-
Notifications
You must be signed in to change notification settings - Fork 0
/
_02-03_verbal.qmd
executable file
·335 lines (297 loc) · 8.31 KB
/
_02-03_verbal.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
## Verbal/Language {#sec-verbal}
{{< include _02-03_verbal_text.qmd >}}
```{r}
#| label: setup-verbal
#| include: false
# domain
domains <- c("Verbal/Language")
# phenotype
pheno <- "verbal"
```
```{r}
#| label: export-verbal
#| include: false
# Read the CSV file into a data frame
verbal <- vroom::vroom("neurocog.csv")
# Filter the data frame to keep only rows where 'domain' equals 'domains'
verbal <- verbal |> dplyr::filter(domain %in% domains)
verbal <- verbal |>
dplyr::select(
test,
test_name,
scale,
raw_score,
score,
ci_95,
percentile,
range,
domain,
subdomain,
narrow,
pass,
verbal,
timed,
description,
result,
z,
z_mean_domain,
z_sd_domain,
z_mean_subdomain,
z_sd_subdomain,
z_mean_narrow,
z_sd_narrow,
z_mean_pass,
z_sd_pass,
z_mean_verbal,
z_sd_verbal,
z_mean_timed,
z_sd_timed
)
# Write the resulting data frame to a new CSV file
# The file name is created by concatenating the 'pheno' variable and ".csv"
# NA values are replaced with an empty string in the output file
# Column names are included in the output file
# If the file already exists, it is overwritten (not appended)
readr::write_excel_csv(verbal, paste0(pheno, ".csv"), na = "", col_names = TRUE, append = FALSE)
```
```{r}
#| label: data-verbal
#| include: false
# Read data and filter
data <- verbal
scales <- c(
"Academic Language Readiness Index",
"Auditory Comprehension Colors",
"Auditory Comprehension Colors/Shapes/Numbers",
"Auditory Comprehension Shapes",
"Auditory Comprehension",
"Basic Concepts",
"Bill Payment",
"Body Part Identification",
"Body Part Naming",
"Category Fluency",
"Comprehension of Instructions",
"Comprehension",
"Core Language Score",
"D-KEFS Color Naming",
"D-KEFS Word Reading",
"Descriptive Pragmatics Profile",
"Early Literacy Index",
"Expressive Language Index",
"Expressive Vocabulary",
"Following Directions",
"Information",
"Language Content Index",
"Language Domain",
"Language Index",
"Language Structure Index",
"Letter Fluency",
"NAB Language Index",
"Naming Phonemic Cuing",
"Naming Semantic Cuing",
"Naming vs Identification",
"Naming",
"Oral Production",
"Oromotor Sequences",
"Phonological Awareness",
"Picture Naming",
"Preliteracy Rating Scale",
"Reading Comprehension",
"Recalling Sentences",
"Receptive Language Index",
"Receptive Vocabulary",
"Semantic Fluency",
"Sentence Comprehension",
"Similarities",
"Speeded Naming Correct",
"Speeded Naming Errors",
"Speeded Naming Time",
"Speeded Naming",
"Vocabulary",
"Word Classes",
"Word Generation Initial Letter",
"Word Generation Semantic",
"Semantic vs. Initial Letter",
"Word Generation",
"Word Structure",
"Writing",
"Word Generation-Semantic",
"Word Generation-Initial Letter",
"Semantic vs. Initial Letter Contrast"
)
# Filter the data using the filter_data function from the bwu library
# The domain is specified by the 'domains' variable
# The scale is specified by the 'scales' variable
data_verbal <-
bwu::filter_data(
data,
domain = domains,
scale = scales
)
```
```{r}
#| label: text-verbal
#| cache: true
#| include: false
# export text
bwu::cat_neuropsych_results(data = verbal, file = "_02-03_verbal_text.qmd")
```
```{r}
#| label: qtbl-verbal
#| dev: tikz
#| fig-process: pdf2png
#| include: false
# Set the default engine for tikz to "xetex"
options(tikzDefaultEngine = "xetex")
# args
table_name <- "table_verbal"
vertical_padding <- 0
multiline <- TRUE
# footnotes
fn_scaled_score <- gt::md("Scaled score: Mean = 10 [50th‰], SD ± 3 [16th‰, 84th‰]")
fn_standard_score <- gt::md("Index score: Mean = 100 [50th‰], SD ± 15 [16th‰, 84th‰]")
fn_t_score <- gt::md("_T_-score: Mean = 50 [50th‰], SD ± 10 [16th‰, 84th‰]")
# Define the groups for the table
grp_verbal <- list(
scaled_score = c("WAIS-IV", "WISC-5", "NEPSY-2", "D-KEFS", "WPPSI-IV", "CELF-5", "RBANS"),
standard_score = c("NAB", "WPPSI-IV", "NAB-S", "CELF-5", "RBANS"),
t_score = c("NAB", "NAB-S", "NIH EXAMINER", "WASI-2")
)
# make `gt` table
bwu::tbl_gt(
data = data_verbal,
pheno = pheno,
table_name = table_name,
fn_scaled_score = fn_scaled_score,
fn_standard_score = fn_standard_score,
fn_t_score = fn_t_score,
grp_scaled_score = grp_verbal[["scaled_score"]],
grp_standard_score = grp_verbal[["standard_score"]],
grp_t_score = grp_verbal[["t_score"]],
dynamic_grp = grp_verbal,
vertical_padding = vertical_padding,
multiline = multiline
)
```
```{r}
#| label: fig-verbal-subdomain
#| include: false
#| fig-cap: "Verbal and language functioning refers to the ability to access and apply acquired word knowledge, to verbalize meaningful concepts, to understand complex multistep instructions, to think about verbal information, and to express oneself using words."
