-
Notifications
You must be signed in to change notification settings - Fork 2
/
Snakefile
160 lines (139 loc) · 7.45 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import copy
from datetime import date
import os
from pathlib import Path
import sys
from os import environ
from socket import getfqdn
from getpass import getuser
from snakemake.logging import logger
from snakemake.utils import validate
from collections import OrderedDict
import textwrap
import time
# Store the user's configuration prior to loading defaults, so we can check for
# reused subsampling scheme names in the user's config. We need to make a deep
# copy because Snakemake will deep merge the subsampling dictionary later,
# modifying the values of a reference or shallow copy. Note that this loading of
# the user's config prior to the defaults below depends on the order Snakemake
# loads its configfiles. Specifically, the order of config loading is:
#
# 1. First, configfile arguments are loaded and config is built from these [1].
# 2. Then, config arguments are loaded and override existing config keys [2].
# 3. Then, the Snakefile is parsed and configfile directive inside the Snakefile is processed [3].
# When configfile is loaded from the directive in the Snakefile, the config
# dictionary is deep merged with the files [4] from the externally provided
# config files. This is the only place the deep merge happens using the
# update_config function [5].
#
# [1] https://github.com/snakemake/snakemake/blob/a7ac40c96d6e2af47102563d0478a2220e2a2ab7/snakemake/__init__.py#L466-L471
# [2] https://github.com/snakemake/snakemake/blob/a7ac40c96d6e2af47102563d0478a2220e2a2ab7/snakemake/__init__.py#L476-L477
# [3] https://github.com/snakemake/snakemake/blob/a7ac40c96d6e2af47102563d0478a2220e2a2ab7/snakemake/__init__.py#L551-L553
# [4] https://github.com/snakemake/snakemake/blob/a7ac40c96d6e2af47102563d0478a2220e2a2ab7/snakemake/workflow.py#L1088-L1094
# [5] https://github.com/snakemake/snakemake/blob/a7ac40c96d6e2af47102563d0478a2220e2a2ab7/snakemake/utils.py#L455-L476
user_subsampling = copy.deepcopy(config.get("subsampling", {}))
configfile: "defaults/parameters.yaml"
# Check config file for errors
validate(config, schema="workflow/schemas/config.schema.yaml")
# Convert inputs (YAML array) into an OrderedDict with keys of "name" for use by the pipeline. String values are ignored.
if isinstance(config.get("inputs"), list):
config["inputs"] = OrderedDict((v["name"], v) for v in config["inputs"])
# Check for overlapping subsampling schemes in user and default
# configurations. For now, issue a deprecation warning, so users know they
# should rename their subsampling schemes. In the future, this reuse of the same
# name will cause an error.
subsampling_config = config.get("subsampling", {})
overlapping_schemes = []
for scheme_name, scheme in user_subsampling.items():
if scheme_name in subsampling_config and subsampling_config.get(scheme_name) != scheme:
overlapping_schemes.append(scheme_name)
if len(overlapping_schemes) > 0:
logger.warning(f"WARNING: The following subsampling scheme(s) have the same name as a default scheme in this workflow but different definitions:")
logger.warning("")
for scheme in overlapping_schemes:
logger.warning(f" - {scheme}")
logger.warning("")
logger.warning(" This means Snakemake will merge your scheme with the default scheme and may produce unexpected behavior.")
logger.warning(f" To avoid errors in your workflow, rename your schemes with unique names (e.g., 'custom_{overlapping_schemes[0]}')")
logger.warning(" In future versions of this workflow, overlapping subsampling scheme names will produce an error.")
logger.warning("")
time.sleep(5)
# Assign a default build if none are specified in the config. Users can define a
# `default_build_name` in their builds config without assigning any other build
# information. Otherwise, we use a generic name for the default build.
if "builds" not in config:
config["builds"] = {
config.get("default_build_name", "default-build"): {
"subsampling_scheme": "all",
}
}
include: "workflow/snakemake_rules/reference_build_definitions.smk"
# Check for old-style input file references and alert users to the new format.
if "sequences" in config or "metadata" in config:
logger.error("ERROR: Your configuration file includes references to an unsupported specification of input files (e.g., `config['sequences']` or `config['metadata']`).")
logger.error("Update your configuration file (e.g., 'builds.yaml') to define your inputs as follows and try running the workflow again:")
logger.error(textwrap.indent(
f"\ninputs:\n name: local-data\n metadata: {config['metadata']}\n sequences: {config['sequences']}\n",
" "
))
sys.exit(1)
# Check for missing inputs.
if "inputs" not in config:
logger.error("ERROR: Your workflow does not define any input files to start with.")
logger.error("Update your configuration file (e.g., 'builds.yaml') to define at least one input dataset as follows and try running the workflow again:")
logger.error(textwrap.indent(
f"\ninputs:\n name: local-data\n metadata: data/example_metadata.tsv\n sequences: data/example_sequences.fasta.gz\n",
" "
))
sys.exit(1)
# Allow users to specify a list of active builds from the command line.
if config.get("active_builds"):
BUILD_NAMES = config["active_builds"].split(",")
else:
BUILD_NAMES = list(config["builds"].keys())
# Construct the correct absolute path to the conda environment based on the
# top-level Snakefile's directory and a path defined in the Snakemake config
# that is relative to that top-level directory.
SNAKEMAKE_DIR = os.path.dirname(workflow.snakefile)
CONDA_ENV_PATH = os.path.join(SNAKEMAKE_DIR, config["conda_environment"])
config["conda_environment"] = CONDA_ENV_PATH
# Define patterns we expect for wildcards.
wildcard_constraints:
# Allow build names to contain alpha characters, underscores, and hyphens
# but not special strings used for Nextstrain builds.
build_name = r'(?:[_a-zA-Z-](?!(tip-frequencies)))+',
date = r"[0-9][0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9]",
origin = r"[a-zA-Z0-9-_]+"
localrules: download_metadata, download_sequences, clean
# Create a standard ncov build for auspice, by default.
rule all:
input:
auspice_json = expand("auspice/{ext}_{build_name}.json", build_name=BUILD_NAMES,ext=config["auspice_json_prefix"]),
tip_frequency_json = expand("auspice/{ext}_{build_name}_tip-frequencies.json", build_name=BUILD_NAMES,ext=config["auspice_json_prefix"])
rule clean:
message: "Removing directories: {params}"
params:
"results ",
"auspice"
shell:
"rm -rfv {params}"
rule dump_config:
run:
import yaml, sys
yaml.dump(config, sys.stdout, explicit_start = True, explicit_end = True)
# Include small, shared functions that help build inputs and parameters.
include: "workflow/snakemake_rules/common.smk"
# Include rules to handle primary build logic from multiple sequence alignment
# to output of auspice JSONs for a default build.
include: "workflow/snakemake_rules/main_workflow.smk"
# Include rules to allow downloading of input-specific files from s3 buckets.
# These have to be opted-into via config params.
include: "workflow/snakemake_rules/download.smk"
# Include a custom Snakefile that specifies `localrules` required by the user's
# workflow environment.
if "localrules" in config:
include: config["localrules"]
# Include custom rules defined in the config.
if "custom_rules" in config:
for rule_file in config["custom_rules"]:
include: rule_file