|
11 | 11 | },
|
12 | 12 | {
|
13 | 13 | "cell_type": "code",
|
14 |
| - "execution_count": 2, |
| 14 | + "execution_count": 1, |
15 | 15 | "metadata": {},
|
16 | 16 | "outputs": [],
|
17 | 17 | "source": [
|
18 | 18 | "import pandas as pd\n",
|
19 | 19 | "import numpy as np\n",
|
20 | 20 | "from collections import defaultdict\n",
|
21 | 21 | "\n",
|
22 |
| - "from PopSynthesis.Generator_data.generate_combine_census.utils import *" |
| 22 | + "from PopSynthesis.Generator_data.generate_combine_census.utils import * " |
23 | 23 | ]
|
24 | 24 | },
|
25 | 25 | {
|
26 | 26 | "cell_type": "code",
|
27 |
| - "execution_count": 3, |
| 27 | + "execution_count": 2, |
28 | 28 | "metadata": {},
|
29 | 29 | "outputs": [],
|
30 | 30 | "source": [
|
|
35 | 35 | },
|
36 | 36 | {
|
37 | 37 | "cell_type": "code",
|
38 |
| - "execution_count": 4, |
| 38 | + "execution_count": 3, |
39 | 39 | "metadata": {},
|
40 | 40 | "outputs": [],
|
41 | 41 | "source": [
|
|
45 | 45 | },
|
46 | 46 | {
|
47 | 47 | "cell_type": "code",
|
48 |
| - "execution_count": 5, |
| 48 | + "execution_count": 4, |
49 | 49 | "metadata": {},
|
50 | 50 | "outputs": [],
|
51 | 51 | "source": [
|
|
58 | 58 | },
|
59 | 59 | {
|
60 | 60 | "cell_type": "code",
|
61 |
| - "execution_count": 6, |
| 61 | + "execution_count": 5, |
62 | 62 | "metadata": {},
|
63 | 63 | "outputs": [],
|
64 | 64 | "source": [
|
|
69 | 69 | },
|
70 | 70 | {
|
71 | 71 | "cell_type": "code",
|
72 |
| - "execution_count": 7, |
| 72 | + "execution_count": 6, |
73 | 73 | "metadata": {},
|
74 | 74 | "outputs": [],
|
75 | 75 | "source": [
|
|
79 | 79 | },
|
80 | 80 | {
|
81 | 81 | "cell_type": "code",
|
82 |
| - "execution_count": 8, |
| 82 | + "execution_count": 7, |
83 | 83 | "metadata": {},
|
84 | 84 | "outputs": [],
|
85 | 85 | "source": [
|
|
146 | 146 | },
|
147 | 147 | {
|
148 | 148 | "cell_type": "code",
|
149 |
| - "execution_count": 9, |
| 149 | + "execution_count": 8, |
150 | 150 | "metadata": {},
|
151 | 151 | "outputs": [],
|
152 | 152 | "source": [
|
|
156 | 156 | },
|
157 | 157 | {
|
158 | 158 | "cell_type": "code",
|
159 |
| - "execution_count": 10, |
| 159 | + "execution_count": 9, |
160 | 160 | "metadata": {},
|
161 | 161 | "outputs": [
|
162 | 162 | {
|
|
165 | 165 | "6464884"
|
166 | 166 | ]
|
167 | 167 | },
|
168 |
| - "execution_count": 10, |
| 168 | + "execution_count": 9, |
169 | 169 | "metadata": {},
|
170 | 170 | "output_type": "execute_result"
|
171 | 171 | }
|
|
181 | 181 | },
|
182 | 182 | {
|
183 | 183 | "cell_type": "code",
|
184 |
| - "execution_count": 11, |
| 184 | + "execution_count": 10, |
185 | 185 | "metadata": {},
|
186 | 186 | "outputs": [
|
187 | 187 | {
|
|
190 | 190 | "6450747.0"
|
191 | 191 | ]
|
192 | 192 | },
|
193 |
| - "execution_count": 11, |
| 193 | + "execution_count": 10, |
194 | 194 | "metadata": {},
|
195 | 195 | "output_type": "execute_result"
|
196 | 196 | }
|
|
201 | 201 | },
|
202 | 202 | {
|
203 | 203 | "cell_type": "code",
|
204 |
| - "execution_count": 12, |
| 204 | + "execution_count": 32, |
205 | 205 | "metadata": {},
|
206 |
| - "outputs": [], |
| 206 | + "outputs": [ |
