forked from hojeroldgit/Social-Cultural-Dynamics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClassification.Rmd
357 lines (280 loc) · 11.3 KB
/
Classification.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
---
title: "Logistic regression"
output: html_document
editor_options:
chunk_output_type: console
---
# Load packages
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
pacman::p_load(pacman, tidyverse, tidymodels, groupdata2, lmerTest, lme4, kernlab, ggplot2, dplyr, caret)
```
# Data management - Original & Simulated Data
```{r}
# LOAD ORIGINAL DATA - SCALED AND GROUPED
original_data <- read_csv("grouped_scaled_01.csv")
original_data$diagnosis <- as.factor(original_data$Diagnosis)
original_bv <- original_data %>% select(ID, diagnosis, Pitch_MAD)
# LOAD SIMULATED DATA
sim_data <- read_csv("batch_1000_1000.csv")
# Grouping by particpantts
grouped_sim_data <- sim_data %>%
group_by(AgentId) %>%
summarise(activity = mean(activity), change_IQR = mean(change_IQR),
change_MAD = mean(change_MAD), change_PauseFreq = mean(change_PauseFreq),
change_Speechrate = mean(change_Speechrate), conversation_time = mean(conversation_time),
interaction_time = mean(interaction_time), interactions = mean(interactions),
mad = mean(mad), pauseFreq = mean(pauseFreq), speechrate = mean(speechrate),
abs_IQR = mean(abs_change_IQR), abs_MAD = mean(abs_change_MAD),
abs_Speechrate = mean(abs_change_Speechrate),
abs_PauseFreq = mean(change_PauseFreq), IQR = mean(IQR), speechrate = mean(speechrate),
mad = mean(mad), pauseFreq = mean(pauseFreq),diagnosis = diagnosis[1])
# Chaning ID collumn name
colnames(grouped_sim_data)[1] <- "ID"
# Refactoring diagnosis columms
grouped_sim_data$diagnosis <- as.factor(grouped_sim_data$diagnosis)
levels(grouped_sim_data$diagnosis) <- c('0', '1')
# Scaling data
grouped_sim_data <- grouped_sim_data %>%
mutate(activity = scale(activity), change_IQR = scale(change_IQR), change_MAD = scale(change_MAD),
change_PauseFreq = scale(change_PauseFreq), change_Speechrate = scale(change_Speechrate),
conversation_time = scale(conversation_time), interaction_time = scale(interaction_time),
interactions = scale(interactions), abs_IQR = scale(abs_IQR), abs_MAD = scale(abs_MAD),
abs_PauseFreq = scale(abs_PauseFreq))
summary(grouped_sim_data)
```
# Check predictor significance
```{r Linear Modeling}
bv_sim_coefficients <- data_frame()
for (i in colnames(grouped_sim_data)[2:15]){
summary <- summary(lm(paste(i, "~ 1 + diagnosis"), data = grouped_sim_data))
coef <- summary$coefficients
rownames(coef)[1] <- paste(i, "Intercept")
rownames(coef)[2] <- paste(i, "Slope")
if (coef[2,4] < 0.005){
bv_sim_coefficients <- rbind(bv_sim_coefficients, coef)
}
}
# Extrcing best variables and making interaction collumns
bv <- grouped_sim_data %>%
select(ID, diagnosis, change_MAD, interactions, interaction_time, abs_MAD, activity, mad)
bv$abs_MAD_activity <- bv$abs_MAD*bv$activity
bv$abs_MAD_interactions <- bv$abs_MAD*bv$interactions
bv$activity_change_MAD <- bv$change_MAD*bv$activity
# Defining different variable-combinations for logistic regression
sim_int3 <- bv %>%
select(ID, diagnosis, activity_change_MAD, abs_MAD_activity, abs_MAD_interactions, interaction_time)
sim_int2 <- bv %>%
select(ID, diagnosis, abs_MAD_activity, abs_MAD_interactions, interaction_time, change_MAD)
sim_bv <- bv %>%
select(ID, diagnosis, interaction_time, interactions, change_MAD, abs_MAD, activity)
overall_bv <- bv %>%
select(ID, diagnosis, interaction_time, interactions, change_MAD, abs_MAD, mad)
```
# Defining functions for classification & cross-validation
```{r Classifier-function}
# CLASSIFICATION FUNCTION
ClassifyLogistic <- function(data, test_proportion){
