forked from luvk1412/Sign-Language-to-Text
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
80 lines (66 loc) · 2.94 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Convolution2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense , Dropout
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
sz = 128
# Step 1 - Building the CNN
# Initializing the CNN
classifier = Sequential()
# First convolution layer and pooling
classifier.add(Convolution2D(32, (3, 3), input_shape=(sz, sz, 1), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
# Second convolution layer and pooling
classifier.add(Convolution2D(32, (3, 3), activation='relu'))
# input_shape is going to be the pooled feature maps from the previous convolution layer
classifier.add(MaxPooling2D(pool_size=(2, 2)))
#classifier.add(Convolution2D(32, (3, 3), activation='relu'))
# input_shape is going to be the pooled feature maps from the previous convolution layer
#classifier.add(MaxPooling2D(pool_size=(2, 2)))
# Flattening the layers
classifier.add(Flatten())
# Adding a fully connected layer
classifier.add(Dense(units=128, activation='relu'))
classifier.add(Dropout(0.40))
classifier.add(Dense(units=96, activation='relu'))
classifier.add(Dropout(0.40))
classifier.add(Dense(units=64, activation='relu'))
classifier.add(Dense(units=27, activation='softmax')) # softmax for more than 2
# Compiling the CNN
classifier.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # categorical_crossentropy for more than 2
# Step 2 - Preparing the train/test data and training the model
classifier.summary()
# Code copied from - https://keras.io/preprocessing/image/
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
training_set = train_datagen.flow_from_directory('data2/train',
target_size=(sz, sz),
batch_size=10,
color_mode='grayscale',
class_mode='categorical')
test_set = test_datagen.flow_from_directory('data2/test',
target_size=(sz , sz),
batch_size=10,
color_mode='grayscale',
class_mode='categorical')
classifier.fit_generator(
training_set,
steps_per_epoch=12841, # No of images in training set
epochs=5,
validation_data=test_set,
validation_steps=4268)# No of images in test set
# Saving the model
model_json = classifier.to_json()
with open("model-bw.json", "w") as json_file:
json_file.write(model_json)
print('Model Saved')
classifier.save_weights('model-bw.h5')
print('Weights saved')