-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlzfse_decode_base.c
630 lines (554 loc) · 24.3 KB
/
lzfse_decode_base.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
/*
Copyright (c) 2015-2016, Apple Inc. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holder(s) nor the names of any contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "lzfse_internal.h"
#include "lzvn_decode_base.h"
/*! @abstract Decode an entry value from next bits of stream.
* Return \p value, and set \p *nbits to the number of bits to consume
* (starting with LSB). */
static inline int lzfse_decode_v1_freq_value(uint32_t bits, int *nbits) {
static const int8_t lzfse_freq_nbits_table[32] = {
2, 3, 2, 5, 2, 3, 2, 8, 2, 3, 2, 5, 2, 3, 2, 14,
2, 3, 2, 5, 2, 3, 2, 8, 2, 3, 2, 5, 2, 3, 2, 14};
static const int8_t lzfse_freq_value_table[32] = {
0, 2, 1, 4, 0, 3, 1, -1, 0, 2, 1, 5, 0, 3, 1, -1,
0, 2, 1, 6, 0, 3, 1, -1, 0, 2, 1, 7, 0, 3, 1, -1};
uint32_t b = bits & 31; // lower 5 bits
int n = lzfse_freq_nbits_table[b];
*nbits = n;
// Special cases for > 5 bits encoding
if (n == 8)
return 8 + ((bits >> 4) & 0xf);
if (n == 14)
return 24 + ((bits >> 4) & 0x3ff);
// <= 5 bits encoding from table
return lzfse_freq_value_table[b];
}
/*! @abstract Extracts up to 32 bits from a 64-bit field beginning at
* \p offset, and zero-extends them to a \p uint32_t.
*
* If we number the bits of \p v from 0 (least significant) to 63 (most
* significant), the result is bits \p offset to \p offset+nbits-1. */
static inline uint32_t get_field(uint64_t v, int offset, int nbits) {
assert(offset + nbits < 64 && offset >= 0 && nbits <= 32);
if (nbits == 32)
return (uint32_t)(v >> offset);
return (uint32_t)((v >> offset) & ((1 << nbits) - 1));
}
/*! @abstract Return \c header_size field from a \c lzfse_compressed_block_header_v2. */
static inline uint32_t
lzfse_decode_v2_header_size(const lzfse_compressed_block_header_v2 *in) {
return get_field(in->packed_fields[2], 0, 32);
}
/*! @abstract Decode all fields from a \c lzfse_compressed_block_header_v2 to a
* \c lzfse_compressed_block_header_v1.
* @return 0 on success.
* @return -1 on failure. */
static inline int lzfse_decode_v1(lzfse_compressed_block_header_v1 *out,
const lzfse_compressed_block_header_v2 *in) {
// Clear all fields
memset(out, 0x00, sizeof(lzfse_compressed_block_header_v1));
uint64_t v0 = in->packed_fields[0];
uint64_t v1 = in->packed_fields[1];
uint64_t v2 = in->packed_fields[2];
out->magic = LZFSE_COMPRESSEDV1_BLOCK_MAGIC;
out->n_raw_bytes = in->n_raw_bytes;
// Literal state
out->n_literals = get_field(v0, 0, 20);
out->n_literal_payload_bytes = get_field(v0, 20, 20);
out->literal_bits = (int)get_field(v0, 60, 3) - 7;
out->literal_state[0] = get_field(v1, 0, 10);
out->literal_state[1] = get_field(v1, 10, 10);
out->literal_state[2] = get_field(v1, 20, 10);
out->literal_state[3] = get_field(v1, 30, 10);
// L,M,D state
out->n_matches = get_field(v0, 40, 20);
out->n_lmd_payload_bytes = get_field(v1, 40, 20);
out->lmd_bits = (int)get_field(v1, 60, 3) - 7;
out->l_state = get_field(v2, 32, 10);
out->m_state = get_field(v2, 42, 10);
out->d_state = get_field(v2, 52, 10);
// Total payload size
out->n_payload_bytes =
out->n_literal_payload_bytes + out->n_lmd_payload_bytes;
// Freq tables
uint16_t *dst = &(out->l_freq[0]);
const uint8_t *src = &(in->freq[0]);
const uint8_t *src_end =
(const uint8_t *)in + get_field(v2, 0, 32); // first byte after header
uint32_t accum = 0;
int accum_nbits = 0;
// No freq tables?
