-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
65 lines (55 loc) · 1.96 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch
import torch.nn as nn
import torchvision.models as models
import timm
class ModifiedResnet18(nn.Module):
def __init__(self,num_classes=18):
super(ModifiedResnet18, self).__init__()
self.resnet = models.resnet18(pretrained=True)
num_ftrs = 512
self.resnet.fc = nn.Linear(num_ftrs, 256)
self.dropout = nn.Dropout(0.7)
self.fc2 = nn.Linear(256, num_classes)
self.relu = nn.ReLU()
def forward(self, input):
x = self.resnet(input)
x = x.view(x.size(0), -1)
x = self.dropout(self.relu(x))
x = self.fc2(x)
return x
class ModifiedEfficient(nn.Module):
def __init__(self,args, num_classes=18):
super(ModifiedEfficient, self).__init__()
"""
fc2 layer, dropout, relu 추가
"""
model_size = args.model[-1]
self.efficient = timm.create_model(f'efficientnet_b{model_size}',pretrained=True)
num_ftrs = self.efficient.classifier.in_features
self.efficient.classifier = nn.Linear(num_ftrs, 512)
self.dropout = nn.Dropout(0.7)
self.fc2 = nn.Linear(512, num_classes)
self.relu = nn.ReLU()
def forward(self, input):
x = self.efficient(input)
x = x.view(x.size(0), -1)
x = self.dropout(self.relu(x))
x = self.fc2(x)
return x
class ModifiedEfficientB0(nn.Module):
def __init__(self,num_classes=18):
super(ModifiedEfficientB0, self).__init__()
self.efficient = timm.create_model('efficientnet_b0',pretrained=True)
num_ftrs = 1280
self.efficient.classifier = nn.Linear(num_ftrs, 512)
self.dropout = nn.Dropout(0.7)
self.fc2 = nn.Linear(512, num_classes)
self.relu = nn.ReLU()
def forward(self, input):
x = self.efficient(input)
x = x.view(x.size(0), -1)
x = self.dropout(self.relu(x))
x = self.fc2(x)
return x
if __name__=='__main__':
mod = ModifiedEfficient(1)