-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgenerate_features.py
76 lines (60 loc) · 2.03 KB
/
generate_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
########################################################################
#
# @author : Emmanouil Sylligardos
# @when : Winter Semester 2022/2023
# @where : LIPADE internship Paris
# @title : MSAD (Model Selection Anomaly Detection)
# @component: root
# @file : generate_features
#
########################################################################
import numpy as np
import pandas as pd
import argparse
import re
import os
from utils.data_loader import DataLoader
from sktime.transformations.panel.tsfresh import TSFreshFeatureExtractor
def generate_features(path):
"""Given a dataset it computes the TSFresh automatically extracted
features and saves the new dataset (which does not anymore contain
time series but tabular data) into one .csv in the folder of the
original dataset
:param path: path to the dataset to be converted
"""
window_size = int(re.search(r'\d+', path).group())
# Create name of new dataset
dataset_name = [x for x in path.split('/') if str(window_size) in x][0]
new_name = f"TSFRESH_{dataset_name}.csv"
# Load datasets
dataloader = DataLoader(path)
datasets = dataloader.get_dataset_names()
df = dataloader.load_df(datasets)
# Divide df
labels = df.pop("label")
x = df.to_numpy()[:, np.newaxis]
index = df.index
# Setup the TSFresh feature extractor (too costly to use any other parameter)
fe = TSFreshFeatureExtractor(
default_fc_parameters="minimal",
show_warnings=False,
n_jobs=-1
)
# Compute features
X_transformed = fe.fit_transform(x)
# Create new dataframe
X_transformed.index = index
X_transformed = pd.merge(labels, X_transformed, left_index=True, right_index=True)
# Save new features
X_transformed.to_csv(os.path.join(path, new_name))
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog='generate_features',
description='Transform a dataset of time series (of equal length) to tabular data\
with TSFresh'
)
parser.add_argument('-p', '--path', type=str, help='path to the dataset to use')
args = parser.parse_args()
generate_features(
path=args.path,
)