if (src_end == src)
return 0; // OK, freq tables were omitted
for (int i = 0; i < LZFSE_ENCODE_L_SYMBOLS + LZFSE_ENCODE_M_SYMBOLS +
LZFSE_ENCODE_D_SYMBOLS + LZFSE_ENCODE_LITERAL_SYMBOLS;
i++) {
// Refill accum, one byte at a time, until we reach end of header, or accum
// is full
while (src < src_end && accum_nbits + 8 <= 32) {
accum |= (uint32_t)(*src) << accum_nbits;
accum_nbits += 8;
src++;
}
// Decode and store value
int nbits = 0;
dst[i] = lzfse_decode_v1_freq_value(accum, &nbits);
if (nbits > accum_nbits)
return -1; // failed
// Consume nbits bits
accum >>= nbits;
accum_nbits -= nbits;
}
if (accum_nbits >= 8 || src != src_end)
return -1; // we need to end up exactly at the end of header, with less than
// 8 bits in accumulator
return 0;
}
static inline void copy(uint8_t *dst, const uint8_t *src, size_t length) {
const uint8_t *dst_end = dst + length;
do {
copy8(dst, src);
dst += 8;
src += 8;
} while (dst < dst_end);
}
static int lzfse_decode_lmd(lzfse_decoder_state *s) {
lzfse_compressed_block_decoder_state *bs = &(s->compressed_lzfse_block_state);
fse_state l_state = bs->l_state;
fse_state m_state = bs->m_state;
fse_state d_state = bs->d_state;
fse_in_stream in = bs->lmd_in_stream;
const uint8_t *src_start = s->src_begin;
const uint8_t *src = s->src + bs->lmd_in_buf;
const uint8_t *lit = bs->current_literal;
uint8_t *dst = s->dst;
uint32_t symbols = bs->n_matches;
int32_t L = bs->l_value;
int32_t M = bs->m_value;
int32_t D = bs->d_value;
assert(l_state < LZFSE_ENCODE_L_STATES);
assert(m_state < LZFSE_ENCODE_M_STATES);
assert(d_state < LZFSE_ENCODE_D_STATES);
// Number of bytes remaining in the destination buffer, minus 32 to
// provide a margin of safety for using overlarge copies on the fast path.
// This is a signed quantity, and may go negative when we are close to the
// end of the buffer. That's OK; we're careful about how we handle it
// in the slow-and-careful match execution path.
ptrdiff_t remaining_bytes = s->dst_end - dst - 32;
// If L or M is non-zero, that means that we have already started decoding
// this block, and that we needed to interrupt decoding to get more space
// from the caller. There's a pending L, M, D triplet that we weren't
// able to completely process. Jump ahead to finish executing that symbol
// before decoding new values.
if (L || M)
goto ExecuteMatch;
while (symbols > 0) {
int res;
// Decode the next L, M, D symbol from the input stream.
res = fse_in_flush(&in, &src, src_start);
if (res) {
return LZFSE_STATUS_ERROR;
}
L = fse_value_decode(&l_state, bs->l_decoder, &in);
assert(l_state < LZFSE_ENCODE_L_STATES);
if ((lit + L) >= (bs->literals + LZFSE_LITERALS_PER_BLOCK + 64)) {
return LZFSE_STATUS_ERROR;
}
res = fse_in_flush2(&in, &src, src_start);
if (res) {
return LZFSE_STATUS_ERROR;
}
M = fse_value_decode(&m_state, bs->m_decoder, &in);
assert(m_state < LZFSE_ENCODE_M_STATES);
res = fse_in_flush2(&in, &src, src_start);
if (res) {
return LZFSE_STATUS_ERROR;
}
int32_t new_d = fse_value_decode(&d_state, bs->d_decoder, &in);
assert(d_state < LZFSE_ENCODE_D_STATES);
D = new_d ? new_d : D;
symbols--;
ExecuteMatch:
// Error if D is out of range, so that we avoid passing through
// uninitialized data or accesssing memory out of the destination
// buffer.