# partition the data
partition_list <- partition(data, p = 0.2, cat_col = c("diagnosis"), list_out = T)
# specify training set and test set
test_data <- partition_list[[1]]
test_data <- test_data %>% select(-ID)
training_data <- partition_list[[2]]
training_data <- training_data %>% select(-ID)
# specify recipe / formula for the model
recipe <- training_data %>%
recipe(diagnosis ~ .) %>%
step_corr(all_numeric()) %>%
prep(training = training_data)
# extract the training data from the recipe
training_baked <- juice(recipe)
# apply recipe to test data
test_baked <- recipe %>% bake(test_data)
# specify the model - a logistic classifier
model <- logistic_reg() %>%
set_mode("classification") %>%
set_engine("glm") %>%
fit(diagnosis ~., data = training_baked)
# fit model to test data
results <- test_baked %>%
select(diagnosis) %>%
mutate(log_class = predict(model, new_data = test_baked) %>%
pull(.pred_class),
log_prob = predict(model, new_data = test_baked, type = "prob") %>%
pull(.pred_1))
# extracting metrics of log_class
results <- results %>%
select(diagnosis, log_class, log_prob) %>%
mutate(log_prob = log_prob-0.5,
diagnosis = as.numeric(diagnosis)-1,
log_class = as.numeric(log_class)-1)
results$log_class <- as.factor(results$log_class)
results$diagnosis <- as.factor(results$diagnosis)
return(results)
}
# CROSS VALIDATION FUNCTION
CrossValidation <- function(data, partition, iterations){
iterations <- as.numeric(iterations)
for (i in 1:iterations){
# run a logistic regression using the ClassifyLogistic function
log_model <- ClassifyLogistic(data, partition)
# get metrics
metrics <- caret::confusionMatrix(log_model$log_class, log_model$diagnosis, positive="0")
# create a list of important metrics
run <- data.frame(
accuracy = metrics$overall[1],
sensitivity = metrics$byClass[1],
specificity = metrics$byClass[2],
kappa = metrics$overall[2],
run = i)
# initiate empty dataframe if it's the first run
if (i == 1){
x <- data.frame(
accuracy = integer(),
sensitivity = integer(),
specificity = integer(),
kappa = integer(),
run = integer())
}
# append the new run to the dataframe
x <- rbind(x, run)
}
return(x)
}
```
# Run Classification & Cross Validation
```{r}
# Cross validation for original data modle
original_acc <- CrossValidation(original_bv, 0.2, 200)
# Cross-validation for simulated data w. 2 interacitons
sim2_acc <- CrossValidation(sim_int2, 0.2, 200)
mean(sim2_acc$accuracy)
# Create tibble with mean accuracy scores
accuracy_scores = tibble(data = c("Original data model", "Simulated data model"),
accuracy = c(mean(original_acc$accuracy), mean(sim2_acc$accuracy)),
SD = c(sd(original_acc$accuracy), sd(sim2_acc$accuracy)),
Sensitivity = c(mean(original_acc$sensitivity),mean(sim2_acc$sensitivity)),
Specificity = c(mean(original_acc$specificity), mean(sim2_acc$specificity)))
print(accuracy_scores)
# Final run
final <- accuracy_scores
final_accuracy <- rbind(sim2_acc, original_acc)
final_accuracy$model <- 0
final_accuracy$model[0:200] <- "Simulated data model"
final_accuracy$model[201:400] <- "Original data model"
final_accuracy$model <- as.factor(final_accuracy$model)
mean(final_accuracy$accuracy[0:200])
# Plotting accuracies with uncertainties
ggplot(final_accuracy, aes(x = model, y=accuracy, group = model, fill = model))+
geom_violin(alpha = 0.5)+
stat_summary(fun.y=mean, geom="line", aes(group=1), size = 1, alpha = 0.3)+
stat_summary(fun.y=mean, geom="point", size = 2.5,alpha = 0.3)+
geom_boxplot(width=0.2, alpha = 0.5)+
scale_fill_manual(values=c("#A5262E","#55438E", "black"))+
theme_classic()+
theme(legend.position = "none") +
labs(title = "Model performances",
x = "Model",
y = "Accuracy")
