKykr07t272vp+/foBAH7//XcMHz4cXl5e6NWrV41D5BoztK9du3bQ09OTktoqubm5dSa4wP8l1t7e3oiLi0Pv3r3x0Ucf1VreysoK3bp1w5UrV+o8LrU87JEiIiKiVismJgZBQUFwdnbG/fv3kZSUhP3792Pnzp3IyspCUlIShg0bBhsbG5w5cwYzZszAc889B09PTwDAkCFD4O7ujvHjx2P58uWQy+WYN28eIiMjYWhoqObaqVdlZSUAoKioSBrydubMGRw8eBDvvfceSktLMWzYMMTHx8PPzw9//fUXzMzMqh2nMUP7DAwM4O3tjZSUFIwcOVKKJyUlBVFRUUrXo7bEGgAKCwuRlZWF8ePHK3Vc0n5MpEhrXDcaBwDoWJyk5kiIiKilyMvLw4QJE5CTkwNLS0t4enpi586deOGFF3Djxg3s2bMHq1evRlFREZycnBASEoJ58+ZJ++vp6WHr1q2YOnUqZDIZTE1NERYWhkWLFqmxVprBx8cHxsbGmD17Nt59911kZWUhMjISkZGR8PX1xaZNm+Dr6ws/Pz8AQNu2bWs8TmOH9kVHRyMsLAz9+vVD//79pd/jxIkTpTKffvoptmzZgpSUFAB1J9ZVZs2aheHDh8PFxQW3bt3CggULoKenh7FjxyodI2k3JlLUIlUlXYB2PfOCiIia1/r162vd5uTkVO3+npq4uLhg+/btqgyrRWjfvj2+++47zJw5E56ennB2dkZUVJR0b9jZs2fRv3//Jjv/6NGjcfv2bcyfPx9yuRx9+vRBcnKywgQUf/75J7KysqTXdSXWVW7evImxY8fizp07aN++PQYOHIijR4+iffv2TVYX0kxMpIiINFy1h1EvC1ZTJEREynnxxRfx4osv1rjNzs4OGRkZAB5ONZ6fn6/ySSWioqLqHMoXGxuL2NhY6XVdiXWVjRs3qiI0agGYSBERERFpo1jtHnURHh6O0aNHo1evXtDX18fatWvh6+ur7rCIGoyJFBERERE1O3Nzcw6JJK3G6c+JiIiIiIiUxB4p0nyxlg0ummkUBrRp+EP+iIiIiIgagz1SRERERERESmKPFBERERERNanHZ6BtzD6aNmstEynSet4uTvgQNxq1r6a/QYmIiIhIM3FoHxERERERkZKYSBERERERESmJiRQREREREZGSmEgREREREREpiYkUaTUPV2d1h0BERERErRATKSIiIiIiIiVx+nMiIiIiLeSxwaNZz3c27Gyznk8V4uPj8cEHH0Aul6N379745JNP0L9//yfa5+DBg/jggw+QlpaGnJwcbNmyBSNHjmzimpAmYo8UaYyOc7cpLERERESNtWnTJkRHR2PBggX47bff0Lt3bwQGBiIvL++J9ikqKkLv3r0RHx/fHNUgDcZEioiIiIiazNGjR+Hv7w8bGxvo6OgoLAUFBU123pUrV2LSpEmYOHEi3N3dsW7dOpiYmOCLL754on2CgoLw3nvv4aWXXmqy2Ek7MJEiIiIioiZx+vRp+Pn5wcvLC4cOHUJycjKsra3h7++PTZs2wcLCot5jLF26FGZmZnUu2dnZCvuUlpYiLS0NAQEB0jpdXV0EBAQgNTW1xvM0Zh9q3XiPFBGRtou1fPjvO7fVGwcR0WPefPNNjBo1CitWrAAAuLu7Y+zYsUhLS8PLL7/coGNMmTKl3rKOjo4Kr//8809UVFTAzs5OYb2dnR0uXrxY4zEasw+1bkykiIiIiEjlcnNz8euvv+LAgQMK601NTaGjo9Pg41hbW8Pa2lrV4RE9MbUO7YuLi8PTTz8Nc3Nz2NraYuTIkcjMzFQoU1xcjMjISNjY2MDMzAwhISHIzc1VKJOdnY3g4GCYmJjA1tYWs2fPRnl5eXNWhYiIiIgekZaWhsrKSvTu3bva+n79+gEAfv/9dwwfPhxeXl7o1atXtSF6QOOG9rVr1w56enrVvjPm5ubC3t6+xngbsw+1bmpNpA4cOIDIyEgcPXoUu3fvRllZGYYMGYKioiKpzIwZM/DLL79g8+bNOHDgAG7duoVRo0ZJ2ysqKhAcHIzS0lIcOXIEGzZsQGJiIubPn6+OKpEKcfY+IiIi7VVZWQkACt/rzpw5g4MHD2LcuHEoLS3FsGHDMHPmTJw6dQqHDh2Cg4NDteNMmTIF6enpdS6PD+0zMDCAt7c3UlJSFOJJSUmBTCarMd7G7EOtm1qH9iUnJyu8TkxMhK2tLdLS0vDcc88hPz8f69evR1JSEgYPHgwASEhIgJubG44ePQpfX1/s2rUL58+fx549e2BnZ4c+ffpg8eLFmDNnDmJjY2FgYKCOqhERERG1aj4+PjA2Nsbs2bPx7rvvIisrC5GRkYiMjISvry82bdoEX19f+Pn5AQDatm1b43EaO7QvOjoaYWFh6NevH/r374/Vq1ejqKgIEydOlMp8+umn2LJli5Q8NWSfwsJCXLlyRXp97do1pKenw9raGs7OzkrHSdpLo+6Rys/PBwDpzZKWloaysjKF2VN69OgBZ2dnpKamwtfXF6mpqfDw8FC4MTAwMBBTp07FuXPn4OXlVe08JSUlKCkpkV435dSbRERERK1R+/bt8d1332HmzJnw9PSEs7MzoqKiEB0dDQA4e/ZsvQ/HfRKjR4/G7du3MX/+fMjlcvTp0wfJyckK3xn//PNPZGVlKbXPyZMnMWjQIOl1VX3CwsKQmJjYZPUhzaMxiVRlZSWmT5+OAQMGoFevXgAAuVwOAwMDWFlZKZS1s7ODXC6XytQ0u0rVtprExcVh4cKFKq4BaaLHhwZeXxaspkiIiIhU62zYWXWHUK8XX3wRL774Yo3b7OzskJGRAeDhrRr5+fkqn1QiKioKUVFRtW6PjY1FbGysUvv4+flBCKGqEEmLacxzpCIjI5GRkYGNGzc2+bliYmKQn58vLTdu3GjycxKR6sXGxlZ7uGOPHj2k7ZyshohIc4WHhyMrKwu9evVCv379cOnSJXWHRKQUjeiRioqKwtatW3Hw4EF06NBBWm9vb4/S0lLcu3dPoVfq0dlT7O3tcfz4cYXjVX1Rqm2GFUNDQxgaGqq4FtRcrhuNU3cIpEF69uyJPXv2SK/btPm/Zm3GjBnYtm0bNm/eDEtLS0RFRWHUqFE4fPgwgP+brMbe3h5HjhxBTk4OJkyYAH19fSxdurTZ60JE1JqYm5tj+/bt6g6DqNHUmkgJITBt2jRs2bIF+/fvh6urq8J2b29v6OvrIyUlBSEhIQCAzMxMZGdnS7OnyGQyLFmyBHl5ebC1tQUA7N69GxYWFnB3d2/eCpFSOCMfqUKbNm1qvGjCyWqIiIioKal1aF9kZCS+/vprJCUlwdzcHHK5HHK5HH///TcAwNLSEhEREYiOjsa+ffuQlpaGiRMnQiaTwdfXFwAwZMgQuLu7Y/z48Th9+jR27tyJefPmITIykr1ORK3A5cuX4ejoiE6dOiE0NFR6lkh9k9UAqHWymoKCApw7d655K0JERERaRa09UmvXrgUAadrLKgkJCQgPDwcArFq1Crq6uggJCUFJSQkCAwOxZs0aqayenh62bt2KqVOnQiaTwdTUFGFhYVi0aFFzVYOI1MTHxweJiYno3r07cnJysHDhQjz77LPIyMhosslqAM78SURERBowtK8+RkZGiI+PR3x8fK1lXFxcOMaWqBUKCgqSfvb09ISPjw9cXFzw3XffwdjYuMnOy5k/iYiISGNm7SNqCteNxnFyilbEysoK3bp1w5UrVxQmq3nU45PVPD6LX32T1QCc+ZOI1INTbmsv/u5aJiZSRNRiFBYWIisrCw4ODgqT1VSpabKas2fPIi8vTyrTkMlqDA0NYWFhobAQETUVPT09AEBpaamaI6HGevDgAQBAX19fzZGQKmnE9OdERI0xa9YsDB8+HC4uLrh16xYWLFgAPT09jB07VmGyGmtra1hYWGDatGm1TlazfPlyyOVyTlZDRBqnTZs2MDExwe3bt6Gvrw9dXV4H1xZCCDx48AB5eXmwsrKSkmJqGZhIET3i8SnZry8LVlMk1BA3b97E2LFjcefOHbRv3x4DBw7E0aNH0b59ewCcrIaIWgYdHR04ODjg2rVr+P3339UdDjWClZVVnUPGSTsxkSIirbVx48Y6t3OyGiJqKQwMDNC1a1cO79NC+vr67IlqoZhIEREREWkBXV1dGBkZqTsMIvr/OMiWiIiIiIhISUykiIiIiIiIlMREioiIiFqttWvXwtPTU3qUgUwmw44dO6TtxcXFiIyMhI2NDczMzBASElLt+XPZ2dkIDg6GiYkJbG1tMXv2bJSXlzd3VYiomfEeKSIiNXt8tkgiaj4dOnTAsmXL0LVrVwghsGHDBowYMQKnTp1Cz549MWPGDGzbtg2bN2+GpaUloqKiMGrUKBw+fBgAUFFRgeDgYNjb2+PIkSPIycnBhAkToK+vj6VLl6q5dkTUlJhIERERUas1fPhwhddLlizB2rVrcfToUXTo0AHr169HUlISBg8eDABISEiAm5sbjh49Cl9fX+zatQvnz5/Hnj17YGdnhz59+mDx4sWYM2cOYmNjYWBgoI5qEVEzYCJFrQqv/BMRUW0qKiqwefNmFBUVQSaTIS0tDWVlZQgICJDK9OjRA87OzkhNTYWvry9SU1Ph4eEBOzs7qUxgYCCmTp2Kc+fOwcvLq8ZzlZSUoKSkRHpdUFDQdBUjoibBe6SIiIioVTt79izMzMxgaGiIKVOmYMuWLXB3d4dcLoeBgQGsrKwUytvZ2UEulwMA5HK5QhJVtb1qW23i4uJgaWkpLU5OTqqtFBE1OSZSRERE1Kp1794d6enpOHbsGKZOnYqwsDCcP3++Sc8ZExOD/Px8ablx40aTno+IVI9D+4iIiKhVMzAwQJcuXQAA3t7eOHHiBD766COMHj0apaWluHfvnkKvVG5uLuzt7QEA9vb2OH78uMLxqmb1qypTE0NDQxgaGqq4JkTUnJhIERERET2isrISJSUl8Pb2hr6+PlJSUhASEgIAyMzMRHZ2NmQyGQBAJpNhyZIlyMvLg62tLQBg9+7dsLCwgLu7u9rqQKRureG+dCZSRERE1GrFxMQgKCgIzs7OuH//PpKSkrB//37s3LkTlpaWiIiIQHR0NKytrWFhYYFp06ZBJpPB19cXADBkyBC4u7tj/PjxWL