| 207 | + { |
| 208 | + "name": "stdout", |
| 209 | + "output_type": "stream", |
| 210 | + "text": [ |
| 211 | + "-1\n", |
| 212 | + "('dwelltype', 'Flat or Apartment')\n", |
| 213 | + "-2\n", |
| 214 | + "('dwelltype', 'Separate House')\n", |
| 215 | + "-3\n", |
| 216 | + "('dwelltype', 'Separate House')\n", |
| 217 | + "-3\n", |
| 218 | + "('dwelltype', 'Separate House')\n" |
| 219 | + ] |
| 220 | + } |
| 221 | + ], |
207 | 222 | "source": [
|
208 |
| - "a = final_df_census_hh.astype(int) < 0\n", |
| 223 | + "check_df = final_df_census_hh.astype(int) < 0\n", |
209 | 224 | "dict_to_process = {}\n",
|
210 |
| - "for i, r in a.iterrows():\n", |
| 225 | + "for i, r in check_df.iterrows():\n", |
211 | 226 | " if r.any():\n",
|
212 |
| - " loc_cols = r[r].index\n", |
| 227 | + " print(f\"Issue in {i}\")\n", |
| 228 | + " loc_cols = r[r].index # Filter to only true\n", |
213 | 229 | " dict_to_process[i] = list(loc_cols)\n",
|
| 230 | + " for att, state in list(loc_cols):\n", |
| 231 | + " # print(r.index.get_level_values(0) == att)\n", |
| 232 | + " all_related_state_idx = r[r.index.get_level_values(0) == att].index\n", |
| 233 | + " sub_check = final_df_census_hh.loc[i, all_related_state_idx]\n", |
| 234 | + " to_add_del_val = final_df_census_hh.loc[i, (att, state)] * -1\n", |
| 235 | + " assert to_add_del_val > 0 # confirm again\n", |
| 236 | + " assert sub_check.max() > to_add_del_val\n", |
| 237 | + " print(f\"Old value to fix {(att, state)}: {final_df_census_hh.loc[i, (att, state)]}\")\n", |
| 238 | + " print(f\"And delete in {sub_check.idxmax()}: {final_df_census_hh.loc[i, sub_check.idxmax()]}\")\n", |
| 239 | + " final_df_census_hh.loc[i, (att, state)] += to_add_del_val\n", |
| 240 | + " final_df_census_hh.loc[i, sub_check.idxmax()] -= to_add_del_val\n", |
| 241 | + " print(f\"New value in {(att, state)}: {final_df_census_hh.loc[i, (att, state)]}\")\n", |
| 242 | + " print(f\"New value in {sub_check.idxmax()}: {final_df_census_hh.loc[i, sub_check.idxmax()]}\")\n", |
214 | 243 | "\n",
|
215 |
| - "for idx, ls_cols in dict_to_process.items():\n", |
216 |
| - " print(idx, ls_cols)" |
| 244 | + " \n", |
| 245 | + " # print(final_df_census_hh.loc[i, loc_cols])\n", |
| 246 | + "\n", |
| 247 | + "# for idx, ls_cols in dict_to_process.items():\n", |
| 248 | + "# print(idx, ls_cols)\n", |
| 249 | + "\n" |
217 | 250 | ]
|
218 | 251 | },
|
| 252 | + { |
| 253 | + "cell_type": "code", |
| 254 | + "execution_count": 18, |
| 255 | + "metadata": {}, |
| 256 | + "outputs": [ |
| 257 | + { |
| 258 | + "data": { |
| 259 | + "text/plain": [ |
| 260 | + "zone_id None 3942\n", |
| 261 | + "sample_geog None 2\n", |
| 262 | + "hhsize 1 341\n", |
| 263 | + " 2 542\n", |
| 264 | + " 3 102\n", |
| 265 | + " 4 108\n", |
| 266 | + " 5 45\n", |
| 267 | + " 6 5\n", |
| 268 | + " 7 0\n", |
| 269 | + " 8+ 55\n", |
| 270 | + "dwelltype Flat or Apartment -3\n", |
| 271 | + " Missing 0\n", |
| 272 | + " Other -3\n", |
| 273 | + " Separate House 1191\n", |
| 274 | + " Terrace/Townhouse 13\n", |
| 275 | + "hhinc 1-149 19\n", |
| 276 | + " 1000-1249 99\n", |