if ((uint32_t)D > dst + L - s->dst_begin)
return LZFSE_STATUS_ERROR;
if (L + M <= remaining_bytes) {
// If we have plenty of space remaining, we can copy the literal
// and match with 16- and 32-byte operations, without worrying
// about writing off the end of the buffer.
remaining_bytes -= L + M;
copy(dst, lit, L);
dst += L;
lit += L;
// For the match, we have two paths; a fast copy by 16-bytes if
// the match distance is large enough to allow it, and a more
// careful path that applies a permutation to account for the
// possible overlap between source and destination if the distance
// is small.
if (D >= 8 || D >= M)
copy(dst, dst - D, M);
else
for (size_t i = 0; i < M; i++)
dst[i] = dst[i - D];
dst += M;
}
else {
// Otherwise, we are very close to the end of the destination
// buffer, so we cannot use wide copies that slop off the end
// of the region that we are copying to. First, we restore
// the true length remaining, rather than the sham value we've
// been using so far.
remaining_bytes += 32;
// Now, we process the literal. Either there's space for it
// or there isn't; if there is, we copy the whole thing and
// update all the pointers and lengths to reflect the copy.
if (L <= remaining_bytes) {
for (size_t i = 0; i < L; i++)
dst[i] = lit[i];
dst += L;
lit += L;
remaining_bytes -= L;
L = 0;
}
// There isn't enough space to fit the whole literal. Copy as
// much of it as we can, update the pointers and the value of
// L, and report that the destination buffer is full. Note that
// we always write right up to the end of the destination buffer.
else {
for (size_t i = 0; i < remaining_bytes; i++)
dst[i] = lit[i];
dst += remaining_bytes;
lit += remaining_bytes;
L -= remaining_bytes;
goto DestinationBufferIsFull;
}
// The match goes just like the literal does. We copy as much as
// we can byte-by-byte, and if we reach the end of the buffer
// before finishing, we return to the caller indicating that
// the buffer is full.
if (M <= remaining_bytes) {
for (size_t i = 0; i < M; i++)
dst[i] = dst[i - D];
dst += M;
remaining_bytes -= M;
M = 0;
(void)M; // no dead store warning
// We don't need to update M = 0, because there's no partial
// symbol to continue executing. Either we're at the end of
// the block, in which case we will never need to resume with
// this state, or we're going to decode another L, M, D set,
// which will overwrite M anyway.
//
// But we still set M = 0, to maintain the post-condition.
} else {
for (size_t i = 0; i < remaining_bytes; i++)
dst[i] = dst[i - D];
dst += remaining_bytes;
M -= remaining_bytes;
DestinationBufferIsFull:
// Because we want to be able to resume decoding where we've left
// off (even in the middle of a literal or match), we need to
// update all of the block state fields with the current values
// so that we can resume execution from this point once the
// caller has given us more space to write into.
bs->l_value = L;
bs->m_value = M;
bs->d_value = D;
bs->l_state = l_state;
bs->m_state = m_state;
bs->d_state = d_state;
bs->lmd_in_stream = in;
bs->n_matches = symbols;
bs->lmd_in_buf = (uint32_t)(src - s->src);
bs->current_literal = lit;
s->dst = dst;
return LZFSE_STATUS_DST_FULL;
}
// Restore the "sham" decremented value of remaining_bytes and
// continue to the next L, M, D triple. We'll just be back in
// the careful path again, but this only happens at the very end
// of the buffer, so a little minor inefficiency here is a good
// tradeoff for simpler code.
remaining_bytes -= 32;
}
}
// Because we've finished with the whole block, we don't need to update
// any of the blockstate fields; they will not be used again. We just
// update the destination pointer in the state object and return.
s->dst = dst;
return LZFSE_STATUS_OK;
}
int lzfse_decode(lzfse_decoder_state *s) {
while (1) {
// Are we inside a block?