# Arguments
colors <- NULL
return_plot <- Sys.getenv("RETURN_PLOT")
filename <- "fig_verbal_subdomain.svg"
# variables to plot
x <- data_verbal$z_mean_subdomain
y <- data_verbal$subdomain
# Suppress warnings from being converted to errors
options(warn = 1) # Set warn to 1 to make warnings not halt execution
# Make dotplot
bwu::dotplot(
data = data_verbal,
x = x,
y = y,
colors = colors,
return_plot = return_plot,
filename = filename,
na.rm = TRUE
)
# Reset warning options to default if needed
options(warn = 0) # Reset to default behavior
```
```{r}
#| label: fig-verbal-narrow
#| include: false
#| fig-cap: "Verbal and language functioning refers to the ability to access and apply acquired word knowledge, to verbalize meaningful concepts, to understand complex multistep instructions, to think about verbal information, and to express oneself using words."
# Arguments
colors <- NULL
return_plot <- Sys.getenv("RETURN_PLOT")
filename <- "fig_verbal_narrow.svg"
# variables to plot
x <- data_verbal$z_mean_narrow
y <- data_verbal$narrow
# Suppress warnings from being converted to errors
options(warn = 1) # Set warn to 1 to make warnings not halt execution
# Make dotplot
bwu::dotplot(
data = data_verbal,
x = x,
y = y,
colors = colors,
return_plot = return_plot,
filename = filename,
na.rm = TRUE
)
# Reset warning options to default if needed
options(warn = 0) # Reset to default behavior
```
```{=typst}
#let domain(title: none, file_qtbl, file_fig) = {
let font = (font: "Roboto Slab", size: 0.5em)
set text(..font)
pad(top: 0.5em)[]
grid(
columns: (50%, 50%),
gutter: 8pt,
figure([#image(file_qtbl)],
caption: figure.caption(position: top, [#title]),
kind: "qtbl",
supplement: [Table],
),
figure([#image(file_fig)],
caption: figure.caption(position: bottom, [
Verbal and language functioning refers to the ability to access and apply acquired word knowledge, to verbalize meaningful concepts, to understand complex multistep instructions, to think about verbal information, and to express oneself using words.
]),
placement: none,
kind: "image",
supplement: [Figure],
gap: 0.5em,
),
)
}
```
```{=typst}
#let title = "Verbal/Language"
#let file_qtbl = "table_verbal.png"
#let file_fig = "fig_verbal_subdomain.svg"
#domain(
title: [#title Scores],
file_qtbl,
file_fig
)
```
```{=typst}
#let domain(title: none, file_qtbl, file_fig) = {
let font = (font: "Roboto Slab", size: 0.5em)
set text(..font)
pad(top: 0.5em)[]
grid(
columns: (50%, 50%),
gutter: 8pt,
figure([#image(file_qtbl)],
caption: figure.caption(position: top, [#title]),
kind: "qtbl",
supplement: [Table],
),
figure([#image(file_fig)],
caption: figure.caption(position: bottom, [
Verbal and language functioning refers to the ability to access and apply acquired word knowledge, to verbalize meaningful concepts, to understand complex multistep instructions, to think about verbal information, and to express oneself using words.
]),
placement: none,
kind: "image",
supplement: [Figure],
gap: 0.5em,
),
)
}
```
```{=typst}
#let title = "Verbal/Language"
#let file_qtbl = "table_verbal.png"
#let file_fig = "fig_verbal_narrow.svg"
#domain(
title: [#title Scores],
file_qtbl,
file_fig
)
```