-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2d_ising.py
156 lines (112 loc) · 4.17 KB
/
2d_ising.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
########################################################
# using Metropolis algorithm #
# DGlab #
########################################################
import numpy as np
import math
#==========================================================
# Defining the system size and system parameters
#==========================================================
N = 3
j = 1.0
k = 1.0
Temp = 1.0
T = Temp
iteration = [ 40000 ]
#===========================================================
#Generating a ranndom configuration
#===========================================================
def ising(n): # makes a N*N lattice
l= []
for i in range(n):
l.append([np.random.choice([-1,1]) for i in range(n)])
return l
#=============================================================
# Calculating energy of a configuration using PBC
#=============================================================
def energyf(l):
energy = 0
for i in range(len(l)):
for k in range(len(l[i])):
up = i-1
down = i+1
left = k-1
right = k+1
if(i == 0 ):
up = len(l) - 1
if(i == (len(l) - 1)):
down = 0
if (k == 0):
left = len(l[i]) - 1
if (k == len(l[i]) - 1):
right = 0
energy = energy + j *l[i][k]* ( l[up][k] + l[down][k] + l[i][left] + l[i][right]) # 2d energy
return energy
#================================================================
#randomly updating spin sites
#================================================================
def update_config(config, a):
k =1
for i in range(k):
x= np.random.randint(len(config))
y= np.random.randint(len(config))
config[x][y]= -1* config[x][y]
up = x - 1
down = x + 1
left = y - 1
right = y + 1
if(x == 0 ):
up = len(config) - 1
if(x == (len(config) - 1)):
down = 0
if (y == 0):
left = len(config[x]) - 1
if (y == len(config[x]) - 1):
right = 0
delE= 2 * j * config[x][y] * ( config[up][y] + config[down][y] + config[x][left] + config[x][right] )
return config, delE
#===========================================================
#Generating the Markov chain using Monte-Carlo sampling
#===========================================================
def montecarlof(start_config, energy, iter1, T):
old_energy = energy
w =0
# writing the Configs and energies
file1 = open("ising_dataset.dat", "w+")
file1.write("\n")
for i in range(len(start_config)):
for j in range(len(start_config[i])):
file1.write(str( (start_config[i,j] + 1)/2 )+" ")
file1.write(str(old_energy))
#===========================================================
#starting monte carlo
#===========================================================
for i in range(iter1):
new_config, del_E = update_config(start_config.copy(), i)
if (del_E < 0):
start_config = new_config.copy()
old_energy= old_energy + del_E
else:
prb = math.exp( (float( -del_E )) / float( T) )
r = np.random.random()
if(r < prb):
start_config = new_config.copy()
old_energy = old_energy + del_E
w=w+1
file1.write("\n")
for m in range(len(start_config)):
for j in range(len(start_config[m])):
# saving configurations and eneegies
file1.write(str( (start_config[m,j] + 1)/2 )+" ")
file1.write(str(old_energy))
file1.close()
print(w/iter1) # acceptance rate
return start_config, old_energy
#========================================================================
# Main function
#========================================================================
if __name__ == "__main__" :
isng = np.array(ising(N))
#for i in range(20):
for iter1 in iteration:
config , energy = montecarlof( isng, energyf(isng), iter1, T)