switch (s->block_magic) {
case LZFSE_NO_BLOCK_MAGIC: {
// We need at least 4 bytes of magic number to identify next block
if (s->src + 4 > s->src_end)
return LZFSE_STATUS_SRC_EMPTY; // SRC truncated
uint32_t magic = load4(s->src);
if (magic == LZFSE_ENDOFSTREAM_BLOCK_MAGIC) {
s->src += 4;
s->end_of_stream = 1;
return LZFSE_STATUS_OK; // done
}
if (magic == LZFSE_UNCOMPRESSED_BLOCK_MAGIC) {
if (s->src + sizeof(uncompressed_block_header) > s->src_end)
return LZFSE_STATUS_SRC_EMPTY; // SRC truncated
// Setup state for uncompressed block
uncompressed_block_decoder_state *bs = &(s->uncompressed_block_state);
bs->n_raw_bytes =
load4(s->src + offsetof(uncompressed_block_header, n_raw_bytes));
s->src += sizeof(uncompressed_block_header);
s->block_magic = magic;
break;
}
if (magic == LZFSE_COMPRESSEDLZVN_BLOCK_MAGIC) {
if (s->src + sizeof(lzvn_compressed_block_header) > s->src_end)
return LZFSE_STATUS_SRC_EMPTY; // SRC truncated
// Setup state for compressed LZVN block
lzvn_compressed_block_decoder_state *bs =
&(s->compressed_lzvn_block_state);
bs->n_raw_bytes =
load4(s->src + offsetof(lzvn_compressed_block_header, n_raw_bytes));
bs->n_payload_bytes = load4(
s->src + offsetof(lzvn_compressed_block_header, n_payload_bytes));
bs->d_prev = 0;
s->src += sizeof(lzvn_compressed_block_header);
s->block_magic = magic;
break;
}
if (magic == LZFSE_COMPRESSEDV1_BLOCK_MAGIC ||
magic == LZFSE_COMPRESSEDV2_BLOCK_MAGIC) {
lzfse_compressed_block_header_v1 header1;
size_t header_size = 0;
// Decode compressed headers
if (magic == LZFSE_COMPRESSEDV2_BLOCK_MAGIC) {
// Check we have the fixed part of the structure
if (s->src + offsetof(lzfse_compressed_block_header_v2, freq) > s->src_end)
return LZFSE_STATUS_SRC_EMPTY; // SRC truncated
// Get size, and check we have the entire structure
const lzfse_compressed_block_header_v2 *header2 =
(const lzfse_compressed_block_header_v2 *)s->src; // not aligned, OK
header_size = lzfse_decode_v2_header_size(header2);
if (s->src + header_size > s->src_end)
return LZFSE_STATUS_SRC_EMPTY; // SRC truncated
int decodeStatus = lzfse_decode_v1(&header1, header2);
if (decodeStatus != 0)
return LZFSE_STATUS_ERROR; // failed
} else {
if (s->src + sizeof(lzfse_compressed_block_header_v1) > s->src_end)
return LZFSE_STATUS_SRC_EMPTY; // SRC truncated
memcpy(&header1, s->src, sizeof(lzfse_compressed_block_header_v1));
header_size = sizeof(lzfse_compressed_block_header_v1);
}
// We require the header + entire encoded block to be present in SRC
// during the entire block decoding.
// This can be relaxed somehow, if it becomes a limiting factor, at the
// price of a more complex state maintenance.
// For DST, we can't easily require space for the entire decoded block,
// because it may expand to something very very large.
