-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathloss.py
44 lines (34 loc) · 1.76 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import torch
import torch.nn as nn
def get_dice_loss(gt_score, pred_score):
inter = torch.sum(gt_score * pred_score)
union = torch.sum(gt_score) + torch.sum(pred_score) + 1e-5
return 1. - (2 * inter / union)
def get_geo_loss(gt_geo, pred_geo):
d1_gt, d2_gt, d3_gt, d4_gt, angle_gt = torch.split(gt_geo, 1, 1)
d1_pred, d2_pred, d3_pred, d4_pred, angle_pred = torch.split(pred_geo, 1, 1)
area_gt = (d1_gt + d2_gt) * (d3_gt + d4_gt)
area_pred = (d1_pred + d2_pred) * (d3_pred + d4_pred)
w_union = torch.min(d3_gt, d3_pred) + torch.min(d4_gt, d4_pred)
h_union = torch.min(d1_gt, d1_pred) + torch.min(d2_gt, d2_pred)
area_intersect = w_union * h_union
area_union = area_gt + area_pred - area_intersect
iou_loss_map = -torch.log((area_intersect + 1.0) / (area_union + 1.0))
angle_loss_map = 1 - torch.cos(angle_pred - angle_gt)
return iou_loss_map, angle_loss_map
class EASTLoss(nn.Module):
def __init__(self, weight_angle=10):
super().__init__()
self.weight_angle = weight_angle
def forward(self, gt_score, pred_score, gt_geo, pred_geo, roi_mask):
if torch.sum(gt_score) < 1:
return torch.sum(pred_score + pred_geo) * 0
classify_loss = get_dice_loss(gt_score, pred_score * roi_mask)
iou_loss_map, angle_loss_map = get_geo_loss(gt_geo, pred_geo)
angle_loss = torch.sum(angle_loss_map * gt_score) / torch.sum(gt_score)
angle_loss *= self.weight_angle
iou_loss = torch.sum(iou_loss_map * gt_score) / torch.sum(gt_score)
geo_loss = angle_loss + iou_loss
total_loss = classify_loss + geo_loss
return total_loss, dict(cls_loss=classify_loss.item(), angle_loss=angle_loss.item(),
iou_loss=iou_loss.item())