-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample-simple-bp.py
170 lines (137 loc) · 4.84 KB
/
example-simple-bp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
"""
The non-linear function is confusingly called sigmoid, but uses
a tanh. In a lot of people's minds the sigmoid function is just
the logistic function 1/1+e^-x, which is very different from
tanh! The derivative of tanh is indeed (1 - y**2), but the
derivative of the logistic function is s*(1-s). The link does
not help very much with this.
"""
import math
import random
import string
class NN:
def __init__(self, NI, NH, NO):
# number of nodes in layers
self.ni = NI + 1 # +1 for bias
self.nh = NH
self.no = NO
# initialize node-activations
self.ai, self.ah, self.ao = [],[], []
self.ai = [1.0]*self.ni
self.ah = [1.0]*self.nh
self.ao = [1.0]*self.no
# create node weight matrices
self.wi = makeMatrix (self.ni, self.nh)
self.wo = makeMatrix (self.nh, self.no)
# initialize node weights to random vals
randomizeMatrix ( self.wi, -0.2, 0.2 )
randomizeMatrix ( self.wo, -2.0, 2.0 )
# create last change in weights matrices for momentum
self.ci = makeMatrix (self.ni, self.nh)
self.co = makeMatrix (self.nh, self.no)
def runNN (self, inputs):
if len(inputs) != self.ni-1:
print 'incorrect number of inputs'
for i in range(self.ni-1):
self.ai[i] = inputs[i]
for j in range(self.nh):
sum = 0.0
for i in range(self.ni):
sum +=( self.ai[i] * self.wi[i][j] )
self.ah[j] = sigmoid (sum)
for k in range(self.no):
sum = 0.0
for j in range(self.nh):
sum +=( self.ah[j] * self.wo[j][k] )
self.ao[k] = sigmoid (sum)
return self.ao
def backPropagate (self, targets, N, M):
# http://www.youtube.com/watch?v=aVId8KMsdUU&feature=BFa&list=LLldMCkmXl4j9_v0HeKdNcRA
# calc output deltas
# we want to find the instantaneous rate of change of ( error with respect to weight from node j to node k)
# output_delta is defined as an attribute of each ouput node. It is not the final rate we need.
# To get the final rate we must multiply the delta by the activation of the hidden layer node in question.
# This multiplication is done according to the chain rule as we are taking the derivative of the activation function
# of the ouput node.
# dE/dw[j][k] = (t[k] - ao[k]) * s'( SUM( w[j][k]*ah[j] ) ) * ah[j]
output_deltas = [0.0] * self.no
for k in range(self.no):
error = targets[k] - self.ao[k]
output_deltas[k] = error * dsigmoid(self.ao[k])
# update output weights
for j in range(self.nh):
for k in range(self.no):
# output_deltas[k] * self.ah[j] is the full derivative of dError/dweight[j][k]
change = output_deltas[k] * self.ah[j]
self.wo[j][k] += N*change + M*self.co[j][k]
self.co[j][k] = change
# calc hidden deltas
hidden_deltas = [0.0] * self.nh
for j in range(self.nh):
error = 0.0
for k in range(self.no):
error += output_deltas[k] * self.wo[j][k]
hidden_deltas[j] = error * dsigmoid(self.ah[j])
#update input weights
for i in range (self.ni):
for j in range (self.nh):
change = hidden_deltas[j] * self.ai[i]
#print 'activation',self.ai[i],'synapse',i,j,'change',change
self.wi[i][j] += N*change + M*self.ci[i][j]
self.ci[i][j] = change
# calc combined error
# 1/2 for differential convenience & **2 for modulus
error = 0.0
for k in range(len(targets)):
error = 0.5 * (targets[k]-self.ao[k])**2
return error
def weights(self):
print 'Input weights:'
for i in range(self.ni):
print self.wi[i]
print
print 'Output weights:'
for j in range(self.nh):
print self.wo[j]
print ''
def test(self, patterns):
for p in patterns:
inputs = p[0]
print 'Inputs:', p[0], '-->', self.runNN(inputs), '\tTarget', p[1]
def train (self, patterns, max_iterations = 1000, N=0.5, M=0.1):
for i in range(max_iterations):
for p in patterns:
inputs = p[0]
targets = p[1]
self.runNN(inputs)
error = self.backPropagate(targets, N, M)
if i % 50 == 0:
print 'Combined error', error
self.test(patterns)
def sigmoid (x):
return math.tanh(x)
# the derivative of the sigmoid function in terms of output
# proof here:
# http://www.math10.com/en/algebra/hyperbolic-functions/hyperbolic-functions.html
def dsigmoid (y):
return 1 - y**2
def makeMatrix ( I, J, fill=0.0):
m = []
for i in range(I):
m.append([fill]*J)
return m
def randomizeMatrix ( matrix, a, b):
for i in range ( len (matrix) ):
for j in range ( len (matrix[0]) ):
matrix[i][j] = random.uniform(a,b)
def main ():
pat = [
[[0,0], [1]],
[[0,1], [1]],
[[1,0], [1]],
[[1,1], [0]]
]
myNN = NN ( 2, 2, 1)
myNN.train(pat)
if __name__ == "__main__":
main()