if (s->src + header_size + header1.n_literal_payload_bytes +
header1.n_lmd_payload_bytes >
s->src_end)
return LZFSE_STATUS_SRC_EMPTY; // need all encoded block
// Sanity checks
if (lzfse_check_block_header_v1(&header1) != 0) {
return LZFSE_STATUS_ERROR;
}
// Skip header
s->src += header_size;
// Setup state for compressed V1 block from header
lzfse_compressed_block_decoder_state *bs =
&(s->compressed_lzfse_block_state);
bs->n_lmd_payload_bytes = header1.n_lmd_payload_bytes;
bs->n_matches = header1.n_matches;
fse_init_decoder_table(LZFSE_ENCODE_LITERAL_STATES,
LZFSE_ENCODE_LITERAL_SYMBOLS,
header1.literal_freq, bs->literal_decoder);
fse_init_value_decoder_table(
LZFSE_ENCODE_L_STATES, LZFSE_ENCODE_L_SYMBOLS, header1.l_freq,
l_extra_bits, l_base_value, bs->l_decoder);
fse_init_value_decoder_table(
LZFSE_ENCODE_M_STATES, LZFSE_ENCODE_M_SYMBOLS, header1.m_freq,
m_extra_bits, m_base_value, bs->m_decoder);
fse_init_value_decoder_table(
LZFSE_ENCODE_D_STATES, LZFSE_ENCODE_D_SYMBOLS, header1.d_freq,
d_extra_bits, d_base_value, bs->d_decoder);
// Decode literals
{
fse_in_stream in;
const uint8_t *buf_start = s->src_begin;
s->src += header1.n_literal_payload_bytes; // skip literal payload
const uint8_t *buf = s->src; // read bits backwards from the end
if (fse_in_init(&in, header1.literal_bits, &buf, buf_start) != 0)
return LZFSE_STATUS_ERROR;
fse_state state0 = header1.literal_state[0];
fse_state state1 = header1.literal_state[1];
fse_state state2 = header1.literal_state[2];
fse_state state3 = header1.literal_state[3];
for (uint32_t i = 0; i < header1.n_literals; i += 4) // n_literals is multiple of 4
{
#if FSE_IOSTREAM_64
if (fse_in_flush(&in, &buf, buf_start) != 0)
return LZFSE_STATUS_ERROR; // [57, 64] bits
bs->literals[i + 0] =
fse_decode(&state0, bs->literal_decoder, &in); // 10b max
bs->literals[i + 1] =
fse_decode(&state1, bs->literal_decoder, &in); // 10b max
bs->literals[i + 2] =
fse_decode(&state2, bs->literal_decoder, &in); // 10b max
bs->literals[i + 3] =
fse_decode(&state3, bs->literal_decoder, &in); // 10b max
#else
if (fse_in_flush(&in, &buf, buf_start) != 0)
return LZFSE_STATUS_ERROR; // [25, 23] bits
bs->literals[i + 0] =
fse_decode(&state0, bs->literal_decoder, &in); // 10b max
bs->literals[i + 1] =
fse_decode(&state1, bs->literal_decoder, &in); // 10b max
if (fse_in_flush(&in, &buf, buf_start) != 0)
return LZFSE_STATUS_ERROR; // [25, 23] bits
bs->literals[i + 2] =
fse_decode(&state2, bs->literal_decoder, &in); // 10b max
bs->literals[i + 3] =
fse_decode(&state3, bs->literal_decoder, &in); // 10b max
#endif
}
bs->current_literal = bs->literals;
} // literals
// SRC is not incremented to skip the LMD payload, since we need it
// during block decode.
// We will increment SRC at the end of the block only after this point.
// Initialize the L,M,D decode stream, do not start decoding matches
// yet, and store decoder state
{
fse_in_stream in;
// read bits backwards from the end
const uint8_t *buf = s->src + header1.n_lmd_payload_bytes;
if (fse_in_init(&in, header1.lmd_bits, &buf, s->src) != 0)
return LZFSE_STATUS_ERROR;
bs->l_state = header1.l_state;
bs->m_state = header1.m_state;
bs->d_state = header1.d_state;
bs->lmd_in_buf = (uint32_t)(buf - s->src);
bs->l_value = bs->m_value = 0;
// Initialize D to an illegal value so we can't erroneously use
// an uninitialized "previous" value.
bs->d_value = -1;
bs->lmd_in_stream = in;
}
s->block_magic = magic;
break;
}
// Here we have an invalid magic number
return LZFSE_STATUS_ERROR;
} // LZFSE_NO_BLOCK_MAGIC
case LZFSE_UNCOMPRESSED_BLOCK_MAGIC: {
uncompressed_block_decoder_state *bs = &(s->uncompressed_block_state);
// Compute the size (in bytes) of the data that we will actually copy.