```
# Investigating interaction effects
```{r}
# Investigating interactions
# Investigating interactions
# pitch MAD * speechrate in original data
summary(lm(Pitch_MAD ~ 1 + diagnosis*speechrate, data = original_data))
# Visualising interaction effects
ggplot(grouped_scaled_01, aes(x = Pitch_MAD, y=speechrate, group = Diagnosis, color=Diagnosis))+
geom_point(aes(colour = Diagnosis))+
geom_smooth(method = "lm", aes(colour = Diagnosis))+
scale_color_manual(values=c("#A5262E","#25378E"))+
theme_classic()+
xlab("MAD") +
ylab("Speechrate")+
labs(title="Interaction between MAD and speechrate")
# Interactions * abs_MAD
summary(lm(interactions ~ 1 + diagnosis*abs_MAD, data = grouped_sim_data))
# For better interpretabillity
summary(lm(interactions ~ 0 + diagnosis:abs_MAD, data = grouped_sim_data))
# Visualising interaction effects
ggplot(grouped_sim_data, aes(abs_MAD, interactions, group = diagnosis, color=diagnosis))+
geom_point(aes(colour = diagnosis))+
geom_smooth(method = "lm", aes(colour = diagnosis))+
scale_color_manual(values=c("#A5262E","#25378E"))+
theme_classic()+
xlab("Abs MAD") +
ylab("Interations")+
labs(title="Interaction between MAD and interactions")
# Interactions * activity
summary(lm(abs_MAD ~ 1 + diagnosis*activity, data = grouped_sim_data))
# For better interpretabillity
summary(lm(abs_MAD ~ 0 + diagnosis:activity, data = grouped_sim_data))
# Visualising interaction effects
ggplot(grouped_sim_data, aes(activity, abs_MAD, group = diagnosis, color=diagnosis))+
geom_point(aes(colour = diagnosis))+
geom_smooth(method = "lm", aes(colour = diagnosis))+
scale_color_manual(values=c("#A5262E","#25378E"),
name="Diagnosis",
labels=c("ASD", "TD"))+
theme_classic()+
xlab("Activity") +
ylab("Abs MAD")+
labs(title="Interaction between MAD and Activity")
# activity * change mad
summary(lm(change_MAD ~ 1 + diagnosis*activity, data = grouped_sim_data))
# For better interpretabillity
summary(lm(change_MAD ~ 0 + diagnosis:activity, data = grouped_sim_data))
# Visualising interaction effects
ggplot(grouped_sim_data, aes(activity, change_MAD, group = diagnosis, color=diagnosis))+
geom_point(aes(colour = diagnosis))+
geom_smooth(method = "lm", aes(colour = diagnosis))+
scale_color_manual(values=c("#A5262E","#25378E"))+
theme_classic()+
xlab("Activity") +
ylab("Change MAD")+
labs(title="Interaction between MAD and Activity")
```
# Plotting ABM functions
```{r}
# Plotting activation prob for two hypothetical patients
x <- seq(0,0.6,0.005)
function1 <- 4*(0.44*x+0.03)*0.44+4*(0.4*x+0.03)*x
function2 <- 4*(0.61*x+0.03)*0.61+4*(0.4*x+0.03)*x
b <- seq(-1,1,0.005)
function3 <- (0.75*(1-0.67))*(-1*b^2+1)*b
function4 <- (0.75*(1-0.47))*(-1*b^2+1)*b
plot(x, function1,
main="Visualisation of activation function",
ylab="Activation probability",
xlab = "Difference in acoustic profiles",
type="l",
col="#25378E")
lines(x,function2, col="#A5262E")
legend("topleft",
c("Agent 1 (TD)","Agent 2 (ASD)"),
fill=c("#25378E","#A5262E"),
)
# Add text
text(0.22,0.21, "Prob. = 25%", col = "#25378E")
text(0.114,0.41, "Prob. = 39%", col = "#A5262E")
points(0.17, 0.2511, type = "p", col ="#25378E")
points(0.17, 0.3929, type = "p", col ="#A5262E")
#### ALIGNEMENT #####
plot(b, function4,
main="Visualisation of allignment function",
ylab="Change of IQR",
xlab = "Difference in IQR",
type="l",
col="#25378E")
lines(b,function3, col="#A5262E")
legend("topleft",
c("Agent 1 (TD)","Agent 2 (ASD)"),
fill=c("#25378E","#A5262E"),
)
# Add text
text(-0.02,0.08, "Change = 0.763", col = "#25378E")
text(-0.42,-0.0425, "Change = -0.475", col = "#A5262E")
points(0.2, 0.0763, type = "p", col ="#25378E")
points(-0.2, -0.0475, type = "p", col ="#A5262E")
```