| 277 | + " 1250-1499 84\n", |
| 278 | + " 150-299 25\n", |
| 279 | + " 1500-1749 56\n", |
| 280 | + " 1750-1999 64\n", |
| 281 | + " 2000-2499 121\n", |
| 282 | + " 2500-2999 69\n", |
| 283 | + " 300-399 30\n", |
| 284 | + " 3000-3499 78\n", |
| 285 | + " 3500-3999 31\n", |
| 286 | + " 400-499 65\n", |
| 287 | + " 4000-4499 23\n", |
| 288 | + " 4500-4999 71\n", |
| 289 | + " 500-649 55\n", |
| 290 | + " 5000-5999 54\n", |
| 291 | + " 6000-7999 50\n", |
| 292 | + " 650-799 83\n", |
| 293 | + " 800-999 66\n", |
| 294 | + " 8000+ 22\n", |
| 295 | + " Negative income 9\n", |
| 296 | + " Nil income 24\n", |
| 297 | + "totalvehs 0 34\n", |
| 298 | + " 1 416\n", |
| 299 | + " 2 550\n", |
| 300 | + " 3 141\n", |
| 301 | + " 4+ 57\n", |
| 302 | + "owndwell Being Purchased 317\n", |
| 303 | + " Being Rented 152\n", |
| 304 | + " Fully Owned 694\n", |
| 305 | + " Something Else 35\n", |
| 306 | + "Name: 3942, dtype: object" |
| 307 | + ] |
| 308 | + }, |
| 309 | + "execution_count": 18, |
| 310 | + "metadata": {}, |
| 311 | + "output_type": "execute_result" |
| 312 | + } |
| 313 | + ], |
| 314 | + "source": [ |
| 315 | + "final_df_census_hh.loc[\"3942\", :]" |
| 316 | + ] |
| 317 | + }, |
| 318 | + { |
| 319 | + "cell_type": "code", |
| 320 | + "execution_count": null, |
| 321 | + "metadata": {}, |
| 322 | + "outputs": [], |
| 323 | + "source": [] |
| 324 | + }, |
219 | 325 | {
|
220 | 326 | "cell_type": "code",
|
221 | 327 | "execution_count": 13,
|
|
235 | 341 | },
|
236 | 342 | {
|
237 | 343 | "cell_type": "code",
|
238 |
| - "execution_count": 40, |
| 344 | + "execution_count": 1, |
239 | 345 | "metadata": {},
|
240 |
| - "outputs": [], |
| 346 | + "outputs": [ |
| 347 | + { |
| 348 | + "ename": "NameError", |
| 349 | + "evalue": "name 'final_df_census_hh' is not defined", |
| 350 | + "output_type": "error", |
| 351 | + "traceback": [ |
| 352 | + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", |
| 353 | + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", |
| 354 | + "Input \u001b[1;32mIn [1]\u001b[0m, in \u001b[0;36m<cell line: 1>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m col \u001b[38;5;129;01min\u001b[39;00m \u001b[43mfinal_df_census_hh\u001b[49m\u001b[38;5;241m.\u001b[39mcolumns:\n\u001b[0;32m 2\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m col[\u001b[38;5;241m0\u001b[39m] \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m [\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mzone_id\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msample_geog\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mVehicle\u001b[39m\u001b[38;5;124m\"\u001b[39m]:\n\u001b[0;32m 3\u001b[0m final_df_census_hh[col] \u001b[38;5;241m=\u001b[39m final_df_census_hh[col] \u001b[38;5;241m/\u001b[39m tot_hh_seri\n", |
| 355 | + "\u001b[1;31mNameError\u001b[0m: name 'final_df_census_hh' is not defined" |
| 356 | + ] |
| 357 | + } |
| 358 | + ], |
241 | 359 | "source": [
|
242 | 360 | "for col in final_df_census_hh.columns:\n",
|
243 | 361 | " if col[0] not in [\"zone_id\", \"sample_geog\", \"Vehicle\"]:\n",
|
|
0 commit comments