58OeRyOebNm4fIyEj2OBG1cEykiIiIqNXKy8vDhAkTkJOTA0tLS3h6emLnzp144YUXAACrVq2Crq4uQkJCUFJSgsDAQKxZs0baX09PD1u3bsXUqVMhk8lgamqKsLAwLFq0SF1VIqJmwkSKiIiIWq3169fXud3IyAjx8fGIj4+vtYyLiwu2b9+u6tCISMNx1j4iIiIiIiIlMZEiIiIiIiJSEhMpIiIiIiIiJTGRolbhutE4XDcap+4wiIiIiKiFYCJFRERERESkJCZSRERERERESuL050REREREpPE6zt2m8Pr6smA1RfIQe6SIiIiIiIiUxESKiIiIiIhISRzaR0SkjWIt1R0BERFRq8ZEijQWpysnIiIi0iIKF/mS1BZGc+HQPiIiIiIiIiUxkSIiIiIiIlISEykiIiIiIlKp60bjWvxtGkykiIiIiIiIlMREioiIiIiISElMpIiIiIiIiJTERIqIiIiIiEhJTKSIiIiIiIiUxESKiIiIiIhISUykiIiIiIiIlMREilqV1vBMAyIiIiJqem3UHQAREanI4nbAoZKHP7/zjnpjISIiauHYI0VEpGU6zt2m7hCIiIhaPSZSRERERERESmIiRUREREREpCQmUkREREREREpiIkVERERERKQkztpHRERERESN954t0EZH3VE0OyZSRERags9AIyIi0hwc2kdERERERKQkJlJERERERERK4tA+ajKPPzT0+rJgNUVS3aNDpDoWJ6kxEiIiIiLSRuyRIiIiIiIiUhITKSIiIiIiIiUxkSIiIiIiIlISEykiIiIiIiIlMZEiohZj2bJl0NHRwfTp06V1xcXFiIyMhI2NDczMzBASEoLc3FyF/bKzsxEcHAwTExPY2tpi9uzZKC8vb+boiYiISJswkSKiFuHEiRP4z3/+A09PT4X1M2bMwC+//ILNmzfjwIEDuHXrFkaNGiVtr6ioQHBwMEpLS3HkyBFs2LABiYmJmD9/fnNXgYjUIC4uDk8//TTMzc1ha2uLkSNHIjMzU6GMn58fdHR0FJYpU6YolOEFGaLWh4kUEWm9wsJChIaG4r///S/atm0rrc/Pz8f69euxcuVKDB48GN7e3khISMCRI0dw9OhRAMCuXbtw/vx5fP311+jTpw+CgoKwePFixMfHo7S0VF1VIqJmcuDAAURGRuLo0aPYvXs3ysrKMGTIEBQVFSmUmzRpEnJycqRl+fLl0jZekCFqnfgcKWo2jz9XikhVIiMjERwcjICAALz33nvS+rS0NJSVlSEgIEBa16NHDzg7OyM1NRW+vr5ITU2Fh4cH7OzspDKBgYGYOnUqzp07By8vr2rnKykpQUlJifS6oKCgiWpGRE0tOTlZ4XViYiJsbW2RlpaG5557TlpvYmICe3v7Go9RdUFmz549sLOzQ58+fbB48WLMmTMHsbGxMDAwaNI6EGmyqmd3tsTndrJHioi02saNG/Hbb78hLi6u2ja5XA4DAwNYWVkprLezs4NcLpfKPJpEVW2v2laTuLg4WFpaSouTk5MKakJEmiA/Px8AYG1trbD+m2++Qbt27dCrVy/ExMTgwYMH0rbaLsgUFBTg3LlzNZ6npKQEBQUFCgsRaRf2SJFGqbpqQdQQN27cwFtvvYXdu3fDyMio2c4bExOD6Oho6XVBQQGTKaIWoLKyEtOnT8eAAQPQq1cvaf24cePg4uICR0dHnDlzBnPmzEFmZiZ++OEHAI2/ILNw4cImqgkRNQcmUkSktdLS0pCXl4e+fftK6yoqKnDw4EF8+umn2LlzJ0pLS3Hv3j2FXqnc3FxpiI69vT2OHz+ucNyqWf1qG8ZjaGgIQ0NDFdeGiNQtMjISGRkZ+PXXXxXWT548WfrZw8MDDg4O8Pf3R1ZWFjp37tyoc/GCDJH249A+ItJa/v7+OHv2LNLT06WlX79+CA0NlX7W19dHSkqKtE9mZiays7Mhk8kAADKZDGfPnkVeXp5UZvfu3bCwsIC7u3uz14mI1CMqKgpbt27Fvn370KFDhzrL+vj4AACuXLkC4OFFl8cfq9CQCzIWFhYKCxFpF/ZIEZHWMjc3Vxh+AwCmpqawsbGR1kdERCA6OhrW1tawsLDAtGnTIJPJ4OvrCwAYMmQI3N3dMX78eCxfvhxyuRzz5s1DZGQke52IWgEhBKZNm4YtW7Zg//79cHV1rXef9PR0AICDgwOAhxdklixZgry8PNja2gLgBRmi1oCJFBG1aKtWrYKuri5CQkJQUlKCwMBArFmzRtqup6eHrVu3YurUqZDJZDA1NUVYWBgWLVqkxqiJqLlERkYiKSkJP/30E8zNzaV7miwtLWFsbIysrCwkJSVh2LBhsLGxwZkzZzBjxgw899xz0nPreEGGqHViIkVELcr+/fsVXhsZGSE+Ph7x8fG17uPi4oLt27c3cWREpInWrl0L4OFDdx+VkJCA8PBwGBgYYM+ePVi9ejWKiorg5OSEkJAQzJs3TyrLCzJErZNa75E6ePAghg8fDkdHR+jo6ODHH39U2B4eHl7tSeJDhw5VKHP37l2EhobCwsICVlZWiIiIQGFhYTPWgoiIiLSVEKLGJTw8HADg5OSEAwcO4M6dOyguLsbly5exfPnyavc0VV2QefDgAW7fvo0VK1agTRteryZqydSaSBUVFaF37951XikeOnSowpPEv/32W4XtoaGhOHfuHHbv3o2tW7fi4MGDCrPrEBERERERqZpaL5UEBQUhKCiozjKGhoa1znhz4cIFJCcn48SJE+jXrx8A4JNPPsGwYcOwYsUKODo6qjxmIiIiIiIijZ/+fP/+/bC1tUX37t0xdepU3LlzR9qWmpoKKysrKYkCgICAAOjq6uLYsWPqCJeIiIiIqMXrPm8H9lzIxZ4LufUXfsR1o3G4bjSuiaJqXho9eHfo0KEYNWoUXF1dkZWVhXfeeQdBQUFITU2Fnp4e5HK5NM1olTZt2sDa2rrWJ4kDQElJCUpKSqTXBQUFTVYHIiIiIiJqeTQ6kRozZoz0s4eHBzw9PdG5c2fs378f/v7+jT5uXFwcFi5cqIoQiYiIiIioFdLoROpxnTp1Qrt27XDlyhX4+/vD3t4eeXl5CmXKy8tx9+7dWu+rAoCYmBhER0dLrwsKCuDk5NRkcZP26jh3m8Lr68uC1RQJEREREWkSjb9H6lE3b97EnTt3FJ4kfu/ePaSlpUll9u7di8rKSvj4+NR6HENDQ1hYWCgsREREREREDaXWHqnCwkJcuXJFen3t2jWkp6fD2toa1tbWWLhwIUJCQmBvb4+srCy8/fbb6NKlCwIDAwEAbm5uGDp0KCZNmoR169ahrKwMUVFRGDNmDGfsIyIiIiKiJqPWHqmTJ0/Cy8sLXl5eAIDo6Gh4eXlh/vz50NPTw5kzZ/CPf/wD3bp1Q0REBLy9vXHo0CEYGhpKx/jmm2/Qo0cP+Pv7Y9iwYRg4cCA+++wzdVWJiIiIiIhaAbX2SPn5+UEIUev2nTt31nsMa2trJCUlqTIsIiIiIiKiOmnVPVJERERERESagIkUERERERGRkphIERERERERKalRidTVq1dVHQcREREREZHWaFQi1aVLFwwaNAhff/01iouLVR0TERERERGRRmvUrH2//fYbEhISEB0djaioKIwePRoRERHo37+/quMj0igd526rtu76smA1REJERERE6tSoHqk+ffrgo48+wq1bt/DFF18gJycHAwcORK9evbBy5Urcvn1b1XFSC3fdaByuG41TdxhERERE1ARa4ne9J5psok2bNhg1ahQ2b96M999/H1euXMGsWbPg5OSECRMmICcnR1VxEhERERERaYwnSqROnjyJN954Aw4ODli5ciVmzZqFrKws7N69G7du3cKIESNUFScREREREZHGaNQ9UitXrkRCQgIyMzMxbNgwfPnllxg2bBh0dR/mZa6urkhMTETHjh1VGSsRETXU4naAng4Qm6/uSIiIiFqkRiVSa9euxauvvorw8HA4ODjUWMbW1hbr169/ouCIiIiIiEgzBeid+v8/Gas1DnVpVCJ1+fLlessYGBggLCysMYcnIiIiIiLSaI1KpBISEmBmZoZ//etfCus3b96MBw8eMIEiIiIiImqpYi2RaSTUHYXaNWqyibi4OLRr167aeltbWyxduvSJgyIiIiIiItJkjUqksrOz4erqWm29i4sLsrOznzgoIiIiIiIiTdaoRMrW1hZnzpyptv706dOwsbF54qCIiIiIiIg0WaMSqbFjx+LNN9/Evn37UFFRgYqKCuzduxdvvfUWxowZo+oYiRpkv3HjZoxpiU/aJiIiIqKm1ajJJhYvXozr16/D398fbdo8PERlZSUmTJjAe6SIiIiIiKjFa1QiZWBggE2bNmHx4sU4ffo0jI2N4eHhARcXF1XHR0REREREpHEalUhV6datG7p166aqWIiIiIiIiLRCoxKpiooKJCYmIiUlBXl5eaisrFTYvnfvXpUER0REREREpIkalUi99dZbSExMRHBwMHr16gUdHR1Vx0VERERERKSxGpVIbdy4Ed999x2GDRum6nhIS3Wcu03dIRARERFRM9tvbAw/dQehJo2a/tzAwABdunRRdSxERERERERaoVGJ1MyZM/HRRx9BCKHqeIiIiIiIiDReo4b2/frrr9i3bx927NiBnj17Ql9fX2H7Dz/8oJLgiIiIiIiINFGjEikrKyu89NJLqo6FiIiIiIhIKzQqkUpISFB1HERERERERFqjUfdIAUB5eTn27NmD//znP7h//z4A4NatWygsLFRZcERERERNKS4uDk8//TTMzc1ha2uLkSNHIjMzU6FMcXExIiMjYWNjAzMzM4SEhCA3N1ehTHZ2NoKDg2FiYgJbW1vMnj0b5eXlzVkVImpmjUqkfv/9d3h4eGDEiBGIjIzE7du3AQDvv/8+Zs2apdIAiYiIiJrKgQMHEBkZiaNHj2L37t0oKyvDkCFDUFRUJJWZMWMGfvnlF2zevBkHDhzArVu3MGrUKGl7RUUFgoODUVpaiiNHjmDDhg1ITEzE/Pnz1VElImomjX4gb79+/XD69GnY2NhI61966SVMmjRJZcERERERNaXk5GSF14mJibC1tUVaWhqee+455OfnY/369UhKSsLgwYMBPLzFwc3NDUePHoWvry927