// This size is minimum(bs->n_raw_bytes, space in src, space in dst).
uint32_t copy_size = bs->n_raw_bytes; // bytes left to copy
if (copy_size == 0) {
s->block_magic = 0;
break;
} // end of block
if (s->src_end <= s->src)
return LZFSE_STATUS_SRC_EMPTY; // need more SRC data
const size_t src_space = s->src_end - s->src;
if (copy_size > src_space)
copy_size = (uint32_t)src_space; // limit to SRC data (> 0)
if (s->dst_end <= s->dst)
return LZFSE_STATUS_DST_FULL; // need more DST capacity
const size_t dst_space = s->dst_end - s->dst;
if (copy_size > dst_space)
copy_size = (uint32_t)dst_space; // limit to DST capacity (> 0)
// Now that we know that the copy size is bounded to the source and
// dest buffers, go ahead and copy the data.
// We always have copy_size > 0 here
memcpy(s->dst, s->src, copy_size);
s->src += copy_size;
s->dst += copy_size;
bs->n_raw_bytes -= copy_size;
break;
} // LZFSE_UNCOMPRESSED_BLOCK_MAGIC
case LZFSE_COMPRESSEDV1_BLOCK_MAGIC:
case LZFSE_COMPRESSEDV2_BLOCK_MAGIC: {
lzfse_compressed_block_decoder_state *bs =
&(s->compressed_lzfse_block_state);
// Require the entire LMD payload to be in SRC
if (s->src_end <= s->src ||
bs->n_lmd_payload_bytes > (size_t)(s->src_end - s->src))
return LZFSE_STATUS_SRC_EMPTY;
int status = lzfse_decode_lmd(s);
if (status != LZFSE_STATUS_OK)
return status;
s->block_magic = LZFSE_NO_BLOCK_MAGIC;
s->src += bs->n_lmd_payload_bytes; // to next block
break;
} // LZFSE_COMPRESSEDV1_BLOCK_MAGIC || LZFSE_COMPRESSEDV2_BLOCK_MAGIC
case LZFSE_COMPRESSEDLZVN_BLOCK_MAGIC: {
lzvn_compressed_block_decoder_state *bs =
&(s->compressed_lzvn_block_state);
if (bs->n_payload_bytes > 0 && s->src_end <= s->src)
return LZFSE_STATUS_SRC_EMPTY; // need more SRC data
// Init LZVN decoder state
lzvn_decoder_state dstate;
memset(&dstate, 0x00, sizeof(dstate));
dstate.src = s->src;
dstate.src_end = s->src_end;
if (dstate.src_end - s->src > bs->n_payload_bytes)
dstate.src_end = s->src + bs->n_payload_bytes; // limit to payload bytes
dstate.dst_begin = s->dst_begin;
dstate.dst = s->dst;
dstate.dst_end = s->dst_end;
if (dstate.dst_end - s->dst > bs->n_raw_bytes)
dstate.dst_end = s->dst + bs->n_raw_bytes; // limit to raw bytes
dstate.d_prev = bs->d_prev;
dstate.end_of_stream = 0;
// Run LZVN decoder
lzvn_decode(&dstate);
// Update our state
size_t src_used = dstate.src - s->src;
size_t dst_used = dstate.dst - s->dst;
if (src_used > bs->n_payload_bytes || dst_used > bs->n_raw_bytes)
return LZFSE_STATUS_ERROR; // sanity check
s->src = dstate.src;
s->dst = dstate.dst;
bs->n_payload_bytes -= (uint32_t)src_used;
bs->n_raw_bytes -= (uint32_t)dst_used;
bs->d_prev = (uint32_t)dstate.d_prev;
// Test end of block
if (bs->n_payload_bytes == 0 && bs->n_raw_bytes == 0 &&
dstate.end_of_stream) {
s->block_magic = 0;
break;
} // block done
// Check for invalid state
if (bs->n_payload_bytes == 0 || bs->n_raw_bytes == 0 ||
dstate.end_of_stream)
return LZFSE_STATUS_ERROR;
// Here, block is not done and state is valid, so we need more space in dst.
return LZFSE_STATUS_DST_FULL;
}
default:
return LZFSE_STATUS_ERROR; // invalid magic
} // switch magic
} // block loop
return LZFSE_STATUS_OK;
}