-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpredict_synthesis2.py
126 lines (92 loc) · 3.58 KB
/
predict_synthesis2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import argparse
import tensorflow as tf
from mrtoct import data, ioutil, patch as p, util, model
def generate(input_path, output_path, chkpt_path, params):
config = tf.ConfigProto(device_count={'GPU': 0})
encoder = ioutil.TFRecordEncoder()
options = ioutil.TFRecordOptions
compstr = options.get_compression_type_string(options)
volume_shape = [300, 380, 400, 1]
volume_transform = data.transform.Compose([
data.transform.DecodeExample(),
data.transform.MinMaxNormalization(),
data.transform.CenterPad3D(*volume_shape[:3]),
data.transform.Lambda(lambda x: tf.reshape(x, volume_shape)),
])
volume_dataset = tf.data.TFRecordDataset(
input_path, compstr).map(volume_transform)
volume = volume_dataset.make_one_shot_iterator().get_next()
vshape = tf.shape(volume)
pshape = tf.convert_to_tensor(params.patch_shape)
indices = p.sample_meshgrid_3d(
pshape[:3], vshape[:3] - pshape[:3], params.sample_delta)
indices_len = tf.shape(indices)[0]
def extract_patch_at(index, volume):
i = index[0] - 16
j = index[1] - 16
k = index[2] - 16
return volume[i:i + 32, j:j + 32, k:k + 32]
patch_transform = data.transform.Compose([
extract_patch_at,
data.transform.ExpandDims(0),
])
def cond(i, *args):
return i < indices_len
def body(i, values, weights):
start = indices[i] - pshape[:3] // 4
stop = start + pshape[:3] // 2
patch_in = tf.reshape(patch_transform(indices[i], volume),
[1, 32, 32, 32, 1])
with tf.variable_scope('Generator'):
patch_out = model.gan.synthesis.generator_fn(
patch_in, 'channels_last')[0]
index = util.meshgrid_3d(start, stop)
update1 = tf.to_float(tf.scatter_nd(index, patch_out, vshape))
update2 = tf.to_float(tf.scatter_nd(
index, tf.to_float(patch_out > -1), vshape))
values += update1
weights += update2
values.set_shape(volume_shape)
weights.set_shape(volume_shape)
return i + 1, values, weights
_, values, weights = tf.while_loop(
cond, body, [0,
tf.zeros_like(volume, tf.float32),
tf.zeros_like(volume, tf.float32)], back_prop=False)
final_transform = data.transform.Compose([
data.transform.Normalize(),
lambda x: tf.image.convert_image_dtype(x, tf.int32),
])
cond = tf.not_equal(weights, 0)
ones = tf.ones_like(weights)
average = final_transform(values / tf.where(cond, weights, ones))
saver = tf.train.Saver()
writer = tf.python_io.TFRecordWriter(output_path, options)
tf.logging.info('Computation graph completed')
with tf.Session(config=config) as sess:
saver.restore(sess, chkpt_path)
try:
while True:
writer.write(encoder.encode(sess.run(average)))
tf.logging.info('Iteration completed')
except tf.errors.OutOfRangeError:
pass
finally:
writer.flush()
writer.close()
tf.logging.info('Writer closed')
def main(args):
tf.logging.set_verbosity(tf.logging.INFO)
hparams = tf.contrib.training.HParams(
sample_delta=5,
patch_shape=[32, 32, 32, args.iteration])
hparams.parse(args.hparams)
generate(args.inputs_path, args.outputs_path, args.checkpoint_path, hparams)
if __name__ == '__main__':
parser = argparse.ArgumentParser('predict')
parser.add_argument('--iteration', type=int, required=True)
parser.add_argument('--inputs-path', required=True)
parser.add_argument('--outputs-path', required=True)
parser.add_argument('--checkpoint-path', required=True)
parser.add_argument('--hparams', type=str, default='')
main(parser.parse_args())