dqF8+fPY8+ePbCzs0OfPn2wePFizJkzB7GxsTAwMFBH1YhUL9ZS3RFolEb1SB06dAjz5s2r1jB07NgRf/zxh0oCI6qPh6uzukMgIqIWJj8/HwBgbW0NAEhLS0NZWRkCAgKkMj169ICzszNSU1MBAKmpqfDw8ICdnZ1UJjAwEAUFBTh37lyN5ykpKUFBQYHCQkTapVE9UpWVlaioqKi2/ubNmzA3N3/ioIiISEUevXoYm6++OIi0QGVlJaZPn44BAwagV69eAAC5XA4DAwNYWVkplLWzs4NcLpfKPJpEVW2v2laTuLg4LFy4UMU1IGpdOs7dpvD6+rLgZj1/o3qkhgwZgtWrV0uvdXR0UFhYiAULFmDYsGGqio2IiIio2URGRiIjIwMbN25s8nPFxMQgPz9fWm7cuNHk5yQi1WpUj9SHH36IwMBAuLu7o7i4GOPGjcPly5fRrl07fPvtt6qOkVqg60bjAAAdi5PUHAkREREQFRWFrVu34uDBg+jQoYO03t7eHqWlpbh3755Cr1Rubi7s7e2lMsePH1c4XtWsflVlHmdoaAhDQ0MV14KImlOjeqQ6dOiA06dP45133sGMGTPg5eWFZcuW4dSpU7C1tVV1jERERERNQgiBqKgobNmyBXv37oWrq6vCdm9vb+jr6yMlJUVal5mZiezsbMhkMgCATCbD2bNnkZeXJ5XZvXs3LCws4O7u3jwVIaJm16geKQBo06YNXnnlFVXGQkRERNSsIiMjkZSUhJ9++gnm5ubSPU2WlpYwNjaGpaUlIiIiEB0dDWtra1hYWGDatGmQyWTw9fUF8PCWB3d3d4wfPx7Lly+HXC7HvHnzEBkZyV4nohasUYnUl19+Wef2CRMmNCoYIiIioua0du1aAICfn5/C+oSEBISHhwMAVq1aBV1dXYSEhKCkpASBgYFYs2aNVFZPTw9bt27F1KlTIZPJYGpqirCwMCxatKi5qkHU5DrO3YbrRuqOQrM0+jlSjyorK8ODBw9gYGAAExMTJlJERESkFYQQ9ZYxMjJCfHw84uPjay3j4uKC7du3qzI0ItJwjbpH6q+//lJYCgsLkZmZiYEDB3KyCSIiIiIiavEalUjVpGvXrli2bFm13ioioqaydu1aeHp6wsLCAhYWFpDJZNixY4e0vbi4GJGRkbCxsYGZmRlCQkKkmbSqZGdnIzg4GCYmJrC1tcXs2bNRXl7e3FUhIiIiLaOyRAp4OAHFrVu3VHlIIqJadejQAcuWLUNaWhpOnjyJwYMHY8SIETh37hwAYMaMGfjll1+wefNmHDhwALdu3cKoUaOk/SsqKhAcHIzS0lIcOXIEGzZsQGJiIubPn6+uKhEREbUK143GSY/D0VaNukfq559/VngthEBOTg4+/fRTDBgwQCWBERHVZ/jw4QqvlyxZgrVr1+Lo0aPo0KED1q9fj6SkJAwePBjAw5vH3dzccPToUfj6+mLXrl04f/489uzZAzs7O/Tp0weLFy/GnDlzEBsbCwMDA3VUi4iIiLRAoxKpkSNHKrzW0dFB+/btMXjwYHz44YeqiIuISCkVFRXYvHkzioqKIJPJkJaWhrKyMgQEBEhlevToAWdnZ6SmpsLX1xepqanw8PCAnZ2dVCYwMBBTp07FuXPn4OXlVeO5SkpKUFJSIr0uKChouooRERGRRmpUIlVZWanqOIiIGuXs2bOQyWQoLi6GmZkZtmzZAnd3d6Snp8PAwABWVlYK5e3s7KTnxMjlcoUkqmp71bbaxMXFYeHChaqtCBEREWmVRj+Ql0gVtH1sLPDwuQqPur4sWE2RtE7du3dHeno68vPz8b///Q9hYWE4cOBAk54zJiYG0dHR0uuCggI4OTk16TmJiIhIszQqkXr0C0R9Vq5c2ZhTEBE1iIGBAbp06QIA8Pb2xokTJ/DRRx9h9OjRKC0txb179xR6pXJzc2Fvbw8AsLe3x/HjxxWOVzWrX1WZmhgaGsLQ0FDFNaldS7jgQEREWizWkg/jrUGjEqlTp07h1KlTKCsrQ/fu3QEAly5dgp6eHvr27SuV09HRUU2UpHbsdSFtUVlZiZKSEnh7e0NfXx8pKSkICQkBAGRmZiI7OxsymQwAIJPJsGTJEuTl5cHW1hYAsHv3blhYWMDd3V1tdSAiIiLN16hEavjw4TA3N8eGDRvQtm1bAA8f0jtx4kQ8++yzmDlzpkqDJCKqSUxMDIKCguDs7Iz79+8jKSkJ+/fvx86dO2FpaYmIiAhER0fD2toaFhYWmDZtGmQyGXx9fQEAQ4YMgbu7O8aPH4/ly5dDLpdj3rx5iIyMbNYeJyIiItI+jUqkPvzwQ+zatUtKogCgbdu2eO+99zBkyBAmUkTULPLy8jBhwgTk5OTA0tISnp6e2LlzJ1544QUAwKpVq6Crq4uQkBCUlJQgMDAQa9askfbX09PD1q1bMXXqVMhkMpiamiIsLAyLFi1SV5WIiIhISzQqkSooKMDt27errb99+zbu37//xEERETXE+vXr69xuZGSE+Ph4xMfH11rGxcUF27dvV3VoREREWqvaLR28P6pGuo3Z6aWXXsLEiRPxww8/4ObNm7h58ya+//57REREYNSoUaqOkYiIiIiISKM0qkdq3bp1mDVrFsaNG4eysrKHB2rTBhEREfjggw9UGiAREREREZGmaVQiZWJigjVr1uCDDz5AVlYWAKBz584wNTVVaXBERERERESaqFFD+6rk5OQgJycHXbt2hampKYQQqoqLiIiIiIhIYzWqR+rOnTt4+eWXsW/fPujo6ODy5cvo1KkTIiIi0LZtW3z44YeqjpM0zOM3IRIRERERtSaN6pGaMWMG9PX1kZ2dDRMTE2n96NGjkZycrLLgqOW5bjQO143GqTsMIiIiIqIn0qgeqV27dmHnzp3o0KGDwvquXbvi999/V0lgREREREREmqpRPVJFRUUKPVFV7t69C0NDwycOioiIiIiISJM1KpF69tln8eWXX0qvdXR0UFlZieXLl2PQoEEqC46IiIiIiEgTNWpo3/Lly+Hv74+TJ0+itLQUb7/9Ns6dO4e7d+/i8OHDqo6RiIiIiIhIozSqR6pXr164dOkSBg4ciBEjRqCoqAijRo3CqVOn0LlzZ1XHSEREREREpFGU7pEqKyvD0KFDsW7dOrz77rtNERMREREREZFGU7pHSl9fH2fOnGmKWIiIiIiIiLRCo+6ReuWVV7B+/XosW7ZM1fEQqU3V8606Fic90XEef1jx9WXBT3Q8IiIiItI8jUqkysvL8cUXX2DPnj3w9vaGqampwvaVK1eqJDgiIiIiIiJNpFQidfXqVXTs2BEZGRno27cvAODSpUsKZXR0dFQXHRERERERkQZSKpHq2rUrcnJysG/fPgDA6NGj8fHHH8POzq5JgiMiIiIiItJESk02IYRQeL1jxw4UFRU1+uQHDx7E8OHD4ejoCB0dHfz444/Vzjd//nw4ODjA2NgYAQEBuHz5skKZu3fvIjQ0FBYWFrCyskJERAQKCwsbHRMREREREVF9GvUcqSqPJ1bKKioqQu/evREfH1/j9uXLl+Pjjz/GunXrcOzYMZiamiIwMBDFxcVSmdDQUJw7dw67d+/G1q1bcfDgQUyePPmJ4iIiIiIiau2uG42TJuOi6pQa2qejo1PtHqgnuScqKCgIQUFBNW4TQmD16tWYN28eRowYAQD48ssvYWdnhx9//BFjxozBhQsXkJycjBMnTqBfv34AgE8++QTDhg3DihUr4Ojo2OjYiIiIiIiIaqNUIiWEQHh4OAwNDQEAxcXFmDJlSrVZ+3744YcnDuzatWuQy+UICAiQ1llaWsLHxwepqakYM2YMUlNTYWVlJSVRABAQEABdXV0cO3YML730Uo3HLikpQUlJifS6oKDgieMlIiIiIqLWQ6lEKiwsTOH1K6+8otJgHiWXywGg2kQWdnZ20ja5XA5bW1uF7W3atIG1tbVUpiZxcXFYuHChiiMmIiIiIqLWQqlEKiEhoaniaFYxMTGIjo6WXhcUFMDJyUmNERERERERkTZ5oskmmpK9vT0AIDc3V2F9bm6utM3e3h55eXkK28vLy3H37l2pTE0MDQ1hYWGhsBARERERETWUxiZSrq6usLe3R0pKirSuoKAAx44dg0wmAwDIZDLcu3cPaWlpUpm9e/eisrISPj4+zR4zqZ+3C3sWiYiIiKjpKTW0T9UKCwtx5coV6fW1a9eQnp4Oa2trODs7Y/r06XjvvffQtWtXuLq64t///jccHR0xcuRIAICbmxuGDh2KSZMmYd26dSgrK0NUVBTGjBnDGfuIiIiIiKjJqLVH6uTJk/Dy8oKXlxcAIDo6Gl5eXpg/fz4A4O2338a0adMwefJkPP300ygsLERycjKMjIykY3zzzTfo0aMH/P39MWzYMAwcOBCfffaZWupDRERE2uXgwYMYPnw4HB0doaOjgx9//FFhe3h4uPT4l6pl6NChCmXu3r2L0NBQWFhYwMrKChERESgsLGzGWhCROqi1R8rPz6/Oh/rq6Ohg0aJFWLRoUa1lrK2tkZSU1BThERERUQtXVFSE3r1749VXX8WoUaNqLDN06FCFCbeqHgNTJTQ0FDk5Odi9ezfKysowceJETJ48md9PiBqg6oG/HYu17/2i1kSKiIiISJ2CgoIQFBRUZxlDQ8NaJ7G6cOECkpOTceLECem5lp988gmGDRuGFStW8FYDohZMYyebICIiItIE+/fvh62tLbp3746pU6fizp070rbU1FRYWVlJSRQABAQEQFdXF8eOHav1mCUlJSgoKFBYiEi7sEeKiKi1iLV85Od89cVBpEWGDh2KUaNGwdXVFVlZWXjnnXcQFBSE1NRU6OnpQS6Xw9bWVmGfNm3awNraGnK5vNbjxsXFYeHChU0dPhE1ISZSRERERLUYM2aM9LOHhwc8PT3RuXNn7N+/H/7+/o0+bkxMDKKjo6XXBQUFcHLiIzyItAmH9hE95rrROOnGRyIiokd16tQJ7dq1kx7fYm9vj7y8PIUy5eXluHv3bq33VQEP77uysLBQWIhIuzCRIiIiImqgmzdv4s6dO3BwcAAAyGQy3Lt3D2lpaVKZvXv3orKyEj4+PuoKk4iaAYf2ERERUatVWFgo9S4BwLVr15Ceng5ra2tYW1tj4cKFCAkJgb29PbKysvD222+jS5cuCAwMBAC4ublh6NChmDRpEtatW4eysjJERUVhzJgxnLGPqIVjjxQRERG1WidPnoSXlxe8vLwAANHR0fDy8sL8+fOhp6eHM2fO4B//+Ae6deuGiIgIeHt749ChQwrPkvrmm2/Qo0cP+Pv7Y9iwYRg4cCA+++wzdVWJiJoJe6SIiIio1fLz84MQotbtO3furPcY1tbWfPguUSvEHikiIiIiIiIlsUeKiIiIiKgV6zh3m7pD0ErskSIiIiIiIlISEykiIiIiIiIlMZEiIiIiIiJSEhMpIiIiIiIiJTGRIiIiIiIiUhITKSIiIiIiIiUxkSIiIiIiIlISEykiIiIiIiIlMZEiIiIiIiJSEhMpIiIiIiIiJbVRdwCkmTrO3abuEIiIiIiINBZ7pIhIa8XFxeHpp5+Gubk5bG1tMXLkSGRmZiqUKS4uRmRkJGxsbGBmZoaQkBDk5uYqlMnOzkZwcDBMTExga2uL2bNno7y8vDmrQkREpBGuG42TFqobe6RIK3m4Oqs7hAZ7vHfv+rJgNUXS8hw4cACRkZF4+umnUV5ejnfeeQdDhgzB+fPnYWpqCgCYMWMGtm3bhs2bN8PS0hJRUVEYNWoUDh8+DACoqKhAcHAw7O3tceTIEeTk5GDChAnQ19fH0qVL1Vk9IiKiJsGRR6rBRIqItFZycrLC68TERNja2iItLQ3PPfcc8vPzsX79eiQlJWHw4MEAgISEBLi5ueHo0aPw9fXFrl27cP78eezZswd2dnbo06cPFi9ejDlz5iA2NhYGBgbqqBoRERFpOA7tI6IWIz8/HwBgbW0NAEhLS0NZWRkCAgKkMj169ICzszNSU1MBAKmpqfDw8ICdnZ1UJjAwEAUFBTh37lyN5ykpKUFBQYHCQkRERK0LEykiahEqKysxffp0DBgwAL169QIAyOVyGBgYwMrKSqGsnZ0d5HK5VObRJKpqe9W2msTFxcHS0lJanJycVFwbIiIi0nRMpIioRYiMjERGRgY2btzY5OeKiYlBfn6+tNy4caPJz0lERESahfdIEZHWi4qKwtatW3Hw4EF06NBBWm9vb4/S0lLcu3dPoVcqNzcX9vb2Upnjx48rHK9qVr+qMo8zNDSEoaGhimtBRERE2oQ9UkSktYQQiIqKwpYtW7B37164uroqbPf29oa+vj5SUlKkdZmZmcjOzoZMJgMAyGQynD17Fnl5eVKZ3bt3w8LCAu7u7s1TESIiItI67JEiIq0VGRmJpKQk/PTTTzA3N5fuabK0tISxsTEsLS0RERGB6OhoWFtbw8LCAtOmTYNMJoOvry8AYMiQIXB3d8f48eOxfPlyyOVyzJs3D5GRkex1IiIioloxkSIirbV27VoAgJ+fn8L6hIQEhIeHAwBWrVoFXV1dhISEoKSkBIGBgVizZo1UVk9PD1u3bsXUqVMhk8lgamqKsLAwLFq0qLmqQURERFqIiRQRaS0hRL1ljIyMEB8fj/j4+FrLuLi4YPv27aoMjYiIiFo43iNFRERERESkJPZIEdXiutE4AEDH4iQ1R0KtUdXfX1PpOHeb4vmWBTfp+YiISLM19edOQ8+vTd+72CNFRNQKXTcap/YPTSIiIm3GRIqIiIiIiEhJTKSIiIiIiIiUxHukCED1+yWIiIiIiKh27JEiIiIiIiJSEhMpIiIiIiIiJTGRIiIiIiIiUhLvkaImw6mViYiIiKilYo8UERERERGRktgjRUREREREGuHREU0di5PUGEn92CNFRERERESkJCZSRERERERESmIiRURERK3WwYMHMXz4cDg6OkJHRwc//vijwnYhBObPnw8HBwcYGxsjICAAly9fVihz9+5dhIaGwsLCAlZWVoiIiEBhYWEz1oJIvbxdnNQdglowkSKqx3WjcSqdgbDj3G0KCxERqU9RURF69+6N+Pj4GrcvX74cH3/8MdatW4djx47B1NQUgYGBKC4ulsqEhobi3Llz2L17N7Zu3YqDBw9i8uTJzVUFIrXZb2ys7hDUipNNEBERUasVFBSEoKCgGrcJIbB69WrMmzcPI0aMAAB8+eWXsLOzw48//ogxY8bgwoULSE5OxokTJ9CvXz8AwCeffIJhw4ZhxYoVcHR0bLa6EFHzYiJFREREVINr165BLpcjICBAWmdpaQkfHx+kpqZizJgxSE1NhZWVlZREAUBAQAB0dXVx7NgxvPTSSzUeu6SkBCUlJdLrgoKCpqsIUSvx+Eif68uCm/R8HNpHREREVAO5XA4AsLOzU1hvZ2cnbZPL5bC1tVXY3qZNG1hbW0tlahIXFwdLS0tpcXJqnfeYEGkzJlJEREREzSwmJgb5+fnScuPGDXWHRERKYiJFREREVAN7e3sAQG5ursL63NxcaZu9vT3y8vIUtpeXl+Pu3btSmZoYGhrCwsJCYSEi7cJEilocD1dndYdAREQtgKurK+zt7ZGSkiKtKygowLFjxyCTyQAAMpkM9+7dQ1pamlRm7969qKyshI+PT7PHTKQsVc9O3JpwsgkiIiJqtQoLC3HlyhXp9bVr15Ceng5ra2s4Oztj+vTpeO+999C1a1e4urri3//+NxwdHTFy5EgAgJubG4YOHYpJkyZh3bp1KCsrQ1RUFMaMGcMZ+4haOCZSRERE1GqdPHkSgwYNkl5HR0cDAMLCwpCYmIi3334bRUVFmDx5Mu7du4eBAwciOTkZRkZG0j7ffPMNoqKi4O/vD11dXYSEhODjjz9u9roQUfNiIkVEREStlp+fH4QQtW7X0dHBokWLsGjRolrLWFtbIykpqSnCIyINxkSKiIiIiKgFe/z5SqQanGyCiIiIiIhISUykiIiIiIiIlMREioiIiIiISEm8R4qIiKqNn7++LFhNkRAREWkH9kgREREREREpiYkUERERERGRkji0r5XiNJhERERErdd1o3HqDkHrsUeKiIiIiIhISRqdSMXGxkJHR0dh6dGjh7S9uLgYkZGRsLGxgZmZGUJCQpCbm6vGiDVXx7nbFBYiIuDhFcmqhYiIiBpOoxMpAOjZsydycnKk5ddff5W2zZgxA7/88gs2b96MAwcO4NatWxg1apQaoyUiIiIiotZA4++RatOmDezt7autz8/Px/r165GUlITBgwcDABISEuDm5oajR4/C19e3uUMlIiIiIqJWQuMTqcuXL8PR0RFGRkaQyWSIi4uDs7Mz0tLSUFZWhoCAAKlsjx494OzsjNTU1DoTqZKSEpSUlEivCwoKmrQORHXh83uIiIhIlXgbR/PQ6ETKx8cHiYmJ6N69O3JycrBw4UI8++yzyMjIgFwuh4GBAaysrBT2sbOzg1wur/O4cXFxWLhwYRNGTkRERETUPJg4qYdGJ1JBQUHSz56envDx8YGLiwu+++47GBsbN/q4MTExiI6Oll4XFBTAycnpiWIlIiIiIqLWQ+Mnm3iUlZUVunXrhitXrsDe3h6lpaW4d++eQpnc3Nwa76l6lKGhISwsLBQWIiIiIiKihtKqRKqwsBBZWVlwcHCAt7c39PX1kZKSIm3PzMxEdnY2ZDKZGqMkIiIiIqKWTqOH9s2aNQvDhw+Hi4sLbt26hQULFkBPTw9jx46FpaUlIiIiEB0dDWtra1hYWGDatGmQyWScsY+IiIiIiJqURidSN2/exNixY3Hnzh20b98eAwcOxNGjR9G+fXsAwKpVq6Crq4uQkBCUlJQgMDAQa9asUXPURERERETU0ml0IrVx48Y6txsZGSE+Ph7x8fHNFBEREREREZGGJ1JEmuS60Tjp547FSWqMhIiIiKjlq/rupanfu7RqsgkiIiIiIiJNwB4pIiKq5vGHO15fFqymSIiISJUeHWFDT4Y9UkREREREREpij1QL9PiVZCJqXdZYWeINFKs7DCIiohaNiRQRERERkRbhRXPNwKF9RKTVDh48iOHDh8PR0RE6Ojr48ccfFbYLITB//nw4ODjA2NgYAQEBuHz5skKZu3fvIjQ0FBYWFrCyskJERAQKCwubsRZERESkbZhIkcpdNxrHGxmp2RQVFaF37961Pk9u+fLl+Pjjj7Fu3TocO3YMpqamCAwMRHHx/w19Cw0Nxblz57B7925s3boVBw8exOTJk5urCkRERKSFOLSPiLRaUFAQgoKCatwmhMDq1asxb948jBgxAgDw5Zdfws7ODj/++CPGjBmDCxcuIDk5GSdOnEC/fv0AAJ988gmGDRuGFStWwNHRsdnqQkRE1FR4kVv1mEiR1vFwdVZ3CBr/gDh66Nq1a5DL5QgICJDWWVpawsfHB6mpqRgzZgxSU1NhZWUlJVEAEBAQAF1dXRw7dgwvvfRSteOWlJSgpKREel1QUKBUXBzbTkREpP04tI+IWiy5XA4AsLOzU1hvZ2cnbZPL5bC1tVXY3qZNG1hbW0tlHhcXFwdLS0tpcXJyaoLomx+H5RIRETUcEykiIiXFxMQgPz9fWm7cuKHukIiIiKiZMZEiohbL3t4eAJCbm6uwPjc3V9pmb2+PvLw8he3l5eW4e/euVOZxhoaGsLCwUFiIiIiodWEiRUQtlqurK+zt7ZGSkiKtKygowLFjxyCTyQAAMpkM9+7dQ1pamlRm7969qKyshI+PT7PHTERERNqBk00QkVYrLCzElStXpNfXrl1Deno6rK2t4ezsjOnTp+O9995D165d4erqin//+99wdHTEyJEjAQBubm4YOnQoJk2ahHXr1qGsrAxRUVEYM2YMZ+wjIiKiWjGRIiKtdvLkSQwaNEh6HR0dDQAICwtDYmIi3n77bRQVFWHy5Mm4d+8eBg4ciOTkZBgZGUn7fPPNN4iKioK/vz90dXUREhKCjz/+uNnrQkRERNqDiRQRaTU/Pz8IIWrdrqOjg0WLFmHRokW1lrG2tkZSEqeyJyIioobjPVJERERERERKYiJFREREVIfY2Fjo6OgoLD169JC2FxcXIzIyEjY2NjAzM0NISEi12UKJqOXh0D4iIqpXx7nbFF5fXxaspkiI1KNnz57Ys2eP9LpNm//7CjVjxgxs27YNmzdvhqWlJaKiojBq1CgcPnxYHaESUTNhIkUqc91onLpDICIiahJt2rSp8dly+fn5WL9+PZKSkjB48GAAQEJCAtzc3HD06FH4+vo2d6hE1Ew4tI+IiIioHpcvX4ajoyM6deqE0NBQZGdnAwDS0tJQVlaGgIAAqWyPHj3g7OyM1NRUdYVLRM2APVJERKTg0d7ljsWczZDIx8cHiYmJ6N69O3JycrBw4UI8++yzyMjIgFwuh4GBAaysrBT2sbOzg1wur/WYJSUlKCkpkV4XFBQ0VfhE1ESYSBERERHVISgoSPrZ09MTPj4+cHFxwXfffQdjY+NGHTMuLg4LFy5UVYhEpAYc2kdERESkBCsrK3Tr1g1XrlyBvb09SktLce/ePYUyubm5Nd5TVSUmJgb5+fnScuPGjSaOmohUjT1SRBrm8dnRAM6QRkSkSQoLC5GVlYXx48fD29sb+vr6SElJQUhICAAgMzMT2dnZkMlktR7D0NAQhoaGzRUyETUBJlJEREREdZg1axaGDx8OFxcX3Lp1CwsWLICenh7Gjh0LS0tLREREIDo6GtbW1rCwsMC0adMgk8k4Yx9RC8dEioiIiKgON2/exNixY3Hnzh20b98eAwcOxNGjR9G+fXsAwKpVq6Crq4uQkBCUlJQgMDAQa9asUXPURNTUmEgREVGtOIMfEbBx48Y6txsZGSE+Ph7x8fHNFBERaQJONkFERERERKQk9kgREREREWmomiahIs3AHikiIiIiIiIlsUeKiIieGKftJyKi1oaJFD2xR29Gp+bx+JdWfmElIiIial5MpIi0AMdHk6bh3yQRkXbgBe+mw3ukiIiIiIiIlMQeqRaAV4bVp+oqD5+vQ0RERKrA73Xagz1SRERERERESmIiRUREREREpCQO7dNCmtLly5sXNQdn8SMiIiJqXkykSGlMoIiaDt9fRERE2oGJFBERERFRC8MLc02P90gREREREREpiT1SRETUJHjvHhERqVNTfw6xR4qIiIiIiEhJTKSoRfJwdW7W8103GsexyEREREStCIf2ERERERG1ALyo27yYSGkBTXluFBHRk6hvrDrvqSIiIm3CRIqoBeIXUiIiIu3AC+bai4kUEREREVEzaSmJk7eLEz7EjWY5V9WQxY7FSc1yvobiZBNERNQgnFSFiIjUSdM+h9gjRdQKcegfaYKWclWWiIhaJ/ZIERERERERKYk9UkREpJRHh1Vo2nh1IiJN05S975p671BrwURKA2nicBdNGY/a3A/aVRYbNCIiIqLWgUP7iIiIiIiIlMQeKQ2giT1Q9GTYM0VEREStiYerM85ey1Z3GM2KiRQREWkkzi5JRNQwmnILRmvDRIrqpM1vzNZ4ZYSIiIiImgcTKaJWgMNHiYiInlxNn6fN2VvOWwce0pT/B042QUTUgqyxslR3CERERK0Ce6SImhCft0MtnaZcFSQiUhd13M+pzbdetCRMpEhraPozpIhaM140ICJ6SNnh9Lwgpb2YSBERkVZS970KRNTycLZQUgYTKRXT1jcgr4YQkaqpo5eqvivB2tImExGR5mMipQaaNIMax9iqD5NXouanrRe7iKh14/c1zcREioiIVKqpPvA16SIUEbUObHeoLi0mkYqPj8cHH3wAuVyO3r1745NPPkH//v1Vfh5ezdQufChv47XGv/XmakdIc9X3d8/7sqgubEM0X2v8bKOm0yISqU2bNiE6Ohrr1q2Dj48PVq9ejcDAQGRmZsLW1lbd4RGRFmA70nw0aVhrfVebeTWaGoptiHZSx3u8vl57DuPTHi0ikVq5ciUmTZqEiRMnAgDWrVuHbdu24YsvvsDcuXPVGpsmfAg35ksL38Sqp0lfHh+nir9Tbb/Kp852pDW832qqY02TUWjjNOqq/tvX9vdSa9WcbQj/Rh5iDzGpm9YnUqWlpUhLS0NMTIy0TldXFwEBAUhNTW3y82tCovS42r6UNeTLWkv8Qqdpw/ta4v9xTbTpg17d7Qi1LM3xudCYIYh1la/v+A3ZpyloSzvCNqRxlH7ekhp+/815EbS1fD9QJXVfpNb6ROrPP/9ERUUF7OzsFNbb2dnh4sWLNe5TUlKCkpIS6XV+fj4AoKCgoN7zVZY8eIJom0eBjlB3CE2i4u+KmteXVqKoQkhlKiqq17+gRHP/T7Thbwqo//1RXz0a8v56tJwQzfc7U7YdeZI2BKj+f6Wy92yFwN9llQ+PWSIAPdUctjmc0RkLACj4v/9Whf+nDKMIAECv4vV1rmsKTXmeqmPXdXznGZvrPU5DytRVPmNhoMLrmt7P9f1991qws85jNka190oD3mPa0IYAqv0u0tC2R5VU8ftW9vPv8XrWtL+y74V6z/n/2+fGfFY/3nZUvX60ndNmFX9XVPv+pa7vWw39/aj8u4jQcn/88YcAII4cOaKwfvbs2aJ///417rNgwQIBgAsXLhq83LhxozmaECGE8u0I2xAuXDR/0eQ2RAi2I1y4aMNSXzui9T1S7dq1g56eHnJzcxXW5+bmwt7evsZ9YmJiEB0dLb2urKzE3bt3YWNjAx0dnQafu6CgAE5OTrhx4wYsLCwaVwE1awl1AFgPTfMk9RBC4P79+3B0dGyi6KpTth150jakpfyea8P6aT9trqM2tCGA6r6L1ESbf3+Pain1AFpOXVpKPYC669LQdkTrEykDAwN4e3sjJSUFI0eOBPCwMUpJSUFUVFSN+xgaGsLQ0FBhnZWVVaNjsLCw0Po/ppZQB4D10DSNrYelpWUTRFM7ZdsRVbUhLeX3XBvWT/tpax01vQ0BVP9dpCba+vt7XEupB9By6tJS6gHUXpeGtCNan0gBQHR0NMLCwtCvXz/0798fq1evRlFRkTRzDhFRfdiOENGTYBtC1Pq0iERq9OjRuH37NubPnw+5XI4+ffogOTm52k2fRES1YTtCRE+CbQhR69MiEikAiIqKqrX7vKkYGhpiwYIF1brmtUlLqAPAemgaba1Hc7Uj2vr/01Csn/ZrDXVsCur4LlKTlvL7ayn1AFpOXVpKPQDV1EVHiGacH5SIiIiIiKgF0FV3AERERERERNqGiRQREREREZGSmEgREREREREpiYkUERERERGRklp1IhUfH4+OHTvCyMgIPj4+OH78eJ3lN2/ejB49esDIyAgeHh7Yvn27wvbw8HDo6OgoLEOHDlUoc/fuXYSGhsLCwgJWVlaIiIhAYWGhRtXj8TpULR988IFUpmPHjtW2L1u2rFnqcO7cOYSEhEgxrF69ulHHLC4uRmRkJGxsbGBmZoaQkJBqT6VXdz3i4uLw9NNPw9zcHLa2thg5ciQyMzMVyvj5+VX7XUyZMkWj6hEbG1stxh49eiiUaYrfh6ZS9j2rLRry99qSLFu2DDo6Opg+fbq6Q1GZP/74A6+88gpsbGxgbGwMDw8PnDx5Ut1h0RO4dOkSRowYgXbt2sHCwgIDBw7Evn371B1Wo2zbtg0+Pj4wNjZG27ZtpYcfa6uSkhL06dMHOjo6SE9PV3c4Srl+/ToiIiLg6uoKY2NjdO7cGQsWLEBpaam6Q2sQlX0Oi1Zq48aNwsDAQHzxxRfi3LlzYtKkScLKykrk5ubWWP7w4cNCT09PLF++XJw/f17MmzdP6Ovri7Nnz0plwsLCxNChQ0VOTo603L17V+E4Q4cOFb179xZHjx4Vhw4dEl26dBFjx47VqHo8Gn9OTo744osvhI6OjsjKypLKuLi4iEWLFimUKywsbJY6HD9+XMyaNUt8++23wt7eXqxatapRx5wyZYpwcnISKSkp4uTJk8LX11c888wzjapDU9UjMDBQJCQkiIyMDJGeni6GDRsmnJ2dFf6vn3/+eTFp0iSF30V+fr5G1WPBggWiZ8+eCjHevn1boYyqfx+aStn/X23SkL/XluL48eOiY8eOwtPTU7z11lvqDkcl7t69K1xcXER4eLg4duyYuHr1qti5c6e4cuWKukOjJ9C1a1cxbNgwcfr0aXHp0iXxxhtvCBMTE5GTk6Pu0JTyv//9T7Rt21asXbtWZGZminPnzolNmzapO6wn8uabb4qgoCABQJw6dUrd4Shlx44dIjw8XOzcuVNkZWWJn376Sdja2oqZM2eqO7R6qfJzuNUmUv379xeRkZHS64qKCuHo6Cji4uJqLP/yyy+L4OBghXU+Pj7i9ddfl16HhYWJESNG1HrO8+fPCwDixIkT0rodO3YIHR0d8ccff2hMPR43YsQIMXjwYIV1Li4uNX5hbgxl69CQOOo75r1794S+vr7YvHmzVObChQsCgEhNTdWYejwuLy9PABAHDhyQ1j3//PMq/SLXFPVYsGCB6N27d637NcXvQ1M9yf+vtqnp77UluH//vujatavYvXu3yt9/6jRnzhwxcOBAdYdBKnT79m0BQBw8eFBaV1BQIACI3bt3qzEy5ZSVlYmnnnpKfP755+oORWW2b98uevToIc6dO6eViVRNli9fLlxdXdUdRr1U+TncKof2lZaWIi0tDQEBAdI6XV1dBAQEIDU1tcZ9UlNTFcoDQGBgYLXy+/fvh62tLbp3746pU6fizp07CsewsrJCv379pHUBAQHQ1dXFsWPHNKoeVXJzc7Ft2zZERERU27Zs2TLY2NjAy8sLH3zwAcrLy5ulDqo4ZlpaGsrKyhTK9OjRA87Ozo06b1PUoyb5+fkAAGtra4X133zzDdq1a4devXohJiYGDx48aNTxm7Iely9fhqOjIzp16oTQ0FBkZ2dL21T9+9BUzfV3oilq+3vVdpGRkQgODq7Wlmq7n3/+Gf369cO//vUv2NrawsvLC//973/VHRY9ARsbG3Tv3h1ffvklioqKUF5ejv/85z+wtbWFt7e3usNrsN9++w1//PEHdHV14eXlBQcHBwQFBSEjI0PdoTVKbm4uJk2ahK+++gomJibqDkdl8vPzNb69V/XncBtVBqct/vzzT1RUVMDOzk5hvZ2dHS5evFjjPnK5vMbycrlcej106FCMGjUKrq6uyMrKwjvvvIOgoCCkpqZCT08Pcrkctra2Csdo06YNrK2tFY6j7no8asOGDTA3N8eoUaMU1r/55pvo27cvrK2tceTIEcTExCAnJwcrV65s8jqo4phyuRwGBgawsrKqVqa5fhfKqqysxPTp0zFgwAD06tVLWj9u3Di4uLjA0dERZ86cwZw5c5CZmYkffvhB6XM0VT18fHyQmJiI7t27IycnBwsXLsSzzz6LjIwMmJubq/z3oama4+9EU9T296rtNm7ciN9++w0nTpxQdygqd/XqVaxduxbR0dF45513cOLECbz55pswMDBAWFiYusOjRtDR0cGePXswcuRImJubQ1dXF7a2tkhOTkbbtm3VHV6DXb16FcDD+21XrlyJjh074sMPP4Sfnx8uXbqk8V/eHyWEQHh4OKZMmYJ+/frh+vXr6g5JJa5cuYJPPvkEK1asUHcodVL153CrTKSaypgxY6SfPTw84Onpic6dO2P//v3w9/dXY2SN98UXXyA0NBRGRkYK66Ojo6WfPT09YWBggNdffx1xcXEwNDRs7jBbhcjISGRkZODXX39VWD958mTpZw8PDzg4OMDf3x9ZWVno3Llzc4dZo6CgIOlnT09P+Pj4wMXFBd99912NvZ2k/Wr7e9VmN27cwFtvvYXdu3dXaxNbgsrKSvTr1w9Lly4FAHh5eSEjIwPr1q1jIqVh5s6di/fff7/OMhcuXED37t0RGRkJW1tbHDp0CMbGxvj8888xfPhwnDhxAg4ODs0Ucc0aWo/KykoAwLvvvouQkBAAQEJCAjp06IDNmzfj9ddfb/JY69PQuuzatQv3799HTExMM0WmnIbW49EJo/744w8MHToU//rXvzBp0qSmDlGjtMpEql27dtDT06s2I1hubi7s7e1r3Mfe3l6p8gDQqVMntGvXDleuXIG/vz/s7e2Rl5enUKa8vBx3796t8zjqqsehQ4eQmZmJTZs21RuLj48PysvLcf36dXTv3r1J66CKY9rb26O0tBT37t1T6AVp7Hmboh6PioqKwtatW3Hw4EF06NChzrI+Pj4AHl4dUjaRaup6VLGyskK3bt1w5coVAKr/fWiq5vr/VTdl/l61SVpaGvLy8tC3b19pXUVFBQ4ePIhPP/0UJSUl0NPTU2OET8bBwQHu7u4K69zc3PD999+rKSKqzcyZMxEeHl5nmU6dOmHv3r3YunUr/vrrL1hYWAAA1qxZg927d2PDhg2YO3duM0Rbu4bWIycnBwAU/j4NDQ3RqVMnhWHi6qTM7yQ1NbXaRed+/fohNDQUGzZsaMIo69fQelS5desWBg0ahGeeeQafffZZE0f35FT9Odwq75EyMDCAt7c3UlJSpHWVlZVISUmBTCarcR+ZTKZQHgB2795da3kAuHnzJu7cuSNd8ZHJZLh37x7S0tKkMnv37kVlZaX05VeT6rF+/Xp4e3ujd+/e9caSnp4uDRlo6jqo4pje3t7Q19dXKJOZmYns7OxGnbcp6gE8HAIQFRWFLVu2YO/evXB1da13n6opVBtzpbGp6vG4wsJCZGVlSTGq+vehqZrr/1ddGvP3qk38/f1x9uxZpKenS0vVl5/09HStTqIAYMCAAdWmq7906RJcXFzUFBHVpn379ujRo0edi4GBgXS/rK6u4tc9XV1dqZdHnRpaD29vbxgaGir8fZaVleH69esa8/fZ0Lp8/PHHOH36tNSGVD2CZtOmTViyZImaa9HwegAPe6L8/Pzg7e2NhISEan9nmkjln8MqmwJDy2zcuFEYGhqKxMREcf78eTF58mRhZWUl5HK5EEKI8ePHi7lz50rlDx8+LNq0aSNWrFghLly4IBYsWKAwbfj9+/fFrFmzRGpqqrh27ZrYs2eP6Nu3r+jatasoLi6WjjN06FDh5eUljh07Jn799VfRtWvXJ57+XJX1qJKfny9MTEzE2rVrq53zyJEjYtWqVSI9PV1kZWWJr7/+WrRv315MmDChWepQUlIiTp06JU6dOiUcHBzErFmzxKlTp8Tly5cbfEwhHk637ezsLPbu3StOnjwpZDKZkMlkjapDU9Vj6tSpwtLSUuzfv19h6vAHDx4IIYS4cuWKWLRokTh58qS4du2a+Omnn0SnTp3Ec889p1H1mDlzpti/f7+4du2aOHz4sAgICBDt2rUTeXl5UhlV/z40VUP+NrVVfX+vLVFLmrXv+PHjok2bNmLJkiXi8uXL4ptvvhEmJibi66+/Vndo1Ei3b98WNjY2YtSoUSI9PV1kZmaKWbNmCX19fZGenq7u8JTy1ltviaeeekrs3LlTXLx4UURERAhbW9tqj5nRNteuXdPKWftu3rwpunTpIvz9/cXNmzcV2nxNp8rP4VabSAkhxCeffCKcnZ2FgYGB6N+/vzh69Ki07fnnnxdhYWEK5b/77jvRrVs3YWBgIHr27Cm2bdsmbXvw4IEYMmSIaN++vdDX1xcuLi5i0qRJ1X4pd+7cEWPHjhVmZmbCwsJCTJw4Udy/f19j6lHlP//5jzA2Nhb37t2rti0tLU34+PgIS0tLYWRkJNzc3MTSpUsVEsamrENVo/P48vzzzzf4mEII8ffff4s33nhDtG3bVpiYmIiXXnrpiRsAVdejpu0AREJCghBCiOzsbPHcc88Ja2trYWhoKLp06SJmz579RM+Raop6jB49Wjg4OAgDAwPx1FNPidGjR1d7Nk1T/D40VX1/m9qqvr/XlqglJVJCCPHLL7+IXr16CUNDQ9GjRw/x2WefqTskekInTpwQQ4YMEdbW1sLc3Fz4+vqK7du3qzsspZWWloqZM2cKW1tbYW5uLgICAkRGRoa6w3pi2ppIJSQk1NrmawNVfQ7rCCGE8v1YRERERERErZfmD2YkIiIiIiLSMEykiIiIiIiIlMREioiIiIiISElMpIiIiIiIiJTERIqIiIiIiEhJTKSIiIiIiIiUxESKiIiIiIhISUykiIhIbcLDwzFy5Eh1h1HN/v37oaOjg3v37jV4n44dO2L16tV1ltHR0cGPP/5YZ5k7d+7A1tYW169fb/C5G8vX1xfff/99k5+HqCaNeZ+1FH5+fpg+fXqDyycmJsLKyqrOMrGxsejTp0+9x/r3v/+NyZMnN/jcjZWcnIw+ffqgsrKyyc+lLkykSO2uX78OHR0dpKenqzuURlFFg9SQD5N169Zh+PDhT3QeooYIDw+Hjo4OdHR0YGBggC5dumDRokUoLy9Xd2j1asiXjYZ45plnkJOTA0tLyycPSklLlizBiBEj0LFjR6X3PXDgAJycnBpcft68eZg7d26L/qJDTeP27duYOnUqnJ2dYWhoCHt7ewQGBuLw4cPNFoOqEzFVtR8N8cMPP2Dx4sXNcq5HyeVyfPTRR3j33Xcbtf+gQYPw+eefN6js0KFDoa+vj2+++aZR59IGTKRaAblcjrfeegtdunSBkZER7OzsMGDAAKxduxYPHjxo1lg04eqzKmOoqUE6ePAghg8fDkdHx3qvPivTIL366qv47bffcOjQoScNm6heQ4cORU5ODi5fvoyZM2ciNjYWH3zwQY1lS0tLmzm6pmdgYAB7e3vo6Og063kfPHiA9evXIyIiolH7//TTT0pdcAkKCsL9+/exY8eORp2PWq+QkBCcOnUKGzZswKVLl/Dzzz/Dz88Pd+7cUXdo1WhiG2VtbQ1zc/NmP+/nn3+OZ555Bi4uLkrve/fuXRw+fFipNiY8PBwff/yx0ufSFkykWrirV6/Cy8sLu3btwtKlS3Hq1Cmkpqbi7bffxtatW7Fnz55a9y0rK2vGSJ+cOuKtqUEqKipC7969ER8fX+e+yjZIBgYGGDduXItukEhzVF1hdnFxwdSpUxEQEICff/4ZwP9djFiyZAkcHR3RvXt3AMDZs2cxePBgGBsbw8bGBpMnT0ZhYaF0zIqKCkRHR8PKygo2NjZ4++23IYRQOG9Nw+P69OmD2NhY6fW9e/fw+uuvw87ODkZGRujVqxe2bt2K/fv3Y+LEicjPz5d61B7dr8r169ehq6uLkydPKqxfvXo1XFxcUFlZWeOV7l9//RXPPvssjI2N4eTkhDfffBNFRUW1/h9evnwZzz33HIyMjODu7o7du3fX9V8OANi+fTsMDQ3h6+ursP7nn39G165dYWRkhEGDBmHDhg01Xon/+eef8Y9//AMAcP/+fYSGhsLU1BQODg5YtWpVteFEenp6GDZsGDZu3FhvbERV7t27h0OHDuH999/HoEGD4OLigv79+yMmJkb6+6tptMm9e/ego6OD/fv3Kxzv8OHD8PT0hJGREXx9fZGRkSFt+/333zF8+HC0bdsWpqam6NmzJ7Zv347r169j0KBBAIC2bdtCR0cH4eHhAB4Om4uKisL06dPRrl07BAYGAgBWrlwJDw8PmJqawsnJCW+88YbURtXVfpSUlGDWrFl46qmnYGpqCh8fn2p1eNSrr76KF198UWFdWVkZbG1tsX79einGR9+Lyp4DAJYtWwY7OzuYm5sjIiICxcXFdZYHgI0bN1b73tGQtgIAtm3bhr59+8LOzg5Aw9ql4cOH4+TJk8jKyqo3Nq0kqEULDAwUHTp0EIWFhTVur6yslH4GINasWSOGDx8uTExMxIIFC4QQQqxZs0Z06tRJ6Ovri27duokvv/xS2mfmzJkiODhYer1q1SoBQOzYsUNa17lzZ/Hf//5XLFiwQABQWPbt2yeuXbsmAIjvv/9e+Pn5CWNjY+Hp6SmOHDlSZ91qire8vFy8+uqromPHjsLIyEh069ZNrF69WtqnthiEECI7O1v861//EpaWlqJt27biH//4h7h27VqdMfTs2VN8+umndca4ZcuWGrd9+eWXwsfHRwghxL59+wQAsWfPHuHt7S2MjY2FTCYTFy9eVNjnwIEDwsDAQDx48KDOuIieRFhYmBgxYoTCun/84x+ib9++0nYzMzMxfvx4kZGRITIyMkRhYaFwcHAQo0aNEmfPnhUpKSnC1dVVhIWFScd4//33Rdu2bcX3338vzp8/LyIiIoS5ubnCuVxcXMSqVasUzt27d2+pPaqoqBC+vr6iZ8+eYteuXSIrK0v88ssvYvv27aKkpESsXr1aWFhYiJycHJGTkyPu379fYx1feOEF8cYbbyis8/T0FPPnzxdC/N978q+//hJCCHHlyhVhamoqVq1aJS5duiQOHz4svLy8RHh4eI2xV1RUiF69egl/f3+Rnp4uDhw4ILy8vOpsE4QQ4s033xRDhw5VWHf16lWhr68vZs2aJS5evCi+/fZb8dRTTynEJ4QQGRkZwtzcXJSUlAghhHjttdeEi4uL2LNnjzh79qx46aWXhLm5uXjrrbcUjr927Vrh4uJSa0xEjysrKxNmZmZi+vTpori4uMYyVZ/tp06dktb99ddfCp+7Ve8zNzc3sWvXLnHmzBnx4osvio4dO4rS0lIhhBDBwcHihRdeEGfOnJHe7wcOHBDl5eXi+++/FwBEZmamyMnJEffu3RNCCPH8888LMzMzMXv2bHHx4kXps3TVqlVi79694tq1ayIlJUV0795dTJ06VQgh6mw/XnvtNfHMM8+IgwcPiitXrogPPvhAGBoaikuXLtVY98OHDws9PT1x69Ytad0PP/wgTE1NpWM+//zzCu/F+s6RkJAgLC0tpfKbNm0ShoaG4vPPPxcXL14U7777rjA3Nxe9e/eu9fd2584doaOjI44ePaqwvqFtxT//+U+xdOlSIUTD2yUhhLCzsxMJCQm1xqXNmEi1YH/++afQ0dERcXFxDSoPQNja2oovvvhCZGVlid9//1388MMPQl9fX8THx4vMzEzx4YcfCj09PbF3714hhBA///yzsLS0FOXl5UIIIUaOHCnatWsn5syZI4QQ4ubNmwKAuHz5srh//754+eWXxdChQ6VGqqSkRGpse/ToIbZu3SoyMzPFP//5T+Hi4iLKysqUire0tFTMnz9fnDhxQly9elV8/fXXwsTERGzatEkIIWqNobS0VLi5uYlXX31VnDlzRpw/f16MGzdOdO/eXfpS8rjaGqTHY6ztS9OjDVLVh4mPj4/Yv3+/OHfunHj22WfFM888o7BPUVGR0NXVlT6EiJrCo4lUZWWl2L17tzA0NBSzZs2SttvZ2Sm8Nz777DPRtm1bhYs227ZtE7q6ukIulwshhHBwcBDLly+XtpeVlYkOHToolUjt3LlT6OrqiszMzBpjf/zLRm02bdok2rZtK30JTEtLEzo6OtLFk8cTqYiICDF58mSFYxw6dEjo6uqKv//+u1rsO3fuFG3atBF//PGHVH7Hjh31JlIjRowQr776qsK6OXPmiF69eimse/fdd6t9YVmyZIn45z//KYQQoqCgQOjr64vNmzdL2+/duydMTEyqfTn66aefhK6urqioqKg1LqLH/e9//xNt27YVRkZG4plnnhExMTHi9OnT0nZlEqmNGzdKZe7cuSOMjY2lz20PDw8RGxtbYwyPv0+rPP/888LLy6veOmzevFnY2NhIr2tqP37//Xehp6en8F4WQgh/f38RExNT67Hd3d3F+++/L70ePny4woWXRxOphpzj8dhkMlm1i0E+Pj51JlKnTp0SAER2dra0rqFtRXFxsTAzMxMZGRlCiIa3S0II4eXlVevvUNtxaF8LduXKFQghpGE3Vdq1awczMzOYmZlhzpw5CtvGjRuHiRMnolOnTnB2dsaKFSsQHh6ON954A926dUN0dDRGjRqFFStWAACeffZZ3L9/H6dOnYIQAgcPHsTMmTOl7uj9+/fjqaeeQpcuXWBmZgZjY2NpyJC9vT0MDAykc8+aNQvBwcHo1q0bFi5ciN9//x1Xrlyps46Px6uvr4+FCxeiX79+cHV1RWhoKCZOnIjvvvsOAGqNYdOmTaisrMTnn38ODw8PuLm5ISEhAdnZ2bV2rWdnZ0MIAUdHR2V+LQAeduEnJydLQyCqLFmyBM8//zzc3d0xd+5cHDlyRKGr3sTEBJaWlvj999+VPieRMrZu3QozMzMYGRkhKCgIo0ePVhgm5+HhofD+vXDhAnr37g1TU1Np3YABA1BZWYnMzEzk5+cjJycHPj4+0vY2bdqgX79+SsWVnp6ODh06oFu3bo2vHICRI0dCT08PW7ZsAfDwJvNBgwbVOsHD6dOnkZiYKLWdZmZmCAwMRGVlJa5du1at/IULF+Dk5KTQPshksnrj+vvvv2FkZKSwLjMzE08//bTCuv79+1fb96effpLalKtXr6KsrEyhnKWlZbXPAwAwNjZGZWUlSkpK6o2PqEpISAhu3bqFn3/+GUOHDsX+/fvRt29fJCYmKn2sR98b1tbW6N69Oy5cuAAAePPNN/Hee+9hwIABWLBgAc6cOdOgY3p7e1dbt2fPHvj7++Opp56Cubk5xo8fjzt37tR5v/jZs2dRUVGBbt26Kbz/Dxw4UOdwtddeew0JCQkAgNzcXOzYsQOvvvqqys5x4cIFhfYUqL+N+fvvvwFAoY1paFuxd+9e2NraomfPngAa3i4BD9uY5r4nv7kwkWqFjh8/jvT0dPTs2bPaB+fjX2ouXLiAAQMGKKwbMGCA1MBZWVmhd+/e2L9/P86ePQsDAwNMnjwZp06dQmFhIQ4cOIDnn3++QXF5enpKPzs4OAAA8vLy6tynpi9h8fHx8Pb2Rvv27WFmZobPPvsM2dnZdR7n9OnTuHLlCszNzaUGzNraGsXFxbU2YjU1SA31eINUpSH/By25QSLNMWjQIKSnp+Py5cv4+++/sWHDBoUk6dGfVUlXV7fafVOP3v9obGyskvMYGBhgwoQJSEhIQGlpKZKSkmr9kgMAhYWFeP3115Geni4tp0+fxuXLl9G5c2eVxAQ8vND1119/Kb1fTk4OTp06heDgYKX3vXv3LkxNTVX2f0uth5GREV544QX8+9//xpEjRxAeHo4FCxYAePheBqDwfm7MvcyvvfYarl69ivHjx+Ps2bPo168fPvnkk3r3e7yNun79Ol588UV4enri+++/R1pamnQvc12TURQWFkJPTw9paWkK7/8LFy7go48+qnW/CRMm4OrVq0hNTcXXX38NV1dXPPvssyo9h7LatWsHAI1qYx69/1JZd+/eRfv27Ru1r6ZjItWCdenSBTo6OsjMzFRY36lTJ3Tp0qXGD83GfDny8/PD/v37paTJ2toabm5u+PXXX5VKpPT19aWfq2bKqm9K3sfj3bhxI2bNmoWIiAjs2rUL6enpmDhxYr0z9hQWFsLb21uhAUtPT8elS5cwbty4GvdpigapIf8HLblBIs1hamqKLl26wNnZGW3atKm3vJubG06fPq0w+cLhw4ehq6uL7t27w9LSEg4ODjh27Ji0vby8HGlpaQrHad++PXJycqTXBQUFCj0+np6euHnzJi5dulRjHAYGBqioqGhQHV977TXs2bMHa9asQXl5OUaNGlVr2b59++L8+fPo0qVLteXRnrkqbm5uuHHjhkJdjh49Wm9MXl5eOH/+vMK67t27V5sY48SJEwqvf/nlFzzzzDOwtrYG8LCd19fXVyiXn59f4/9bRkYGvLy86o2NqD7u7u5SG1D1OfXoe6C2x5w8+t7466+/cOnSJbi5uUnrnJycMGXKFPzwww+YOXMm/vvf/wKA9N5ryHs+LS0NlZWV+PDDD+Hr64tu3brh1q1bCmVqaj+8vLxQUVGBvLy8au99e3v7Ws9nY2ODkSNHIiEhAYmJiZg4cWKtZRtzDjc3N4X2FKi/jencuTMsLCwU2piGtBVCCPzyyy8YMWKEtK4h7RIA6YJ0S21jmEi1YDY2NnjhhRfw6aef1jmzVF3c3NyqPRPi8OHDcHd3l14///zz+PXXX5GSkgI/Pz8AD5Orb7/9FpcuXZLWAcp9yWmMw4cP45lnnsEbb7wBLy8vdOnSpVqPUk0x9O3bF5cvX4atrW21Rqy258jU1CA1RE0NUkNlZWWhuLi4xTZIpL1CQ0NhZGSEsLAwZGRkYN++fZg2bRrGjx8vzfD01ltvYdmyZfjxxx9x8eJFvPHGG9VmnRs8eDC++uorHDp0CGfPnkVYWBj09PSk7c8//zyee+45hISEYPfu3bh27Rp27NiB5ORkAA9n/SssLERKSgr+/PPPOntv3dzc4Ovrizlz5mDs2LF19sjMmTMHR44cQVRUlNRT99NPPyEqKqrG8gEBAejWrRvCwsJw+vRpHDp0qEHPbQkMDMS5c+cULtC8/vrruHjxIubMmYNLly7hu+++k4ZPVV1wefzijLm5OcLCwjB79mzs27cP586dQ0REBHR1datN6X7o0CEMGTKk3tiIqty5cweDBw/G119/jTNnzuDatWvYvHkzli9fLn22GRsbw9fXF8uWLcOFCxdw4MABzJs3r8bjLVq0CCkpKcjIyEB4eDjatWsnPaZk+vTp2LlzJ65du4bffvsN+/btk5IsFxcX6OjoYOvWrbh9+7bCLKGP69KlC8rKyvDJJ5/g6tWr+Oqrr7Bu3TqFMjW1H926dUNoaCgmTJiAH374AdeuXcPx48cRFxeHbdu21fn/9Nprr2HDhg24cOECwsLCai3XmHO89dZb+OKLL5CQkIBLly5hwYIFOHfuXJ3x6OrqIiAgAL/++qu0riFtRVpaGh48eICBAwdK+zWkXQIeJneGhoYNGtqsldR4fxY1gytXrgg7OzvRo0cPsXHjRnH+/Hlx8eJF8dVXXwk7OzsRHR0tlUUNN0Fv2bJF6OvrizVr1ohLly5Jk008OtnB3bt3ha6urtDT0xMXLlyQ9tPT0xMODg4Kx1uyZIlwdnYWFy9eFLdv3xalpaUNuiG1JjXF+9FHHwkLCwuRnJwsMjMzxbx584SFhYXCzZc1xVBUVCS6du0q/Pz8xMGDB8XVq1fFvn37xLRp08SNGzdqjWHUqFFi5syZCuvu378vTp06Jd3UuXLlSnHq1Cnx+++/CyGEOHHihGjbtq3CRBo13TBbtf+jMwcmJCSITp061RoPkSrUNGtfQ7afOXNGDBo0SBgZGQlra2sxadIkhVnzysrKxFtvvSUsLCyElZWViI6OFhMmTFA4Vn5+vhg9erSwsLAQTk5OIjExUWGyCSEe3ow+ceJEYWNjI4yMjESvXr3E1q1bpe1TpkwRNjY2AoDCfjVZv369ACCOHz+usL6m9+Tx48fFCy+8IMzMzISpqanw9PQUS5YskbY/PlFGZmamGDhwoDAwMBDdunUTycnJ9U42IYQQ/fv3F+vWrVNY99NPP4kuXboIQ0ND4efnJ9auXSsAiL///lsUFhYKIyMjcfnyZYV9CgoKxLhx44SJiYmwt7cXK1euFP379xdz586Vyty8eVPo6+vX2c4RPa64uFjMnTtX9O3bV1haWgoTExPRvXt3MW/ePIVZZc+fPy9kMpkwNjYWffr0Ebt27apxsolffvlF9OzZUxgYGIj+/fsrTFoRFRUlOnfuLAwNDUX79u3F+PHjxZ9//iltX7RokbC3txc6OjrSLKGPz4hXZeXKlcLBwUEYGxuLwMBA8eWXX1Z7n9fUflRNZNWxY0ehr68vHBwcxEsvvSTOnDlT5/9TZWWlcHFxEcOGDau27fEY6ztHTRNhLFmyRLRr106YmZmJsLAw8fbbb9c52YQQQmzfvl089dRTCpPL1NdWzJs3T4SGhlY7Vl3tUpXJkyeL119/vc6YtBkTqVbg1q1bIioqSri6ugp9fX1hZmYm+vfvLz744ANRVFQklavtA76u6c+r9O7dW9jb20uvq2a0GzNmjEK5vLw86YtIVWOqykSquLhYhIeHC0tLS2FlZSWmTp0q5s6dq9Cw1BSDEELk5OSICRMmiHbt2glDQ0PRqVMnMWnSJJGfn19rDDU1SFUfDI8vVQ18TQ1SQxOpIUOGNHgWRiKq36JFi4SHh4e6w1CwdetW4ebmVucseu+9957o0KGDEEKI77//Xri5udV73MLCQmFpaSk+//xzad3bb78tJk2a9ORBE1E19+/fFxYWFuL7779XdyiSyspK8fTTT4ukpKRayzzeVnh4eEizKNbl0XZJCCFu374trK2txdWrV588cA3FRIroCTSkQXpcQxukx2VkZAhbW1vpORlE1Hj3798XZ8+eFba2tuKzzz5TdzjVrFq1SmGK4vj4eHH8+HGRlZUlvvzyS2FpaSneffddIcTDqdZ//vnnasf47bffRFJSkrhy5YpIS0sTI0aMEJaWluL27dtSmRUrVkjT0xORalRUVIjc3Fzx9ttvC2dn5zof5aIOp06dUrgoXldbUVJSImJjY0VBQUG149TVLgnxcATOo1Pbt0Q6Qjw2PRIRKSU9PR1nz57F+PHj6y1bWlqKuLg4REdHw9zcXKnz7NmzBxUVFdIT2omo8cLDw/Htt99i5MiRSEpKUrgPSxPNmDEDmzZtwt27d+Hs7Izx48cjJiamzolATp06hddeew2ZmZkwMDCAt7c3Vq5cCQ8Pj2aMnKj1uX79OlxdXdGhQwckJibC399f3SHVqbFtRWPapZaGiRQREREREZGSOGsfERERERGRkphIERERERERKYmJFBERERERkZKYSBERERERESmJiRQREREREZGSmEgREREREREpiYkUERERERGRkphIERERERERKYmJFBERERERkZL+H4hOY0jlhYtBAAAAAElFTkSuQmCC", "text/plain": [ "
    " ] @@ -4256,7 +4272,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 15, "id": "c8536f1e", "metadata": {}, "outputs": [ @@ -4295,27 +4311,27 @@ " \n", " \n", " 0.6927586206896552\n", - " 0.099041\n", - " 0.622073\n", - " -1.411494\n", + " 0.099083\n", + " 0.621960\n", + " -1.423970\n", " \n", " \n", " 0.3513793103448276\n", - " 0.099201\n", - " 0.779564\n", - " -1.729014\n", + " 0.099032\n", + " 0.765703\n", + " -1.710094\n", " \n", " \n", " 0.01\n", - " 0.099210\n", - " 0.821592\n", - " -1.828505\n", + " 0.099139\n", + " 0.821700\n", + " -1.825794\n", " \n", " \n", " Prior\n", - " 0.026295\n", - " -0.011554\n", - " -0.032203\n", + " 0.025290\n", + " -0.015209\n", + " -0.016401\n", " \n", " \n", "\n", @@ -4324,13 +4340,13 @@ "text/plain": [ " Growth rate Product yield Substrate yield\n", "Sigma_c \n", - "0.6927586206896552 0.099041 0.622073 -1.411494\n", - "0.3513793103448276 0.099201 0.779564 -1.729014\n", - "0.01 0.099210 0.821592 -1.828505\n", - "Prior 0.026295 -0.011554 -0.032203" + "0.6927586206896552 0.099083 0.621960 -1.423970\n", + "0.3513793103448276 0.099032 0.765703 -1.710094\n", + "0.01 0.099139 0.821700 -1.825794\n", + "Prior 0.025290 -0.015209 -0.016401" ] }, - "execution_count": 30, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } diff --git a/article/requirements.txt b/article/requirements.txt new file mode 100644 index 0000000..babf1d6 --- /dev/null +++ b/article/requirements.txt @@ -0,0 +1,113 @@ +accessible-pygments==0.0.4 +alabaster==0.7.13 +annotated-types==0.5.0 +appnope==0.1.3 +arviz==0.15.1 +asttokens==2.2.1 +attrs==23.1.0 +Babel==2.12.1 +backcall==0.2.0 +beautifulsoup4==4.12.2 +black==23.3.0 +bleach==6.0.0 +certifi==2023.5.7 +charset-normalizer==3.1.0 +click==8.1.3 +cmdstanpy==1.1.0 +comm==0.1.3 +contourpy==1.0.7 +cycler==0.11.0 +debugpy==1.6.7 +decorator==5.1.1 +defusedxml==0.7.1 +docutils==0.20.1 +et-xmlfile==1.1.0 +exceptiongroup==1.1.1 +executing==1.2.0 +fastjsonschema==2.17.1 +flake8==6.0.0 +fonttools==4.39.3 +h5netcdf==1.2.0 +h5py==3.9.0 +idna==3.4 +imagesize==1.4.1 +iniconfig==2.0.0 +ipykernel==6.22.0 +ipython==8.12.0 +isort==5.12.0 +jedi==0.18.2 +Jinja2==3.1.2 +jsonschema==4.17.3 +jupyter_client==8.2.0 +jupyter_core==5.3.0 +jupyterlab-pygments==0.2.2 +kiwisolver==1.4.4 +LovelyPlots==0.0.26 +MarkupSafe==2.1.3 +matplotlib==3.7.1 +matplotlib-inline==0.1.6 +mccabe==0.7.0 +mistune==2.0.5 +mypy==1.3.0 +mypy-extensions==1.0.0 +nbclient==0.8.0 +nbconvert==7.4.0 +nbformat==5.9.0 +nbsphinx==0.9.2 +nest-asyncio==1.5.6 +numpy==1.24.2 +openpyxl==3.1.2 +packaging==23.1 +pandas==2.0.0 +pandocfilters==1.5.0 +parso==0.8.3 +pathspec==0.11.1 +patsy==0.5.3 +pexpect==4.8.0 +pickleshare==0.7.5 +Pillow==9.5.0 +platformdirs==3.2.0 +pluggy==1.0.0 +prompt-toolkit==3.0.38 +psutil==5.9.4 +ptyprocess==0.7.0 +pure-eval==0.2.2 +pycodestyle==2.10.0 +pydantic==2.4.2 +pydantic_core==2.10.1 +pydata-sphinx-theme==0.13.3 +pyflakes==3.0.1 +Pygments==2.15.0 +pyparsing==3.0.9 +pyrsistent==0.19.3 +pytest==7.3.1 +python-dateutil==2.8.2 +pytz==2023.3 +pyzmq==25.0.2 +requests==2.31.0 +scipy==1.10.1 +seaborn==0.12.2 +six==1.16.0 +snowballstemmer==2.2.0 +soupsieve==2.4.1 +Sphinx==7.0.1 +sphinxcontrib-applehelp==1.0.4 +sphinxcontrib-devhelp==1.0.2 +sphinxcontrib-htmlhelp==2.0.1 +sphinxcontrib-jsmath==1.0.1 +sphinxcontrib-qthelp==1.0.3 +sphinxcontrib-serializinghtml==1.1.5 +stack-data==0.6.2 +statsmodels==0.13.5 +tinycss2==1.2.1 +tomli==2.0.1 +tornado==6.2 +tqdm==4.65.0 +traitlets==5.9.0 +typing_extensions==4.6.3 +tzdata==2023.3 +urllib3==2.0.3 +wcwidth==0.2.6 +webencodings==0.5.1 +xarray==2023.5.0 +xarray-einstats==0.5.1 diff --git a/article/simulation_scripts/julia_run_all.jl b/article/simulation_scripts/julia_run_all.jl index 81a5b39..f8281da 100644 --- a/article/simulation_scripts/julia_run_all.jl +++ b/article/simulation_scripts/julia_run_all.jl @@ -3,6 +3,7 @@ using Pkg print("Running Julia scripts \n") print("Activating the library. This can take several minutes \n") Pkg.activate("julia-env") +Pkg.instantiate() print("Simulating standard fed-batch process \n") include("standard_fed-batch_process.jl")