-
Notifications
You must be signed in to change notification settings - Fork 53
/
epsilon_greedy.go
205 lines (181 loc) · 5.53 KB
/
epsilon_greedy.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
package hostpool
import (
"log"
"math/rand"
"time"
)
type epsilonHostPoolResponse struct {
standardHostPoolResponse
started time.Time
ended time.Time
}
func (r *epsilonHostPoolResponse) Mark(err error) {
r.Do(func() {
r.ended = time.Now()
doMark(err, r)
})
}
type epsilonGreedyHostPool struct {
*standardHostPool // TODO - would be nifty if we could embed HostPool and Locker interfaces
epsilon float32 // this is our exploration factor
decayDuration time.Duration
EpsilonValueCalculator // embed the epsilonValueCalculator
timer
quit chan bool
}
// Construct an Epsilon Greedy HostPool
//
// Epsilon Greedy is an algorithm that allows HostPool not only to track failure state,
// but also to learn about "better" options in terms of speed, and to pick from available hosts
// based on how well they perform. This gives a weighted request rate to better
// performing hosts, while still distributing requests to all hosts (proportionate to their performance).
// The interface is the same as the standard HostPool, but be sure to mark the HostResponse immediately
// after executing the request to the host, as that will stop the implicitly running request timer.
//
// A good overview of Epsilon Greedy is here http://stevehanov.ca/blog/index.php?id=132
//
// To compute the weighting scores, we perform a weighted average of recent response times, over the course of
// `decayDuration`. decayDuration may be set to 0 to use the default value of 5 minutes
// We then use the supplied EpsilonValueCalculator to calculate a score from that weighted average response time.
func NewEpsilonGreedy(hosts []string, decayDuration time.Duration, calc EpsilonValueCalculator) HostPool {
if decayDuration <= 0 {
decayDuration = defaultDecayDuration
}
stdHP := New(hosts).(*standardHostPool)
p := &epsilonGreedyHostPool{
standardHostPool: stdHP,
epsilon: float32(initialEpsilon),
decayDuration: decayDuration,
EpsilonValueCalculator: calc,
timer: &realTimer{},
quit: make(chan bool),
}
// allocate structures
for _, h := range p.hostList {
h.epsilonCounts = make([]int64, epsilonBuckets)
h.epsilonValues = make([]int64, epsilonBuckets)
}
go p.epsilonGreedyDecay()
return p
}
func (p *epsilonGreedyHostPool) Close() {
// No need to do p.quit <- true as close(p.quit) does the trick.
close(p.quit)
}
func (p *epsilonGreedyHostPool) SetEpsilon(newEpsilon float32) {
p.Lock()
defer p.Unlock()
p.epsilon = newEpsilon
}
func (p *epsilonGreedyHostPool) epsilonGreedyDecay() {
durationPerBucket := p.decayDuration / epsilonBuckets
ticker := time.NewTicker(durationPerBucket)
for {
select {
case <-p.quit:
ticker.Stop()
return
case <-ticker.C:
p.performEpsilonGreedyDecay()
}
}
}
func (p *epsilonGreedyHostPool) performEpsilonGreedyDecay() {
p.Lock()
for _, h := range p.hostList {
h.epsilonIndex += 1
h.epsilonIndex = h.epsilonIndex % epsilonBuckets
h.epsilonCounts[h.epsilonIndex] = 0
h.epsilonValues[h.epsilonIndex] = 0
}
p.Unlock()
}
func (p *epsilonGreedyHostPool) Get() HostPoolResponse {
p.Lock()
defer p.Unlock()
host := p.getEpsilonGreedy()
started := time.Now()
return &epsilonHostPoolResponse{
standardHostPoolResponse: standardHostPoolResponse{host: host, pool: p},
started: started,
}
}
func (p *epsilonGreedyHostPool) getEpsilonGreedy() string {
var hostToUse *hostEntry
// this is our exploration phase
if rand.Float32() < p.epsilon {
p.epsilon = p.epsilon * epsilonDecay
if p.epsilon < minEpsilon {
p.epsilon = minEpsilon
}
return p.getRoundRobin()
}
// calculate values for each host in the 0..1 range (but not ormalized)
var possibleHosts []*hostEntry
now := time.Now()
var sumValues float64
for _, h := range p.hostList {
if h.canTryHost(now) {
v := h.getWeightedAverageResponseTime()
if v > 0 {
ev := p.CalcValueFromAvgResponseTime(v)
h.epsilonValue = ev
sumValues += ev
possibleHosts = append(possibleHosts, h)
}
}
}
if len(possibleHosts) != 0 {
// now normalize to the 0..1 range to get a percentage
for _, h := range possibleHosts {
h.epsilonPercentage = h.epsilonValue / sumValues
}
// do a weighted random choice among hosts
ceiling := 0.0
pickPercentage := rand.Float64()
for _, h := range possibleHosts {
ceiling += h.epsilonPercentage
if pickPercentage <= ceiling {
hostToUse = h
break
}
}
}
if hostToUse == nil {
if len(possibleHosts) != 0 {
log.Println("Failed to randomly choose a host, Dan loses")
}
return p.getRoundRobin()
}
if hostToUse.dead {
hostToUse.willRetryHost(p.maxRetryInterval)
}
return hostToUse.host
}
func (p *epsilonGreedyHostPool) markSuccess(hostR HostPoolResponse) {
// first do the base markSuccess - a little redundant with host lookup but cleaner than repeating logic
p.standardHostPool.markSuccess(hostR)
eHostR, ok := hostR.(*epsilonHostPoolResponse)
if !ok {
log.Printf("Incorrect type in eps markSuccess!") // TODO reflection to print out offending type
return
}
host := eHostR.host
duration := p.between(eHostR.started, eHostR.ended)
p.Lock()
defer p.Unlock()
h, ok := p.hosts[host]
if !ok {
log.Fatalf("host %s not in HostPool %v", host, p.Hosts())
}
h.epsilonCounts[h.epsilonIndex]++
h.epsilonValues[h.epsilonIndex] += int64(duration.Seconds() * 1000)
}
// --- timer: this just exists for testing
type timer interface {
between(time.Time, time.Time) time.Duration
}
type realTimer struct{}
func (rt *realTimer) between(start time.Time, end time.Time) time.Duration {
return end.Sub(start)
}